2021高考生物必背知识点总结——基因工程
- 格式:docx
- 大小:277.92 KB
- 文档页数:6
高三生物基因工程知识点
以下是高三生物基因工程的一些重要知识点:
1.DNA重组技术:基因工程的核心技术之一,通过人为操作改变DNA序列,将不同的基因片段组合起来,创造新的DNA序列。
2.限制性内切酶:特定的酶,能够识别并切割DNA的特定序列,用于DNA的切割和粘接。
3.DNA合成:通过化学合成方法,合成具有特定序列的DNA片段,用于基因工程实验中的重组和合成。
4.基因克隆:将感兴趣的DNA片段插入到载体DNA中,构建重组DNA,然后转化到宿主细胞中,使其复制和表达。
5.载体:在基因工程中用于携带和传递外源基因的DNA分子,常用的载体包括质粒、病毒等。
6.DNA测序:确定DNA序列的方法,常用的技术包括Sanger测序和高通量测序技术,用于研究基因的结构和功能。
7.基因编辑技术:包括CRISPR-Cas9系统等,能够定点修改DNA 序列,用于基因功能研究、疾病治疗等领域。
8.基因表达调控:通过改变基因的启动子、转录因子等调控元件,控制基因的转录和翻译水平,实现对基因表达的调控。
9.转基因技术:将外源基因导入到目标生物体中,使其获得新的性状或功能,常用于农作物的改良和生物药物的生产。
10.基因药物:利用基因工程技术生产的用于治疗疾病的药物,如重组蛋白、基因疫苗等。
这些知识点是高三生物基因工程的一些基础概念和技术,通过深入学习和实践,能够更好地理解和应用基因工程在生物学领域的重要性和应用前景。
高中生物基因工程知识点总结基因工程是现代生物技术的核心内容之一,在高中生物学习中占据着重要的地位。
下面我们就来详细总结一下高中生物基因工程的相关知识点。
一、基因工程的概念基因工程,又称为基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
二、基因工程的基本工具1、“分子手术刀”——限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
2、“分子缝合针”——DNA 连接酶根据来源不同,DNA 连接酶分为两类:E·coli DNA 连接酶和T4DNA 连接酶。
E·coli DNA 连接酶只能将双链 DNA 片段互补的黏性末端之间的磷酸二酯键连接起来,而 T4DNA 连接酶既可以连接黏性末端,又可以连接平末端,但连接平末端的效率相对较低。
3、“分子运输车”——载体常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。
作为载体,需要具备以下条件:(1)能够在受体细胞中稳定保存并自我复制。
(2)具有一个或多个限制酶切点,以便与外源基因连接。
(3)具有标记基因,便于进行筛选。
三、基因工程的基本操作程序1、目的基因的获取(1)从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。
(2)利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。
(3)通过化学方法人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。
2、基因表达载体的构建(基因工程的核心)目的基因、启动子、终止子、标记基因等组成基因表达载体。
启动子是 RNA 聚合酶识别和结合的部位,驱动基因转录出 mRNA;终止子终止转录;标记基因用于鉴别和筛选含有目的基因的细胞。
生物基因工程知识点总结生物基因工程是一种通过改变生物体的遗传物质来改变其性状的技术。
它涉及到许多关键的知识点,如下:1. 基因:基因是生物体内控制特定性状的遗传信息单位。
它是DNA分子中的一个特定序列,负责编码产生蛋白质。
2. DNA:脱氧核糖核酸(DNA)是生物体内存储遗传信息的分子。
它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的两条螺旋状链结构。
3. 基因表达:基因表达是指基因通过转录和翻译的过程将DNA的遗传信息转化为蛋白质的过程。
4. 转基因:转基因是指将外源基因导入到另一种生物体的基因组中,使其表达新的性状。
转基因技术是生物基因工程的核心。
5. 基因编辑:基因编辑是一种通过直接修改组织或细胞中的基因序列来改变生物体遗传信息的技术。
常用的基因编辑工具包括CRISPR/Cas9、TALENs和ZFNs。
6. 载体:载体是一种用于将外源基因导入到生物体中的工具。
常用的载体包括质粒、病毒和细胞。
7. 克隆:克隆是指通过人工手段复制一个生物个体的基因组。
克隆技术可以用于繁殖优良的动植物品种和疾病模型的制备。
8. 基因检测:基因检测是一种用于检测个体的遗传信息的技术。
它可以用于遗传病的筛查、个体的亲缘关系鉴定和种群遗传学的研究。
9. 合成生物学:合成生物学是一种基于工程原理设计和构建新的生物系统的学科。
它通过组合基因和其他生物部件来设计具有特定功能的新生物体。
10. 生物安全:生物安全是指在进行生物基因工程研究和应用时保护人类和环境的安全。
它包括对实验室条件的控制、对转基因生物体的监管和对风险评估的实施。
以上是生物基因工程的一些主要知识点,它们一起构成了生物基因工程这个学科的基础和核心。
高中生物选修部分基因工程知识点汇总基因工程基因工程的概念:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
基因工程的原理:基因重组1.1DNA重组技术的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)方式:当限制酶在它识别序列的中心轴线(图中虚线)两侧将DNA的两条链分别切开时,产生黏性末端,当限制酶在它识别序列的中心轴线处切开时,产生平末端。
平末端(4)结果:经限制酶切割产生的DNA片段末端有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
3.“分子运输车”——基因进入受体细胞的载体(1)常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。
(2)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因(如四环素抗性基因、氨苄青霉素抗性基因),供重组DNA 的鉴定和选择。
(3)其它载体:λ噬菌体的衍生物、动植物病毒1.2基因工程的基本操作程序基因工程的基本操作程序主要包括四个步骤:目的基因的获取、基因表达载体的构建、将目的基因导入受体细胞、目的基因的检测与鉴定。
生物基因工程知识点总结
生物基因工程是一门研究和应用生物技术的学科,利用DNA重组技术和其他分子生物学工具来研究和改造生物体的基因,并开发新的生物技术和产品。
以下是生物基因工程的一些主要知识点:
1. DNA重组技术:包括限制性内切酶、DNA连接酶、DNA合成酶、PCR等技术,用于切割、连接和合成DNA分子。
2.基因克隆:通过将目标基因从某个来源分离并插入到载体DNA中,然后将该重组DNA导入到宿主细胞中进行复制来克隆基因。
3. 变异体制备:利用基因工程技术对生物体的基因进行人为的改变,以获得具有特定功能或性状的变异体。
4. 基因表达调控:通过控制基因的转录和翻译过程,调节基因在细胞中的表达量和时机。
5. 载体构建:选择合适的载体并将目标基因插入到载体中,以便在宿主细胞中进行复制和表达。
6. 基因传递和转导:将重组的DNA导入到宿主细胞中,使其被接受和表达。
7. 基因组编辑:利用CRISPR-Cas9等工具,直接编辑生物体的基因组,实现精确的基因改造。
8. 蛋白质表达和纯化:利用重组DNA技术在宿主细胞中表达目标蛋白,并通过纯化技术获得高纯度的蛋白质。
9. 基因治疗:通过导入功能性基因修复或取代某种疾病引起的基因缺陷,用于治疗遗传性疾病。
10. 转基因技术:将外源基因导入到生物体中,使其具有特定的新功能或性状。
以上只是生物基因工程的一些主要知识点,实际上这只是冰山一角。
随着生物技术的不断发展,生物基因工程领域的知识不断增加和更新,我们需要不断学习和掌握新的技术和知识。
专题 1 基因工程基因工程是指按照人们的愿望,进行严格的设计,并通过___基因拼接_和_DNA重组_等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在_DNA 分子_水平上进行设计和施工的,因此又叫做_转基因技术_。
科技探索之路基础理论和技术的发展催生了基因工程。
20 世纪中叶,基础理论取得了重大突破●DNA 是遗传物质的证明1944 年,艾弗里等人通过不同类型肺炎双球菌的转化实验,不仅证明了生物的遗传物质是DNA,还证明了___DNA是主要遗传物质_。
●DNA 双螺旋结构和中心法则的确立1953 年,沃森和克里克建立了___DNA双螺旋结构___模型。
1958 年,梅塞尔松和斯塔尔用实验证明_DNA复制的方式-----半保留复制原则。
随后不久确立的中心法则,解开了 DNA 复制、转录和翻译过程之谜,阐明了遗传信息流动的方向。
●遗传密码的破译1963 年,尼伦伯格和马太破译编码氨基酸的遗传密码。
1966 年,霍拉纳用实验证实了尼伦伯格提出的遗传密码的存在。
这些成果不仅使人们认识到,自然界中从微生物到人类共用一套遗传密码_,而且为基因的分离和合成等提供了理论依据。
技术发明使基因工程的实施成为可能。
●基因转移载体的发现1967 年,罗思和赫林斯基发现细菌拟核 DNA 之外的质粒有_自我复制_能力,并可以在_细菌细胞间转移,这一发现为基因转移找到了一种运载工具。
●工具酶的发现1970 年,阿尔伯、内森斯,史密斯在细菌中发现了第一个限制性内切酶(简称限制酶)后,20 世纪 70 年代初相继发现了多种限制酶和连接酶,以及逆转录酶,这些发现为 DNA 的切割、连接以及功能基因的获得创造了条件。
●DNA 合成和测序技术的发明自 1965 年,桑格发明氨基酸序列分析技术后,1977 年,科学家又发明了 DNA 序列分析的方法,为基因序列图的绘制提供了可能,之后,DNA 合成仪的问世又为引物、探针和小分子DNA基因的获得提供了方便。
高中生物基因工程核心知识点总结
一、生物工程基本概念
1、生物工程:是以生物学知识、生物技术手段,对细胞、微生物、生物分子和其它生物材料进行改造,以及利用工程原理和技术解决或优化生物学问题的学科。
2、分子工程:建立、组装和修饰分子,应用分子的变化来把控和调整生命过程的学科。
3、基因工程:建立、组装和改变基因,应用基因的变化来把控和调整生命过程的学科。
二、基因工程的基本理论和实践
1、基因工程的概念:基因工程是对物种细胞的基因结构进行改变,使细胞依据调控的要求合成想要的物质或达到目的的技术。
2、基因组:基因组指细胞或组织中基因组成的细胞总和,它可以表达出一种物种所拥有的特性并参与各种活动。
3、转基因技术:利用质粒载体从一种生物体中取出基因,放入另一种生物体中,实现基因重组来改变生物遗传特性。
4、基因测序:利用核酸聚合酶酶切基因片段,用多种技术和设备测定其结构,分析基因的种类、数目、排布、重组等相关内容。
5、基因扩增技术:利用催化剂体外实现DNA的复制,改变或增加基因的数量,从而改变功能,调控细胞表达活动,引入新功能。
6、蛋白质工程:合成、结晶和组装蛋白质,改变其结构和性质,以达到改造表型的目的,从而实现新的功能。
高三生物基因工程总知识点基因工程是指利用现代生物技术手段对生物体的遗传物质进行人为干预和改造的科学技术。
随着生物科技的不断发展,基因工程在农业、医学、环境保护等领域的应用越来越广泛。
在高三生物学中,基因工程是必修课程的重要部分。
下面将综述高三生物基因工程的总知识点。
1. DNA重组技术DNA重组技术是基因工程的核心技术之一。
该技术可以将不同物种的DNA片段进行切割、连接和复制,使其在目标生物体中表达出特定的基因。
常用的DNA重组技术有限制酶切、凝胶电泳、DNA连接和PCR扩增等。
这些技术的应用使得科学家能够在实验室中精确地操作和调控基因。
2. 转基因技术转基因技术是基因工程的一项重要应用。
通过转基因技术,科学家可以向目标生物体中导入其他物种的基因,使其具有特定的性状或功能。
许多转基因植物品种已经广泛应用于农业生产,例如抗虫、抗病植物品种的培育。
此外,转基因技术还可以应用于动物和微生物领域。
3. 基因治疗基因治疗作为基因工程的一个重要领域,被广泛应用于人类疾病的治疗。
基因治疗通过向患者体内导入正常的基因,修复机体的异常基因,从而治疗疾病。
在高三生物学中,我们需要了解基因治疗的原理和应用,如克隆基因、启动子的选择、基因导入方式等。
4. 基因测序技术基因测序技术是基因工程领域的重要研究手段之一。
它可以用来确定一个生物体的全部或部分基因组的序列,从而揭示生物体基因特性和遗传信息。
在高三生物学中,我们需要对常用的基因测序技术有一定的了解,如Sanger测序、新一代测序技术等。
5. 基因编辑技术基因编辑技术是一种针对特定基因的精确修改技术,近年来得到了快速发展。
CRISPR-Cas9技术是目前常用的基因编辑技术之一,能够精确删除、插入或修改基因序列。
这项技术在生物科学研究、基因治疗和农业改良中有着广泛的应用前景。
6. 无性生殖与胚胎工程无性生殖与胚胎工程是基因工程领域的重要应用之一。
通过细胞分裂、离体培养等技术,可以实现细胞和组织的无性繁殖,并利用胚胎工程技术进行胚胎分裂和植物再生。
高中生物选修三基因工程主要知识点(1.1、1.2)1、基因工程:按照人们的意愿,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
1、基因工程的三大工具:限制性核酸内切酶—“分子手术刀”;DNA连接酶—“分子缝合针”;基因进入受体细胞的载体—“分子运输车”。
2、限制性核酸内切酶的特点:能够识别双链DNA分子的某种特定核苷酸序列,并且是每一条链中特定部位的两个核苷酸之间的磷酸二酯键。
3、限制酶识别序列的特点:反向对称,重复排列。
4、限制酶在原核生物中的作用:切割外源DNA,保护细菌细胞。
5、为什么限制酶不剪切原核生物自身的DNA分子?原核生物本身不含相应特异性序列;对DNA分子进行甲基化修饰。
6、两种常见的DNA连接酶:E·coli DNA连接酶:源自大肠杆菌,只连接黏性末端;T4DNA连接酶:提取自T4噬菌体,两种末端均可连接,连接平末端效率低。
7、DNA连接酶和DNA聚合酶的相同点:都是蛋白质;都能生成3'磷酸二酯键。
不同:前者在两个片段之间形成3'磷酸二酯键,后者只能将单个核苷酸连接到已有片段上;前者不需要模版,后者需要。
8、载体需要满足的条件:有一到多个限制酶切点;对受体细胞无害;导入基因能在受体细胞内复制和表达;有某些标记基因;分子大小合适。
9、质粒:一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的很小的双链环状DNA分子。
10、标记基因的作用:鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
11、三类载体:质粒;λ噬菌体的衍生物;动植物病毒。
12、获取目的基因的方法:说法一:从自然界已有的物种中分体(鸟枪法、反转录法)、用人工的方法合成;说法二:从基因文库中获取(鸟枪法、反转录法)、利用PCR技术合成、用化学方法人工合成。
13、基因库:一个物种中全部个体的全部基因的总和;基因文库:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,个个受体菌分别含有这种生物的不同的基因;基因组文库:含有某种生物全部基因的基因文库;部分基因文库:只含有一种生物部分基因的基因文库;cDNA文库:用某种生物发育的某个时期的mRNA反转录产生的多种互补DNA片段,与载体连接后储存在一个受体菌群中。
生物高三基因工程知识点基因工程是现代生物技术的一个重要分支,它涉及到对生物体的基因进行操作和改动,以实现对特定性状的调控和改良。
下面是生物高三基因工程知识点的详细介绍:一、基因工程的定义及发展历程基因工程是指通过技术手段对生物体的基因进行操作和改动,以实现对特定性状的调控和改良的一门生物学科。
这一领域的发展始于20世纪70年代的美国,随着科技的进步和研究的深入,基因工程在医药、农业、环境保护等领域都取得了显著成果。
二、基因工程的基本原理及技术方法1. DNA重组技术:通过对DNA分子进行切割和重新连接,实现基因的转移和重组。
2. 限制酶:是一类能够切割DNA特定碱基序列的酶,是基因工程中不可或缺的工具。
3. DNA合成技术:通过化学合成和人工合成方法,合成出具有特定序列的DNA分子。
4. 反转录聚合酶链式反应(RT-PCR):用于从RNA模板合成DNA,从而进行基因的克隆和分析。
三、基因工程在医学领域的应用1. 基因治疗:通过向患者体内导入正常的基因,修复或替换损坏的基因,治疗遗传性疾病。
2. 重组蛋白药物:利用基因工程技术大规模生产重组蛋白药物,如胰岛素、生长激素等。
3. 基因诊断:通过对患者体内的基因进行检测和分析,实现对遗传病的早期诊断和筛查。
四、基因工程在农业领域的应用1. 转基因作物:将外源基因导入植物,使其具备抗病、耐旱等性状,提高作物的产量和品质。
2. 动物基因工程:通过对动物的基因进行操作和改动,实现对性状的调控和改良,如猪的生长速度和肉质的改进。
3. 基因编辑:利用CRISPR-Cas9等基因编辑技术,对植物和动物基因组进行精确的删改,实现对特定性状的调控。
五、基因工程的伦理和安全性问题1. 伦理问题:基因工程的发展带来了一系列伦理道德问题,如基因歧视、基因改良人类等。
2. 安全性问题:基因工程可能引发新的生物风险和生态风险,需要加强安全管理和监控。
六、基因工程的前景与挑战基因工程作为生物技术领域的重要分支,具有广阔的应用前景。
高中生物基因工程知识点归纳
以下是高中生物中与基因工程相关的一些知识点归纳:
1. DNA结构与功能:了解DNA的双螺旋结构、碱基配对规则和DNA的复制过程。
2. 基因与基因表达:了解基因的定义、基因组的组成和基因的表达调控机制,包括转录和翻译。
3. 重组DNA技术:理解重组DNA技术的基本原理和操作步骤,如限制性内切酶、DNA连接酶和DNA电泳。
4. 基因克隆:了解基因克隆的过程和方法,包括构建重组DNA、载体选择、转化和筛选等步骤。
5. 基因转导:了解基因转导的原理和应用,包括病毒载体、质粒转染和基因枪等技术。
6. 基因编辑:了解基因编辑技术,如CRISPR-Cas9系统的原理和应用,以及其在基因治疗和基础研究中的潜在应用。
7. 转基因生物:了解转基因生物的概念、制备方法和应用,以及转基因植物和转基因动物在农业和生物医学领域的应用。
8. 伦理和安全问题:了解基因工程研究和应用中涉及的伦理和安全问题,如风险评估、知情同意和监管政策等。
高中生物基因工程知识点总结一、基因工程1、基因工程:通过诱导、控制、修饰和组装酶分子改造生物的技术手段,即基因工程。
2、基因是什么:基因是DNA(deoxyribonucleic acid)在调控生物表达的功能单位,它是细胞在传递遗传信息的实体,也是遗传的核心物质。
它决定着生物体的各种性状特征。
3、基因的分类:基因可以按照性质和功能分为结构基因、调控基因和其他基因。
4、基因工程改造方法:基因工程技术有多种,包括基因重组技术、克隆技术、突变技术、转基因技术和增幅技术等。
二、基因工程在实验室中应用1、基因工程在实验室中的应用:基因工程技术在实验室中的应用大大提高了有关生命科学研究的准确性和灵敏度,广泛应用于药物研发、蛋白质检测、临床诊断等领域。
2、基因芯片:基因芯片是一种微小的电子设备,它可以通过在芯片上安装的特定探针来检测特定基因的表达情况或者其他特征。
这种技术可以用来快速检测病毒、细菌等多种病原体,也可以用来研究和监测人体疾病的进展情况。
3、基因测序:DNA测序技术是利用数字技术对准确确定和分析DNA序列的一种技术。
它可以用来检测基因组DNA的结构、查找靶基因和生物多样性、研究基因变异和肿瘤等。
4、基因合成:基因合成技术是以整合DNA的方式制造新的蛋白质的技术,它是把细菌、哺乳动物等常用基因以指定的比例混合在一起。
三、基因工程的发展1、基因工程的发展趋势:基因工程的发展将继续走向优化、分析和精细化。
将进一步提升对生命系统的认识,并能更好地利用基因信息提高生物系统的性能。
2、基因工程的应用场景:基因工程可用于转基因作物的研发、制药新药研发、生物燃料的生物柴油等方面的开发应用,还可以进行生命科学的深入研究,探索新的生物机理。
3、基因工程的未来发展:基因工程技术将在药物研发、医疗诊断、育种良种、食品检测、农药残留和农作物耐药性等方面获得更大的应用,发挥更大的作用,更好地促进人类健康。
高考生物专题复习《基因工程》【考点梳理.逐个击破】一、基因工程的操作工具1.限制性核酸内切酶(简称限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)作用:识别双链DNA 分子的某种特定的核苷酸序列并切开特定部位的两个核苷酸之间的磷酸二酯键。
(3)结果:产生黏性末端或平末端。
2.DNA 连接酶3.载体(1)作用:携带外源DNA 片段进入受体细胞。
(2)种类:质粒、λ噬菌体的衍生物、动植物病毒等。
(3)条件⎩⎪⎨⎪⎧能自我复制有一个至多个限制酶切割位点有特殊的标记基因二、基因工程的基本操作程序 1.目的基因的获取(1)目的基因:主要是指编码蛋白质的基因,也可以是具有调控作用的因子。
(2)获取方法⎩⎪⎨⎪⎧从基因文库中获取利用PCR 技术扩增通过化学方法人工合成2.基因表达载体的构建 (1)构建基因表达载体的目的①使目的基因在受体细胞中稳定存在,并且可以遗传给下一代。
②使目的基因能够表达和发挥作用。
(2)基因表达载体的组成:目的基因、启动子、终止子及标记基因等。
3.目的基因导入受体细胞微生物细胞感受态细胞法(Ca2+处理法)4.目的基因的检测与鉴定检测目的检测方法判断标准目的基因是否插入转基因生物的DNA DNA分子杂交技术是否出现杂交带目的基因是否转录出了mRNA 分子杂交技术是否出现杂交带目的基因是否翻译出蛋白质抗原—抗体杂交技术是否出现杂交带个体水平的检测如抗虫、抗病的接种实验是否表现出相应的特性三、基因工程的应用及蛋白质工程1.基因工程的应用(1)动物基因工程:提高动物生长速度从而提高产品产量;改善畜产品品质;用转基因动物生产药物;用转基因动物作器官移植的供体等。
(2)植物基因工程:培育抗虫转基因植物(如抗虫棉)、抗病转基因植物(如转基因烟草)和抗逆转基因植物(如抗寒番茄);利用转基因改良植物的品质(如新花色矮牵牛)。
2.基因诊断与基因治疗(1)基因诊断:又称为DNA诊断,是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。
第1讲基因工程和细胞工程[考纲要求] 1.基因工程的诞生(Ⅰ)。
2.基因工程的原理及技术(含PCR技术)(Ⅱ)。
3.基因工程的应用(Ⅱ)。
4.蛋白质工程(Ⅰ)。
5.植物的组织培养(Ⅱ)。
6.动物细胞培养与体细胞克隆(Ⅱ)。
7.细胞融合与单克隆抗体(Ⅱ)。
8.实验:DNA的粗提取与鉴定。
1.基因工程(1)基因工程的3种基本工具①限制性核酸内切酶:识别特定核苷酸序列,并在特定位点上切割DNA分子。
②DNA连接酶:a.E·coli DNA连接酶只能连接黏性末端;b.T4DNA连接酶能连接黏性末端和平末端。
③载体:需具备的条件包括:a.能在宿主细胞内稳定存在并大量复制;b.有一个至多个限制酶切割位点;c.具有特殊的标记基因,以便对含目的基因的受体细胞进行筛选。
(2)获取目的基因的途径:①从基因文库中获取;②利用PCR技术扩增;③化学方法直接人工合成。
(3)基因表达载体的组成:启动子、目的基因、终止子及标记基因等。
(4)将目的基因导入受体细胞①植物:体细胞或受精卵——常用农杆菌转化法(双子叶植物和裸子植物)、花粉管通道法、基因枪法(单子叶植物)。
②动物:受精卵——显微注射技术。
③微生物:细菌(常用大肠杆菌)——感受态细胞法(钙离子处理法)。
(5)目的基因的检测与鉴定方法①检测目的基因是否插入转基因生物的DNA上:DNA分子杂交技术。
②检测目的基因是否转录出mRNA:分子杂交技术。
③检测目的基因是否翻译成蛋白质:抗原—抗体杂交技术。
④个体生物学水平鉴定:根据表达性状判断。
易混辨析①限制酶≠DNA酶≠解旋酶限制酶的作用是识别双链DNA分子上某种特定的核苷酸序列,并使两条链在特定的位置断开;DNA酶的作用是将DNA水解为基本组成单位;解旋酶的作用是将DNA两条链间的氢键打开形成两条单链。
②DNA连接酶≠DNA聚合酶DNA连接酶能连接两个DNA片段,而DNA聚合酶只能将单个脱氧核苷酸添加到脱氧核苷酸链上。
高考生物基因工程知识点归纳总结基因工程是一门应用领域广泛的生物学技术,涉及到基因的操作、复制、修饰和转移等过程。
在高考生物考试中,基因工程是一个重要的考点,掌握相关知识点对于提高成绩至关重要。
本文将对高考生物基因工程的知识点进行归纳总结,以帮助考生高效备考。
1. 基因工程的概念和意义基因工程是指通过对生物体的基因进行操作,改变其遗传信息,达到某种特定目的的技术手段。
其意义在于解决人类与生活相关的问题,如农业、医学、环保等领域。
2. DNA技术2.1 DNA提取和纯化DNA提取可通过溶解、离心、沉淀等步骤获得纯净的DNA。
纯化DNA时,可通过酚-氯仿提取法或凝胶电泳分离法来除去杂质。
2.2 DNA限制酶切割DNA限制酶是能切割特定DNA序列的一类酶。
常用的限制酶有EcoRI、BamHI等。
限制酶切割后得到的DNA片段可通过凝胶电泳分离。
2.3 DNA连接和重组DNA连接可使用DNA连接酶将不同来源的DNA片段连接成一个完整的DNA序列,从而实现DNA的重组。
2.4 DNA克隆技术DNA克隆是指将特定DNA片段复制成大量相同的DNA分子。
常用的DNA克隆方法有质粒载体法和核酸杂交法。
3. 基因组学和蛋白质组学3.1 基因组学基因组学是研究生物所有基因组的学科。
通过对基因组的测序和分析,可以了解生物的基因组结构和功能。
3.2 蛋白质组学蛋白质组学是研究生物体内全部蛋白质的学科。
通过对蛋白质组的分析,可以了解生物体内蛋白质的种类、结构和功能。
4. 基因工程在农业领域的应用4.1 转基因作物转基因作物是通过基因工程手段向作物中导入外源基因,使其具有抗虫、抗病、耐旱等性状,提高作物的产量和质量。
4.2 基因治理和基因编辑基因治理是通过基因工程手段修复作物中的功能缺陷基因,提高其抗性和适应性。
基因编辑则是通过CRISPR-Cas9等技术对作物的基因进行精确修饰,使其具有更好的性状和抗性。
5. 基因工程在医学领域的应用5.1 基因诊断和基因治疗基因诊断通过检测和分析个体的基因组,用于疾病的诊断和预测。
高中生物基因工程知识点总结基因工程是一门研究基因的组成、结构、功能以及其在生物体内的表达和调控的学科。
它是通过对DNA(脱氧核糖核酸)的操作和改变来实现人为干预基因,从而改变生物个体的性状、性质或者生物体的功能组成。
下面是对高中生物基因工程相关知识点的总结:一、基因工程的基本原理基因工程的基本原理包括以下内容:1. DNA的重组技术DNA的重组技术是基因工程的核心。
通过DNA的复制、切割、连接等操作,可以将来自不同生物体的DNA片段组合成一个新的DNA 片段,从而改变生物体的遗传特性。
2. 载体的选择和构建在基因工程中,常使用载体来携带外源基因。
载体可以是质粒、噬菌体或者人工合成的DNA片段。
选择合适的载体可以提高基因转移效率和表达水平。
3. DNA的放大和扩增DNA的放大和扩增是基因工程研究的重要手段。
常用的方法有聚合酶链式反应(PCR)和基于细菌的DNA复制。
二、基因工程的应用领域基因工程在许多领域都有广泛的应用,包括以下几个方面:1. 农业领域基因工程可以用于农作物的遗传改良,包括抗病虫害、耐逆性增强、提高产量等。
通过插入外源基因,农作物可以获得新的性状,提供更好的经济效益和环境适应性。
2. 医学领域基因工程在医学领域有广泛的应用,包括基因诊断、基因治疗和药物研发等。
通过基因工程技术,可以识别疾病相关基因,研发新的治疗方法,并生产高效的药物。
3. 环境保护领域基因工程可以用于环境保护和生态修复。
通过改变微生物的代谢能力,可以使其降解有害物质,减少污染物的残留。
4. 工业领域基因工程可以用于工业酶的生产和代谢工程。
利用转基因微生物制备工业酶,可以提高生产效率和质量。
三、基因工程的伦理和风险基因工程的发展也带来了一些伦理和风险问题:1. 生物安全基因工程研究中,外源基因的插入和转移可能会导致新的生物安全问题。
需要加强对转基因生物体的风险评估和管理。
2. 遗传信息的隐私基因工程研究需要大量的个体基因信息,如何保护个体基因信息隐私成为一个重要议题。
高中基因工程总结的知识点
一、基因工程
1、什么是基因工程
基因工程是指将一种生物体的基因插入另一种生物体,从而改变另一种生物体的性状,利用它们来改造和改变生物物种的一种技术。
2、基因工程的意义
基因工程可以帮助人们改善现有的农作物品种,以便获得更高的产量;同时也能够生产药物,如胰岛素,以治疗糖尿病等疾病。
3、基因工程的基本步骤
(1)获取基因序列:科学家首先获取目标基因的结构特征,以
及基因的排列顺序;
(2)构建基因组:科学家将基因拆分为多个碱基对,构建基因组;
(3)转化:将基因注入受体生物体,使之获得新的基因;
(4)表达:把插入的基因转录成mRNA,再转录成蛋白质,从而在受体生物体内表达出新的基因。
二、遗传工程
1、什么是遗传工程
遗传工程是通过改变某一物种的基因组结构而获得意想不到的
新突变,并利用这些突变来改良物种的一种技术。
2、遗传工程的意义
遗传工程可以帮助人们改良农作物品种,提高农作物的生长效率;
同时也可以用于育种,改良家禽种类,以提高食品的品质。
3、遗传工程的基本步骤
(1)获取基因:科学家首先获取和研究目标物种中的基因;
(2)基因分离:将基因拆分为多个碱基对,构建基因组;
(3)基因转移:将基因转移到另一物种中,进行基因转换;
(4)效果评估:使用遗传分析和实验测试,评估遗传工程所产生的效果。
基因工程
一基因工程的概念及基本工具
(1)限制性核酸内切酶(简称:限制酶)
①本质:蛋白质。
②来源:主要是从原核生物中分离纯化出来的。
③作用:识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
④结果:产生黏性末端或平末端。
例:如下图所示,Eco RⅠ限制酶识别的碱基序列是—GAATTC—,切割位点在G和A之间;SmaⅠ限制酶识别的碱基序列是—CCCGGG—,切割位点在C和G之间;说明限制酶具有特异性。
限制酶为何不切割自身DNA?
提示限制酶具有特异性,即一种限制酶只能识别一种特定的碱基序列,并在特定的位点上进行切割。
限制酶不切割自身DNA的原因是自身DNA中不存在该酶的识别序列或识别序列已经被修饰。
(2)DNA连接酶
①作用:将限制酶切割下来的DNA片段拼接成新的DNA分子。
(3)载体
①载体的作用:携带外源DNA片段进入受体细胞。
②常用载体:质粒。
其他载体:λ噬菌体衍生物、动植物病毒等。
③质粒
a.概念:质粒是一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的很小的双链环状DNA分子。
b.特点:能自我复制;有一个至多个限制酶切割位点;有特殊标记基因,供重组DNA的鉴定和选择。
二基因工程的基本操作程序
1.目的基因的获取
目的基因:主要指编码蛋白质的基因,也可以是一些具调控作用的因子。
获取方法⎩⎪⎨⎪⎧
人工合成⎩⎪⎨
⎪
⎧
利用PCR 技术扩增
(1)从基因文库中获取
①基因文库:将含有某种生物不同基因的许多DNA 片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,可分为基因组文库和部分基因文库(如cDNA 文库)。
cDNA 文库的构建
某种生物的
单链mRNA
反逆↓转录酶 单链互补DNA ↓DNA 聚合酶 双链cDNA 片段 ↓与载体连接
导入受体菌中储存 ↓
cDNA 文库
人工合成的两条DNA 片段(引物1,引物2)
当温度上升到90~95_℃时,双链DNA 解旋为单链
温度下降到55~60_℃时,两种引物通过碱基互补配对与两条单链DNA 结合
70~75 ℃时,Taq 酶从引物3′端开始进行互补链的合成
DNA 聚合酶不能从头开始合成DNA ,而只能从3′端延伸DNA 链,即DNA 的合成方向总
①前提条件:核苷酸序列已知,基因比较小。
②方法
a .反转录法:目的基因的mRNA ――――→反转录
单链DNA ―→双链DNA(目的基因) b .化学合成法:通过DNA 合成仪直接人工合成 2.基因表达载体的构建——基因工程的核心
(1)操作目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目的基因能够表达和发挥作用。
(2)组成
(3)构建过程
获取目的基因与切割载体时只能用同一种限制酶吗?
提示不是只能用一种限制酶,也可以用不同的限制酶,只要切割后目的基因和载体的黏性末端相同即可。
3.将目的基因导入受体细胞
(1)将目的基因导入植物细胞
①农杆菌转化法:最常用的方法。
a.受体细胞:植物体细胞或受精卵。
b.操作过程:将目的基因插入Ti质粒的TDNA上―→转入农杆菌―→导入植物细胞―→TDNA上的目的基因整合到受体细胞的染色体DNA上―→目的基因表达。
②基因枪法:适用于单子叶植物,成本较高。
③花粉管通道法:将目的基因通过花粉管通道导入受体细胞,十分简便经济。
(2)将目的基因导入动物细胞
①方法:显微注射技术。
②受体细胞:动物的受精卵。
③操作过程:将含有目的基因的表达载体提纯―→取卵(受精卵)―→用显微注射仪进行显微注射。
获得转基因动物时,通常选择受精卵做受体细胞的原因?
提示受精卵全能性高,可使目的基因在相应的组织细胞内表达。
(3)将目的基因导入微生物细胞
①转化方法
a.用Ca2+处理细胞,使细胞处于一种能吸收周围环境中DNA分子的生理状态(这种细胞称为感受态细胞)。
b.感受态细胞吸收重组表达载体DNA分子。
②受体细胞:原核细胞(使用最广泛的是大肠杆菌)。
③原核生物的特点:繁殖快、多为单细胞、遗传物质相对较少等。
不论是分子水平还是个体生物学水平的检测,都是在体外进行的。
(2)在DNA分子、mRNA分子上检测目的基因是否插入、目的基因是否转录时,用的探针都是用放射性同位素等作标记的目的基因的DNA片段。
三基因工程的应用
1.转基因植物
植物基因工程技术主要用于提高农作物的抗逆能力(如抗除草剂、抗虫、抗病、抗干旱和抗盐碱等),以及改良农作物的品质和利用植物生产药物等方面。
2.转基因动物
动物基因工程在动物品种改良、建立生物反应器、器官移植等方面显示了广阔的应用前景。
3.基因工程药物
(1)来源:转基因的工程菌。
(2)成果:细胞因子、抗体、疫苗、激素等。
(3)作用:用来预防和治疗人类肿瘤、心血管疾病、传染病、糖尿病、类风湿等疾病。
4.基因治疗
(1)方法:把正常基因导入病人体内,使该基因的表达产物发挥功能。
(2)效果:治疗遗传病的最有效的手段。
(3)分类:体内基因治疗和体外基因治疗。
四蛋白质工程
1.概念:蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类生产和生活的需求。
2.基本途径:预期蛋白质功能→设计预期蛋白质结构→推测应有的氨基酸序列→找到对应的脱氧核苷酸序列(基因)。
单链末端
1.基因表达载体构建时限制酶的选择
(1)根据目的基因两端的限制酶切点确定限制酶的种类
①应选择切点位于目的基因两端的限制酶,如图甲可选择PstⅠ或PstⅠ和Eco RⅠ。
②不能选择切点位于目的基因内部的限制酶,如图甲不能选择SmaⅠ。
③为避免目的基因和质粒的自身环化和随意连接,也可使用不同的限制酶切割目的基因和质粒,如图甲选择用PstⅠ和Eco RⅠ两种限制酶(但要确保质粒上也有这两种酶的切点)。
(2)根据质粒的特点确定限制酶的种类
①所选限制酶要与切割目的基因的限制酶相一致(也可以是能形成相同黏性末端的不同限制酶),以确保具有相同的黏性末端。
②质粒作为载体必须具备标记基因等,所以所选择的限制酶尽量不要破坏这些结构,如图乙中限制酶SmaⅠ会破坏标记基因;如果所选酶的切点不止一个,则切割重组后可能会丢失某些片段,若丢失的片段含复制起点区,则切割重组后的片段进入受体细胞后将不能自主复制。
2.基因表达载体中启动子、终止子的来源
(1)如果目的基因是从自然界中已有的物种中分离出来的,目的基因中已含有启动子、终止子,在构建基因表达载体时,不需要在质粒上接上特定的启动子、终止子。
(2)如果目的基因是通过人工方法合成的,或通过cDNA文库获得的,则目的基因是不含启动子和终止子的。
因此,在构建基因表达载体时,需要在与质粒结合之前,在目的基因的前后端接上特定的启动子、终止子。
3.如何筛选出含有目的基因的受体细胞
(1)原理:将目的基因插入含有两种抗生素抗性基因的载体时,如果插入某种抗生素抗性基因内部,则会导致该抗生素抗性基因失活。
如图,目的基因插入了四环素抗性基因内部,则四环素抗性基因失活。
(2)被转化的细菌有三种:含环状目的基因的细菌、含重组质粒的细菌、含质粒的细菌。
(3)筛选方法:将转化后的细菌先放在含氨苄青霉素的培养基上培养,能生长的是含重组质粒的细菌和含质粒的细菌,如图1、2、3、4、5菌落,再利用灭菌的绒布影印到含有四环素的培养基上,如图能生长的菌落为2、3、4,则在含四环素培养基上不生长的即为含有目的基因的菌落,如图1、5菌落。
最后,可在含氨苄青霉素的培养基上挑取1、5菌落进行培养。
1.DNA粗提取和鉴定的原理
(1)提取思路:利用DNA和其他物质在理化性质方面的差异,提取DNA。
(2)DNA的理化性质(提取和鉴定原理):
①DNA在不同浓度的NaCl溶液中的溶解度不同
②DNA不溶于酒精;
③对酶、高温和洗涤剂的耐受性强;
④DNA+二苯胺试剂――――→
沸水浴
蓝色。
2.DNA粗提取和鉴定的操作流程。