固体超强酸概述
- 格式:doc
- 大小:389.00 KB
- 文档页数:7
固体超强酸再生探究实验一、研究对象确定在现代化工生产中,绝大多数化学反应都必须有催化剂的参与,传统的采用液体酸催化剂(如氮氛酸、硫酸)具有严重腐蚀设备、对人体的危害、污染环境、产物与催化剂分离困难以及催化剂再生困难等问题,因此,研究和开发对环境友好的催化剂是有机化学品生产工艺的一个重要领域。
20世纪60-70年代开发的固体超强酸主要是含卤素超强酸,该类型催化剂虽然具有较高的催化活性,但仍存在着多含化物,制备条件苛刻,催化剂活性组分流失严重;反应后催化剂难于回收,三废污染严重,并且不能与水接触等,因此,作为工业催化剂的应用前景不是太大。
而SO2-4/MxOy型固体超强酸是近年来被研究得最多的一类取代液体酸的催化剂,它具有催化活性高、制备容易、不怕水、对设备腐蚀小以及催化剂能重复使用等优点,广泛应用于如醋化、酞化、烷烃的异构化、烷基化、等重要有机合成反应。
并且由于固体超强酸种类较多,逐一研究起来困难大,于是将SO2-4/MxOy型固体超强酸作为主要的固体超强酸研究对象。
SO2-4/MxOy型固体超强酸中有以单氧化物载体类型(如SO2-4/Zr O2)和复合氧化物载体类型(如SO2-4/TiO2-Fe2O3、SO2-4/Ti O2- Zr O2),而以复合氧化物作为固体超强酸催化剂载体所表现出许多独特的物理化学性质,其它组元的引入,对超强酸的表面结构、活性、寿命都有影响,这种固体超强酸可能是以后研究的重点。
当其作为催化剂载体时,可通过与活性组分的相互作用改变活性组分的分散状态及活性相结构,从而改善催化剂的催化性能,SO2-4/MxOy-NxOy型固体超强酸已越来越受到人们的关注。
于是研究对象SO2-4/MxOy型固体超强酸以SO2-4/Ti O2- Fe2O3或SO2-4/Ti O2- Zr O2固体超强酸为代表。
二、固体超强酸再生研究意义固体超强酸催化剂在许多反应中已经表现出优良的催化性能,其独特的高催化活性和选择性已引起人们关注,但在固体超强酸研究课题上存在一些问题制约了其实际的广泛推广使用,如固体超强酸的再生、结构的稳定性。
固体超强酸固体超强碱名词解释
1.固体超强酸
固体超强酸是指酸性超过100% 硫酸的酸,如用Hammett 酸度函数H。
表示酸强度,100%硫酸的H0值为11.93H0< -11.93 的酸就是超强酸。
固体超强酸分为两类,一类含卤素、氟磺酸树脂成氟化物固载化物;另一类不含卤素,它由吸附在金属氧化物或氢氧化物表面的硫酸根,经高温燃烧制备。
2.固体超强碱
碱强度超过强碱(即共轭酸的pKa>26)的碱为超强碱。
有布仑斯惕超强碱,路易斯超强碱。
有固体、液体两类超强碱。
用于催化某些化学反应的超强碱为超强碱催化剂。
三甲基硅烷基氯化镁、AgB2H5、LiB2H5是能够以溶液的形式存在的最强碱,但如果说三甲基硅烷基氯化镁、AgB2H5、LiB2H5是普遍意义上的最强碱,那还差之甚远。
固体超强碱,如Li4C、Mg2Si、Na3B(硼化三钠)等,其对应的共轭酸pKa值往往超过120,甚至达到150-160。
他们的碱性强到几乎不能够以溶液形态存在。
例如:Na3B 溶解于丁硅烷Si4H10会发生配位反应,生成[(Si4H10)B4]12-而后析出氢化钠形成硼硅加合物。
另外有些碱如Li3N、Ag3N等,难溶于大多数有机溶剂,却能在固相中发生很强的碱性反应。
他们也被称为固体超强碱。
固体超强酸概述摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。
固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。
本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。
关键词:固体超强酸;催化剂;应用在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。
这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。
液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。
固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。
当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。
羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。
目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。
自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。
固体超强酸概述固体超强酸概述简介:固体超强酸是指酸性比100%硫酸更强的固体酸,固体超强酸由于的高比表面积及特殊的晶体结构使其成为一种新型催化剂材料,可广泛用于有机合成、精细化工、石油化工等行业。
由于固体超强酸与传统的催化剂(如硫酸)相比具有(1)催化效率高,用量少,副反应小,副产物少;(2)可在高温下使用,可重复使用,催化剂与产物分离简单;(3)无腐蚀性,不荇染环境;(4)制备方法简便,可用一般金属盐类制备。
由于上述优点,固体超强酸的研究和应用成为寻求新型绿色环保型催化剂的热点领域,对促进化工行业向绿色环保化方向发展具有重要的意义。
固体超强酸和传统的催化剂(如浓硫酸、三氯化铁、无水三氯化铝等)相比具有明显的优势:(1)催化活性高,催化剂用量少,催化剂分离回收容易。
催化剂本身不进人和不污染产品;(2)使用温度低,甚至在常温下也表现出较好的活性,有利于节能;(3)反应物转化率高,副反应少,产物色泽和纯度好。
有利于减少原料消耗和降低“三废”排放;(4)固体超强酸虽然表面酸性很强,但不腐蚀设备。
固体超强酸目前也还存在一些不足之处:(1)使用过程中活性会逐渐下降,使用寿命还达不到工业化生产中长期使用的要求;(2)催化剂为细粉状,流体流经催化剂的阻力大,不适合工业上连续化生产的要求。
因此如何改善固体超强酸的这些不利因素,成为人们关注的焦点。
随着人们对固体超强酸不断深入研究,催化剂的种类也从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。
无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。
人们在不断开发新的固体酸催化剂和固体酸催化工艺的同时,也在不断地探讨固体酸的酸性形成的机理,探讨固体酸催化反应的机理。
本文重点对固体超强酸改性、理论研究、表征技术、失活机理及应用领域进行综述。
固体超强酸的制备及催化性能的研究一、固体超强酸的制备原理所谓固体超强酸是指比100%硫酸的酸度还强的固体酸。
其酸强度用Hammett指示剂的酸度函数Ho表示,一般的,Ho=pK(所用指示剂的pK值),已知100%硫酸的Ho=-11.93,凡是Ho值小于-11.93的固体酸均称为固体超强酸,Ho值越小,该超强酸的酸度越强。
固体超强酸的制备方法:硫酸根离子促进的氧化物型固体超强酸的制备方法如下,将相应的可溶性金属盐溶于水中,加入氨水或尿素等沉淀剂,先制得金属氢氧化物溶胶,经过滤,水洗,除去杂质离子,干燥后再用一定浓度的硫酸或硫酸铵溶液浸渍,过滤,干燥后,经高温焙烧制得。
二、试剂九水硝酸铁硫酸聚乙二醇2000 去离子水无水乙醇冰醋酸氢氧化钠溶液三、仪器设备烧杯搅拌棒布氏漏斗抽滤瓶烘箱研钵温度计回流注锥形瓶四、实验步骤1、将硝酸铁和硝酸铝按一定比例溶于水,加入质量分数为0.5%~1%的聚乙二醇溶液,强烈搅拌下逐滴滴加氨水,生成沉淀后放人冰水浴中陈化2、洗涤抽滤,110℃干燥后研磨3、用促进剂浸渍12h4、干燥,研磨,一定温度焙烧即得固体酸催化剂样品五、催化性能的测定1、催化剂酯化活性测定在带有搅拌器、温度计、回流冷凝管的250ml三口烧瓶中,加入50ml 无水乙醇,15ml冰醋酸和1g 催化剂,在回流温度下进行酯化反应,每隔1h取样分析一次。
醋酸转化率的计算在250ml 锥形瓶中事先加入20ml 蒸馏水,再加入1ml 样品,用0.5mol/L 标准氢氧化钠溶液滴定,以酚酞作指示剂,滴定至出现粉红色为终点。
醋酸转化率按下式计算:X=(1 – V/Vo)*100%式中:Vo,V ———反应开始前、反应过程中滴定所消的标准氢氧化钠溶液的体积,ml。
2、酸强度的测定(1)探针反应法低碳链烷烃的骨架异构化反应经常被用作固体超强酸的探针反应。
其中比较典型的是正丁烷在低温下的异构化反应,这是验证固体超强酸酸性的重要手段。
固体超强酸催化剂超强酸是比100%的硫酸还要强的酸,其Hammett函数H0<-11.93(100%硫酸的H0为-11.93),可分为固态和液态。
固体超强酸和液体超强酸相比,有容易与反应物分离,可重复使用,不腐蚀反应器,减少催化剂公害,催化剂有良好的选择性等优点。
在催化反应中,固体超强酸对烯烃双键异构化、醇脱水、烯烃烷基化、酸化、醋化等都显示出较高的活性。
这种催化剂不腐蚀设备,不污染环境,催化反应温度低,制备简便,有广泛的应用前景。
固体超强酸是近年来发展的一种新型催化材料,对许多化学反应有较好的催化活性、选择性及重复使用性能。
固体超强酸是近年来研究与开发的一种新型固体酸催化剂,随着人们对固体超强酸不断深入研究,催化剂的种类也从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。
无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。
1. 催化性能1.1饱和烃的异构化反应饱和烃类分子如正丁烷、戊烷较稳定,不易发生反应。
如用100%硫酸作催化剂,室温下不会发生反应,但用SbF5SiO2-Al2O3固体超强酸却能使丁烷发生反应,主要产物为异丁烷。
nC5H12 SbF5SiO2-Al2O3 异戊烷1.2氧化反应SO42--Fe2O3能在室温下使丁烷异构化。
但在100℃以上用脉冲法进行反应时,只发生氧化反应但是,单用Fe2O3作催化剂,即使反应温度为300℃丁烷也不发生反应。
1.3阴离子聚合反应烷基乙烯基醚的聚合反应是阴离子聚合反应,可用烷基金属化合物或Ziegler型催化剂。
但是SO42--Fe2O3对此反应有极高的反应活性。
如异丁基乙烯基醚用SO42--Fe2O3作催化剂,在0℃能很快发生聚合反应。
甲基乙烯基醚和乙基乙烯基醚在该催化剂存在下以甲苯作稀释剂也能在低温(零度或零度以下)下高速聚合。
本科生毕业论文(设计)题目固体超强酸的发展与应用姓名曹悦学号201332502002 院系理工学院专业化学工程与工艺指导教师曹子平职称副教授2015年04 月20日曲阜师范大学教务处制目录摘要: (3)关键词: (3)Abstract (3)Key words (3)引言 (3)1 超强固体酸的概述 (4)1.1 固体超强酸的含义 (4)1.2 固体超强酸的分类 (4)1.2.2 不含卤素的固体超强酸 (4)2 各类固体酸催化剂的研究近况 (6)2.1固载化液体酸 (6)2.2简单氧化物 (6)2.3硫化物 (6)2.4金属盐 (6)2.5杂多酸固体酸 (6)3 固体酸催化剂的应用 (7)3.1固体酸催化剂对二甲醚水蒸气重整制氢过程的影响 (7)4 固体酸催化剂存在的一些问题及发展前景 (8)4.1固体酸催化剂在应用中存在的一些问题 (8)4.2 固体酸催化剂的发展前景 (8)致谢 (9)参考文献 (9)固体超强酸的发展与应用化学专业学生曹悦指导教师曹子平摘要:以浓硫酸为催化剂的工业反应存在着污染环境和工艺生产复杂等缺点。
因此,开发对环境友好的高效固体酸催化剂具有重要意义。
由于固体超强酸具有催化活性高,比液体催化剂易分离处理、无污染、工艺过程简单等优点,近年来受到广泛关注。
本文综述了固体超强酸催化剂的研究进展及在有机合成和精细化学品合成中的应用,并对其定义、分类、制备等方面作了阐述,还对其今后的发展方向和应用前景进行了预测。
关键词:固体超强酸、催化剂超强酸应用Development and application of solid super acidStudent majoring in Chemistry CaoYueTutor CaoZipingAbstractSulfuric acid as a catalyst for the reaction of industrial has many shortcomings. For example, the pollution of environment, the complexity and difficulty of producing process. Therefore, it is very important that we should develop the solid acid which is environment – friendly and efficient. Because the super solid acid has higher catalytic activity than the liquid catalyst and its separation process is so easy and non–polluting. So it received extensive attention in recent years. This paper summarizes the super solid acid catalysts’ definition, classification, preparation, process, application on organic synthesis and fine chemicals synthesis and predicts its research and application direction on the future.Key words: Super solid acid; Catalysts; Super acid; Application引言酸催化反应, 尤其是固体酸催化反应, 早已在工业上应用。
固体超酸及其应用研究进展摘要:目前已制备的超酸种类繁多,它具有极强的酸性和高介电常数,在化学合成工业中是一种良好的催化剂。
本文对超强酸的定义、酸度的测定进行了简单介绍。
固体超强酸是近年来发展的一种新型催化材料,进一步综述了固体超强酸的分类、制备方法,例举了一些学者制备的新的固体超强酸催化剂。
重点是介绍固体超强酸催化剂在有机化学反应中的应用。
指出了固体超强酸的优点和一些不足。
最后指出了今后固体超强酸催化剂的发展方向。
关键词:超酸;固体超酸;催化剂;应用;发展Abstract: The acid has been prepared over a wide range, it has a very strong acid and high dielectric constant, it is a good catalyst in the chemical synthesis industry. In this paper, the defi niti on of super acid, acidity determ in ati on for a brief in troducti on.Solid superacid is a new type of catalytic material in recent years. the classification of solid superacids and preparation methods are described. New solid superacid catalysts are in troduced. solid superacid catalysts are applied in orga nic react ions which is the key in the article. Pointing out the advantages of solid superacids and some shortcomings. Finally,developme nt trends of solid superacid catalysts are put forward.Key words:Superacid; solid superacid; catalyst; applicati on; developme nt1超酸的简单介绍1.1超酸的定义超强酸是指酸强度比100 %的硫酸还要强的酸,特酸度函数HO < -11.94 的酸。
《固体超强酸改性矿用材料的制备及其阻燃性能的研究》篇一一、引言随着矿用材料技术的不断发展,对材料性能的要求日益提高。
其中,阻燃性能是矿用材料的重要指标之一。
近年来,固体超强酸因其独特的化学性质和良好的催化性能,在材料科学领域得到了广泛的应用。
本研究旨在探讨固体超强酸改性矿用材料的制备方法,并对其阻燃性能进行深入研究,以期为矿用材料的技术进步提供新的思路和方法。
二、固体超强酸的简介固体超强酸,作为一种新型的催化剂和改性剂,具有较高的酸性和催化活性。
其独特的物理化学性质使其在材料改性方面具有巨大的应用潜力。
在矿用材料的改性中,固体超强酸能够与材料中的某些成分发生化学反应,提高材料的阻燃性能和其他物理化学性能。
三、制备方法及实验设计1. 材料选择与预处理:选择适当的矿用材料作为基材,进行必要的预处理,如清洗、干燥等。
2. 固体超强酸的制备:采用化学合成法或物理法,制备出所需的固体超强酸。
3. 改性处理:将固体超强酸与矿用材料进行混合、搅拌、加热等处理,使固体超强酸与材料发生化学反应或物理吸附。
4. 性能测试:对改性后的矿用材料进行阻燃性能、力学性能、热稳定性等测试。
四、实验结果与分析1. 阻燃性能测试:通过垂直燃烧法、极限氧指数法等测试手段,对改性前后矿用材料的阻燃性能进行对比分析。
实验结果表明,经过固体超强酸改性的矿用材料具有显著提高的阻燃性能。
2. 力学性能测试:通过拉伸、压缩等测试手段,对改性前后矿用材料的力学性能进行分析。
结果显示,改性后的材料力学性能有所提高。
3. 热稳定性分析:通过热重分析、差示扫描量热法等手段,对改性前后矿用材料的热稳定性进行分析。
结果表明,固体超强酸的引入提高了材料的热稳定性。
五、阻燃机理探讨根据实验结果和文献资料,对固体超强酸改性矿用材料的阻燃机理进行探讨。
分析认为,固体超强酸能够与材料中的某些成分发生化学反应,生成具有阻燃作用的物质,同时提高材料的热稳定性,从而达到提高阻燃性能的目的。
固体超强酸催化合成马来酸二丁酯的研究
马来酸二丁酯是一种重要的有机化学品,广泛应用于涂料、塑料、树脂等领域。
传统的合成方法是通过酯化反应得到,但该方法存在反应速度慢、产率低、催化剂易受污染等问题。
因此,寻找一种高效、环保的合成方法成为了研究的热点。
近年来,固体超强酸催化合成马来酸二丁酯的研究受到了广泛关注。
固体超强酸是指具有高酸性的固体材料,如氧化铝、硅酸铝等。
相比于传统的液体酸催化剂,固体超强酸具有催化效率高、反应速度快、催化剂易回收等优点。
在固体超强酸催化下,马来酸二丁酯的合成反应可以通过以下步骤进行:
将丁二酸和丁醇加入反应釜中,在固体超强酸的催化下进行酯化反应,生成丁酸二丁酯。
然后,将马来酸加入反应釜中,与丁酸二丁酯进行缩合反应,生成马来酸二丁酯。
该方法具有反应条件温和、产率高、催化剂易回收等优点。
同时,固体超强酸催化剂的使用也符合环保要求,避免了液体酸催化剂易受污染的问题。
固体超强酸催化合成马来酸二丁酯是一种高效、环保的合成方法,具有广阔的应用前景。
未来的研究可以进一步探究固体超强酸催化
剂的性质和应用,为有机化学品的合成提供更多的选择。
固体超强酸的酸度定义固体超强酸的酸强度是指其酸性中心给出质子或接受电子对的能力,可以采用Hammett酸度函数H0表达。
在所测量的样品中加入少量指示剂B(一种极弱的碱),B与质子结合后生成的共轭酸BH+具有不同性质(如颜色等),根据酸碱反应达到平衡时的[B]/[BH+]值,则可求得H0:H0=P k BH+-lg([BH+]/[B])P k BH+=-lg(K BH+)式中,K BH+是化学反应BH+→B+H+的平衡常数。
H0越小,则表明酸的强度越强,100%H2SO4的H0=-11.94,H0<-11.94的酸就称为超强酸[5]2.3.3 催化剂失活机理一般认为,固体超强酸的失活有以下几个方面原因:表面上的促进剂的流失,如酯化、脱水、醚化等反应过程中,水或水蒸气的存在会造成超强酸表面上的促进剂流失;使催化剂表面的酸性中心数减少,导致酸强度减弱,催化活性下降;在有机反应中,由于反应物、产物在催化剂表面上进行吸附、脱附及表面反应或积炭现象的发生,造成超强酸催化剂的活性下降或失活;反应体系中由于毒物的存在,使固体超强酸中毒,使负电性显著下降,配位方式发生变化,导致酸强度减小而失活[17]。
以上几种失活是暂时的失活,可通过重新洗涤、干燥、酸化、焙烧和补充催化剂所失去的酸性位,烧去积炭,恢复催化剂的活性3。
这也就是固体超强酸与液体超强酸相比,具有可重复使用性的原因。
2.4实验内容2.5 对比实验1. 使用先前制备的SO42-/ZrO2的催化剂进行对比实验,用电子天平准确称取5g冰醋酸、6.8g正丁醇和0.4g该催化剂,再取出1g反应混合物用标准氢氧化钠溶液进行滴定测其酸值,剩余混合物加入白钢罐中,在恒温油浴120℃加热反应2h,反应结束后待反应器冷却后,再取出1g产物混合物用标准氢氧化钠溶液进行滴定测其酸值。
2.用实验室提供的H-ZSM-5分子筛催化剂进行酯化反应。
用电子天平准确称取5g冰醋酸、6.8g正丁醇和0.4g该催化剂,再取出1g反应混合物用标准氢氧化钠溶液进行滴定测其酸值,剩余混合物加入白钢罐中,在恒温油浴120℃加热反应2h,反应结束后待反应器冷却后,再取出1g产物混合物用标准氢氧化钠溶液进行滴定测其酸值。
固体超强酸概述摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。
固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。
本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。
关键词:固体超强酸;催化剂;应用在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。
这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。
液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。
固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。
当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。
羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。
目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。
自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。
一种固体超强酸及其制备方法近年来,超强酸在化学研究中发挥着越来越重要的作用,它的应用领域也更加多样化。
超强酸的研究主要集中在3个方面:首先是固态超强酸的研究,其次是溶剂超强酸的研究,最后是它们制备方法的研究。
本文将聚焦于以上三方面,重点介绍固态超强酸及其制备方法。
固态超强酸是指以固态形式存在的超强酸,因其表现出了超强酸的特性,也被称为“实体超强酸”。
固态超强酸表现出了极低的腐蚀性和非常高的熔点,甚至在高温下也能保持良好的稳定性,能够更容易地将其储存、运输和操作。
另外,固态超强酸还可以在温度较高的环境中进行反应,因此众多学者和科研机构也纷纷投入到固态超强酸的研究当中,力图挖掘它的应用潜力。
固态超强酸的发现可以追溯到20世纪70年代,当时几位科学家发现,将氯化钾和偶氮丙酮结合起来制备出一种磷酸钾,并测量其腐蚀性,发现此种磷酸钾具有极高的腐蚀性,因而被认定为超强酸的指标物质,也是历史上的第一种固态超强酸,被称为“臭氧超强酸”。
继臭氧超强酸之后,许多类似的固态超强酸又在随后的几十年里被发现出来,其中著名的还有钛酸、硫酸等。
固态超强酸的制备方法也有一系列广泛的可选择方案,其中有“分子吸附法”、“催化水解反应法”、“强分子膜技术”等等。
“分子吸附法”利用吸附剂将待制超强酸物质吸附后,再加以烷基硅烷等溶剂进行洗脱,从而得到固态超强酸的制备步骤;“催化水解反应法”是指利用催化剂对具备水解条件的物质进行反应,使其转化为具备腐蚀性的超强酸;“强分子膜技术”则是指利用合成强分子膜技术,将超强酸结合到固定不变的分子层上,从而形成稳定的固态超强酸体系。
众多学者和科研机构也在不断地加强对固态超强酸的研究,尝试针对其制备的不同方案,尽可能有效地提高其可利用性,同时也以更高的精度进行细致的实验证明,以增强它的实际应用程度。
未来的研究也将更加重视固态超强酸的可操作性,将其与新型能源技术、功能材料等行业联系起来,以实现更大范围的应用。
固体超强酸概述超强酸是比100%的H2S04还强的酸,其Ho<-11.93。
许多重要的工业催化反应都属于酸催化反应,而固体酸和液体酸相比,具有活性和选择性高、无腐蚀性、无污染以及与催化反应产物易分离等特点,被广泛地用于石油炼制和有机合成工业。
常用的固体酸催化剂有分子筛、离子交换树脂、层柱粘土等,它们的酸强度一般低于Ho= —12.0,对需要强酸的反应存在一定的局限性。
20世纪60年代初,Olah等发现的HS03F-HF、HF-SbP5等液体魔酸,虽然其酸强度非常高,Ho高达—20.0以上,甚至甲烷在这种液体超强酸中都能质子化,但因其具有强腐蚀性和毒性,以及催化剂处理过程中会产生“三废’’等问题,难以在生产实际中应用。
20世纪70年代初开始有人试图将液体超强酸如SbP5、HS03F-SbF5和HF-SbP5等负载到石墨、A1203和树脂等载体上,但仍不能解决催化剂分散、毒性和“三废’’等问题,未能工业应用。
1979年Arata等首次报道了无卤素型SO42-/MxOy固体超强酸体系,发现某些用稀硫酸或硫酸盐浸渍的金属氧化物经高温焙烧,可形成酸强度高于100%硫酸104倍的固体超强酸。
后来Arata等又将钨酸盐和钼酸盐浸渍Zr02制得WO3/Zr02、M003/Zr02固体超强酸,其酸强度虽比SO42-/Zr02稍低,但仍比100%硫酸高几百倍。
1990年Hollstein等发现Fe、Mn和Zr的混合氧化物硫酸根制备的超强酸催化剂正丁烷异构化活性比SO42-/Zr02高1000倍以上。
这类固体超强酸易于制备和保存,特别是它与液体超强酸和含卤素的固体超强酸相比,具有不腐蚀反应装置、不污染环境、可在高达500℃下使用等特点,引起人们的广泛重视。
固体超强酸主要有下列几类:(Ⅰ)负载型固体超强酸,主要是指把液体超强酸负载于金属氧化物等载体上的一类。
如HF-SbF5-AIF3/固体多孔材料、sbP3-Pt/石墨、SbP3-HF/F-A1203、SbF5-FSO3H/石墨等。
固体超强酸催化剂是一种具有高活性和优良性能的催化剂,广泛应用于化学工业、石油化工、医药等领域。
下面将详细介绍固体超强酸催化剂的特点、制备方法、应用领域以及未来发展方向。
一、特点1. 高活性:固体超强酸催化剂具有很高的酸性,能够促进许多化学反应的进行,提高反应速率和产物的选择性。
2. 稳定性:固体超强酸催化剂不易挥发,不易分解,具有很好的热稳定性和化学稳定性,能够长时间使用。
3. 可调性:固体超强酸催化剂的酸性可以通过调节催化剂的组成和制备条件进行调节,以满足不同反应的需求。
4. 环保性:固体超强酸催化剂使用后易于回收和再生,对环境友好,有利于降低生产成本和保护环境。
二、制备方法固体超强酸催化剂的制备方法有多种,包括浸渍法、涂覆法、气相沉积法等。
其中,浸渍法是最常用的方法之一。
该方法是将载体材料浸泡在含有活性组分的溶液中,然后进行干燥、活化等步骤,制备出具有高活性的催化剂。
三、应用领域1. 化学工业:固体超强酸催化剂在化学工业中广泛应用于烯烃聚合、烷基化反应、酯化反应、水解反应等。
2. 石油化工:固体超强酸催化剂在石油化工中用于催化裂化、加氢裂化、异构化等反应,可以提高石油产品的收率和质量。
3. 医药:固体超强酸催化剂在医药领域可用于合成药物和手性分子的合成,提高药物的生产效率和纯度。
4. 其他领域:固体超强酸催化剂还可应用于环保、新能源等领域,例如用于处理废水、废气等。
四、未来发展方向1. 新型材料的研发:随着科技的不断进步,未来将会有更多新型材料被开发出来,并应用于固体超强酸催化剂的制备中,以提高其性能和适用范围。
2. 绿色合成方法:随着环保意识的不断提高,绿色合成方法将成为未来化学工业的发展趋势。
因此,开发绿色、环保的制备方法和工艺将是固体超强酸催化剂未来的重要研究方向。
3. 个性化定制:未来固体超强酸催化剂将更加注重个性化定制,根据不同客户的需求定制特定的催化剂,以满足不同领域的需求。
摘要近年来,随着环境保护要求的提高,人们迫切希望替代石油和化学工业中一些重要反应所使用的环境不友好催化剂,如:HF、H2SO4、H3PO4和AlCl3等。
固体超强酸能在较低温度下活化共价的C-H和C-C键,且兼具多相催化剂的可再生性和液体超强酸的高活性和高选择性的优点,极有可能成为这些环境不友好催化剂的替代品,创立一批无环境污染的清洁工艺。
SO42-/M x O y型固体超强酸,尤其是SO42-/ZrO2具有不腐蚀反应装置,环境友好,可在高温下重复使用等优点,近三十年来一直受到国内外催化研究者的广泛关注。
与常用的固体酸催化剂相比,它们的最大优点是酸强度高,弥补了前者在酸强度方面的不足,满足强酸催化反应的需要。
而且它们容易使底物的C-H和C-C键活化,形成碳正离子,促使酸催化反应在相对较低的温度下进行。
从而节省能耗,减少副反应,并且有利于生成高辛烷值的支链烃。
因此,是一类很有应用潜力的新型绿色催化材料。
本文综述了SO42-/ZrO2固体超强酸催化剂的结构与性质、制备方法以及在各类反应中的应用进展,总结了SO42-/ZrO2固体超强酸催化剂的催化性能,并预测了今后的发展方向和应用前景。
关键词:SO42-/ZrO2;固体超强酸;催化剂;异构化AbstractRecently,with the increasing of environmental constrains,the environmental unfriendly catalysts used in petrochemical industry, such as HF,H2SO4,H3PO4and A1C13,are urgent to be substituted by new clean catalysts. Solid superacids are capable of activating the covalent C-H and C-C bonds at lower temperatures,and reveal all the advantages of heterogeneous catalysts such as regenerability coupled with the benefits of liquid superacids such as high activity and selectivity. They are possible to become the substitute of those environmentally unfriendly catalysts,and thus a number of environmental friendly processes may be established.SO42-/M x O y type solid superacids,especially SO42-/ZrO2,have attracted much attention in the last 30 years,because they are noncorrosive,environmentally friendly and reusable at high temperatures. Compared with traditional solid acid catalysts,the typical feature of these solid superacids is that they are highly acidic. Thus,they make up the deficiency in acid strength for the former acid catalysts,and meet the requirement for the strong acid-catalyzed reactions.Mover,they are easy to activate C-H and C-C bonds of the substrates,and catalyze the reaction at relatively low temperatures. As a result,energy can be saved and side reactions are decreased. Also branched hydrocarbons with high octane number are favored to produce. Therefore,they are recognized as a class of novel catalytic materials which are green and have potential application.The article mainly summarized the structure and properties,preparation method and application of SO42-/ZrO2type solid superacid catalysts in every reaction,and in restigated the catalytic properties of the catalyst simultaneity,we also prospected its application research progess as well as the future research direction.Keywords:SO42-/ZrO2;solid superacid;catalyst;isomerization目录第1章概述 (1)1.1 前言 (1)1.2 固体超强酸的定义 (1)1.3 固体超强酸的分类 (2)第2章固体超强酸的结构性质及影响因素 (3)2.1 SO42-/M x O y型超强酸酸结构性质 (3)2.2 SO42-/ZrO2超强酸中心结构性质 (4)2.3 影响SO42-/ZrO2性质的因素 (6)2.3.1 SO42-/ZrO2比表面积 (6)2.3.2 SO42-/ZrO2晶型 (6)2.3.3 SO42-/ZrO2酸强度 (6)第3章SO42-/ZrO2固体超强酸的合成制备方法 (8)3.1 固体超强酸的合成制备方法 (8)3.2 SO42-/ZrO2固体超强酸的合成制备方法 (8)3.2.1 纳米ZrO2的常规制备方法 (8)3.2.2 合成制备SO42-/ZrO2固体超强酸 (12)第4章SO42-/ZrO2固体超强酸催化性能的研究 (15)4.1 SO42-/ZrO2的酸性研究 (15)4.2 SO42-/ZrO2化学催化性能研究 (16)4.2.1 酯化反应 (16)4.2.2饱和烃的异构化反应和裂解反应 (17)4.2.3齐聚反应 (18)4.2.4 F-C酰基化反应 (19)4.2.5 氧化反应和脱氢反应 (19)4.3 SO42-/ZrO2的改性研究 (20)第5章SO42-/ZrO2固体超强酸的应用进展 (22)5.1 概述 (22)5.2 SO42-/ZrO2在酯化反应中的应用 (22)5.2.1 固体超强酸催化乙酸丁酯的研究 (22)5.2.2 丁酸丁酯的研究 (23)5.2.3 一元酸脂的合成 (23)5.2.4 SO42-/ZrO2固体超强酸催化合成MGH (24)5.3 烷烃异构化方面的应用 (25)5.3.1 氢化异构化 (25)5.3.2 正戊烷的异构化 (25)5.4 SO42-/ZrO2烷基化反应的应用 (27)5.4.1 异丁烷和丁烯的烷基化反应 (27)5.4.2 芳烃及其衍生物的烷基化反应 (27)5.5 SO42-/ZrO2苄基化反应的应用 (28)5.6 SO42-/ZrO2催化缩合的应用 (28)5.6.1 SO42-/ZrO2催化合成环己酮1,2-丙二醇缩酮 (28)5.6.2 固体超强酸催化剂SO42-/ZrO2在缩醛反应中的应用 (28)5.7 SO42-/ZrO2催化硝化芳烃 (29)5.8 SO42-/ZrO2酰基化反应 (29)结论 (31)参考文献 (32)致谢 (43)第1章概述1.1 前言在现代的石油化工和精细化学品生产中,酸催化剂占主导地位,如:酯化反应、酰基化化反应等。
超强酸超强酸,超酸又称超酸。
是一种比100%硫酸还强的酸。
特别是液体超强酸,HF-SbF5超酸比100%硫酸强倍,有严重腐蚀性和严重公害。
全氟磺酸树脂(Nafion-H)是现在已知的最强固体超强酸,具有耐热性能好、化学稳定性和机械强度高等特点。
一般是将带有磺酸基的全氟乙烯基醚单体与四氟乙烯进行共聚,得到全氟磺酸树脂。
由于Nafion-H分子中引入电负性最大的氟原子,产生强大的场效应和诱导效应,从而使其酸性剧增。
与液体超强酸相比,用作催化剂时,易于分离,可反复使用。
且腐蚀性小,引起公害少,选择性好,容易应用于工业化生产。
近年世界上已开发和研制了比硫酸、盐酸;硝酸酸性强几百万倍,甚至几十亿倍的超强酸。
这些超强酸,酸性极强。
以HSO3F-SbF5为例,HF-SbF5超酸比100%硫酸强倍,有严重腐蚀性和严重公害。
应用价值物质的量为1:0.3的氢氟酸和五氟化锑混合时的酸性强度要比无水硫酸(100%)的强度约大1亿倍。
而HF~SbF5的物质量比1:1(氟锑酸)时其酸性估计可达无水硫酸的倍,是已知最强的超强酸。
这些超强酸如魔酸,它是五氟化锑和氟磺酸按体积比l:l混合制成的混酸。
其酸度只是无水硫酸的1000万倍,目前,在世界市场上已有商品出售,超强酸在化学和化学工业上,极有应用价值,它既是无机及有机的质子化试剂,又是活性极高的催化剂。
过去很多在普通环境下极难实现或根本无法实现的化学反应在超强酸环境中。
却能异常顺利地完成。
在很长的一段时间内,人们认为王水就是酸中之王,是最强的酸了,因为即使是黄金,遇到王水也会像“泥牛入海”一样很快变的无影无踪。
直到有一天奥莱教授和他的学生偶然发现了一种奇特的溶液,它能溶解不溶于王水的高级烷烃蜡烛,人们才知道其实王水并不是最强的酸,还有比它强的酸,这就是魔酸,又叫超强酸,氟锑磺酸。
成分分析从成分上看,超强酸是由两种或两种以上的含氟化合物组成的溶液。
它们的酸性强的令人难以置信,比如氟硫酸和五氟化锑按1:0.3(摩尔比)混合时,它的酸性是浓硫酸的1亿倍。
固体超强酸概述超强酸是比100%的H2S04还强的酸,其Ho<-11.93。
许多重要的工业催化反应都属于酸催化反应,而固体酸和液体酸相比,具有活性和选择性高、无腐蚀性、无污染以及与催化反应产物易分离等特点,被广泛地用于石油炼制和有机合成工业。
常用的固体酸催化剂有分子筛、离子交换树脂、层柱粘土等,它们的酸强度一般低于Ho= —12.0,对需要强酸的反应存在一定的局限性。
20世纪60年代初,Olah等发现的HS03F-HF、HF-SbP5等液体魔酸,虽然其酸强度非常高,Ho高达—20.0以上,甚至甲烷在这种液体超强酸中都能质子化,但因其具有强腐蚀性和毒性,以及催化剂处理过程中会产生“三废’’等问题,难以在生产实际中应用。
20世纪70年代初开始有人试图将液体超强酸如SbP5、HS03F-SbF5和HF-SbP5等负载到石墨、A1203和树脂等载体上,但仍不能解决催化剂分散、毒性和“三废’’等问题,未能工业应用。
1979年Arata等首次报道了无卤素型SO42-/MxOy固体超强酸体系,发现某些用稀硫酸或硫酸盐浸渍的金属氧化物经高温焙烧,可形成酸强度高于100%硫酸104倍的固体超强酸。
后来Arata等又将钨酸盐和钼酸盐浸渍Zr02制得WO3/Zr02、M003/Zr02固体超强酸,其酸强度虽比SO42-/Zr02稍低,但仍比100%硫酸高几百倍。
1990年Hollstein等发现Fe、Mn和Zr的混合氧化物硫酸根制备的超强酸催化剂正丁烷异构化活性比SO42-/Zr02高1000倍以上。
这类固体超强酸易于制备和保存,特别是它与液体超强酸和含卤素的固体超强酸相比,具有不腐蚀反应装置、不污染环境、可在高达500℃下使用等特点,引起人们的广泛重视。
固体超强酸主要有下列几类:(Ⅰ)负载型固体超强酸,主要是指把液体超强酸负载于金属氧化物等载体上的一类。
如HF-SbF5-AIF3/固体多孔材料、sbP3-Pt/石墨、SbP3-HF/F-A1203、SbF5-FSO3H/石墨等。
(Ⅱ)混合无机盐类,由无机盐复配而成的固体超强酸。
如AICl3-CuCl2、MCl3-Ti2(SO4)3、A1C13-Fe2(S04)3等。
(Ⅲ)氟代磺酸化离子交换树脂(Nation-H) (Ⅳ)硫酸根离子酸性金属氧化物SO42-/MxOy超强酸,如SO42-/Zr02、SO42-/Ti02、SO42-/Fe203等。
(V)负载金属氧化物的固体超强酸,如W03/Zr02、M003/Zr02等。
在上述各类超强酸中,(Ⅰ)—(Ⅲ)类均含有卤素,在加工和处理中存在着“三废”污染等问题。
(Ⅳ)、(V)类超强酸不含有卤原子,不会污染环境,可在高温下重复使用,制法简便。
本节着重对这两类超强酸进行介绍。
MxOy型固体超强酸(1)固体超强酸的制备SO42-/MxOy型固体超强酸一般采用浓氨水中和金属盐溶液,得到无定形氢氧化物,然后再用稀硫酸或硫酸铵溶液浸渍、烘干和焙烧制得。
然而,金属盐原料、沉淀剂、浸渍剂不同对制备的氧化物、超强酸的表面性质影响很大,制备环境如焙烧温度、沉淀温度、金属盐溶液浓度、pH、加料顺序、陈化时间及SO42-浸渍浓度也很重要。
如何改善制备条件获得高质量、高酸性的固体超强酸是该类材料研究的最基本的问题。
(A) 金属氧化物的选择:Zr02、Ti02、Fe203、Hf02和Sn02等氧化物浸渍H2S04后能形成超强酸,而MnO、CaO、CuO、NiO、ZnO、CdO、A1203、La203、Mn02、Th02、Bi203、Cr03等则不能。
在各种氧化物中,选择以ZrO2作基底,形成的S04—/Zr02超强酸性最强。
目前已报道的S04—促进单氧化物固体超强酸及其强度如表3-24所示。
氧化物的初始品相对超强酸性影响很大。
一般认为,浸渍SO42-前氧化物为无定形可以制成固体超强酸,晶化的氧化物不能形成超强酸。
Arata等考察了Zr02晶化前后浸渍SO42-制备的催化剂对正丁烷异构化反应的影响,发现ZrO2晶化后作为载体没有反应活性。
但是,结晶的α-A1203却可以形成—16.04<Ho≤—14.52的超强酸,这是迄今为止惟一可用结晶氧化物制得的固体超强酸。
硫酸促进型双金属氧化物如SO42-/Zr02-- A1203、SO42-/Zr02-Ti02、SO42-/Zr02—Sn02可以形成固体超强酸,在摩尔数比例相当时,酸强度一般低SO42-/Zr02,但是在Zr02中掺人低含量Fe203、Cr203、Mn02等时酸强度均高于SO42-/Zr02本身,其原因尚不十分清楚。
硫酸促进型多金属氧化物,如SO42-/Zr02-Fe203-Cr203、SO42-/Zr02-Fe203-Mn02等酸性比SO42-/Zr02高出数倍,如表3-25所示。
说明固体超强酸基底金属氧化物的选择非常重要。
(B)焙烧温度的影响:不同焙烧温度下,形成的SO42-/MxOy超强酸强度不同,适当的焙烧温度是形成这类固体超强酸的关键。
以研究最多的SO42-/Zr02为例,其焙烧温度必须在500~800℃之间才具有超强酸性,当焙烧温度为650℃时酸性最强,如表3—26所示。
(C)沉淀条件的影响:溶液的沉淀温度、金属盐溶液浓度、pH值、加料顺序、陈化时间及硫酸浸渍浓度等因素对制备的氧化物及SO42-/MxOy的性质均有一定影响。
(D) SO42-/MxOy固体超强酸的稳定性:实验表明,放置较长时间的SO42-/MxOy,超强酸的酸性和催化活性与新鲜制备的催化剂差别较大,这是该类催化材料制备和储存过程中值得重视的一个问题。
主要原因是存放环境中的水导致超强酸样品变质,焙烧后制备得到的样品吸水后,再经加热活化会导致表面SO42-浓度降低。
(2)固体超强酸表征方法固体超强酸酸性测定方法同其他固体酸类似。
包括以下几种。
(A)Hammett指示剂法测定酸强度:该法是对无色的SO42-/MxOy样品适用,同时应注意SO42-/MxOy超强酸会使苯、甲苯等变色,与异辛烷、己烷等发生作用,一些常用于测定一般固体酸强度的指示剂溶剂并不适用。
一般采用二氯亚砜、环己烷等作为溶液较合适。
(B)程序升温脱附法:指示剂法测定无色样品的酸强度较为可靠,但不适用于有色样品。
程序升温脱附法(TPD)是表征一般固体酸强度和酸密度的有效方法。
但在用于超强酸样品时,由于超强酸的强氧化性,使得碱性探针分子氧化,如吡啶-TPD的高温脱附物有C02、S03、具有极少量的吡啶。
NH3的碱性极强,其脱附温度已超过某些超强酸样品酸分解的温度,因此,用TPD技术研究超强酸SO42-/MxOy需进一步探讨。
(C)红外光谱法:它可以确定SO42-/MxOy超强酸体系的酸中心类型。
测试表明:SO42-/Zr02、SO42-/Ti02、SO42-/Fe203样品上仅有Lewis酸中心,当吸水后,部分L酸转化为B酸。
(D)正丁烷异构化反应法:利用正构烷烃在固体超强酸存在下可在室温下进行异构化反应的特点,表征固体超强酸的强度。
通常采用正丁烷或正戊烷为探针分子,正丁烷异构化反应属于单分子反应,符合一级可逆反应公式,其反应速度常数与强度有较好的对应关系。
负载金属氧化物的固体超强酸如上所述,负载硫酸的超强酸在液体中会缓慢溶出。
另外,虽然超强酸较耐高温,但在焙烧温度以上使用会迅速失活。
为解决此问题,荒田一志等在SO42-/MxOy超强酸的基础上合成了负载金属氧化物的超强酸,它在溶液中和对热的稳定性都很高。
根据复合氧化物酸性的理论,二元氧化物的最高酸强度与其金属离子的平均电负性之间呈线形关系,因此复合氧化物金属离子的电负性越大,其酸强度越高。
在20世纪80年代前所发现的二元氧化物中,酸度最高的是Si02-Ti02、Si02-Zr2、Si02-A1203、Ti02-Zr03,它们都有Ho<—8.2的表面酸性中心。
其中Si02-A1203已用于多种有机反应,曾经测得其最强酸性为Ho≈—12,接近了超强酸的标准。
荒田一志等合成的是W03/Zr2、M003/Zr02二元氧化物,方法是Zr(OH)4或无定形Zr02浸渍钼酸氨溶液,蒸发水分后在600~1000℃的空气中焙烧。
在850℃下焙烧对于苯甲酰化和烷烃异构化反应具有最大活性,而对此反应在同样条件下Si02-A1203完全没有活性。
光电子能谱和指示剂法测定W03/Zr02、M003/Zr02的酸强度分别为Ho<—14.52和Ho<—13。
W03/ZrO2、M003/Zr02目前的研究也仅限于苯甲酰化反应,其研究领域还有待进一步扩展。
另外,W03/Zr02和M003/Zr02均比Zr02的表面积大许多,这类超强酸催化剂同时存在B 酸和L酸中心,以L酸中心为主,吸水样品部分L酸转化为B酸。
并且,不同焙烧温度和组成对其酸强度有较大影响,如表3-27所示。
固体超强酸在石油化工中的应用超强酸作为催化剂在化工领域中应用广泛。
液体超强酸除被作为饱和烃的异构化、分解、缩聚、烷基化的催化剂以外,还被用做链烷烃和芳烃的反应、链烷烃的氯化和氯化分解、链烷烃的硝化和硝化分解,链烷烃和一氧化碳的反应、链烷烃及芳香化合物之类的氧化、苯的氢化、氯苯及氯代烷的还原等的催化剂。
固体超强酸作为催化剂比液体超强酸有如下的优点:①反应生成物与催化剂容易分离;②催化剂可以反复使用;③催化剂对反应器无腐蚀作用;④废催化剂引起的“三废”问题较少;⑤催化剂的选择性一般都较高。
以前链烷烃的反应都是在高温下进行的,但由于固体超强酸的出现,使反应能在较低温度及压力下进行。
从节约资源和节能的观点考虑,固体超强酸的工业利用具有重要的现实意义。
(1)烃类异构化丁烷、戊烷等饱和烃,即使用100%硫酸或Si02-A1203作催化剂,在室温下也不发生反应,而用固体超强酸作催化剂,在室温下就可引起反应。
使用SbP5-A1203作催化剂时,丁烷异构化主要生成异丁烷,其选择性达80%~90%。
直链的戊烷、己烷、庚烷、辛烷等都是汽油的组成成分,但辛烷值都较小,所以需添加铅或芳香族化合物等以提高辛烷值,但无论加铅还是加芳香族化合物都会带来公害问题。
因此,现在希望添加无害的带支链的异戊烷、异己烷、异庚烷、异辛烷等以提高其辛烷值。
有的固体超强酸作催化剂时,在0℃时可使戊烷生成异戊烷,同时还生成异丁烷、丙烷和异己烷。
催化剂的活性和选择性会因其种类不同而有相当大的差别,戊烷在SbF5-Si02-A1203催化剂上的反应初速度比丁烷快200倍。
这种催化剂的选择性达90%以上。
以SbF5-Si02-A1203为催化剂进行己烷异构化反应速度更快,是戊烷的3倍,丁烷的1000倍,反应达30min时,异己烷的选择性达100%。