【小初高学习]2017-2018学年中考数学专题复习 综合应用题讲义
- 格式:doc
- 大小:372.50 KB
- 文档页数:7
2019-2019年中考数学专题复习题:投影与视图一、选择题1.图中三视图对应的几何体是A.B.C.D.2.如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是A.B.C.D.3.如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为A. 320cmB.C.D. 480cm4.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是A.B.第 1 页C.D.5.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为A. B. C. D.6.如图所示,在房子外的屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在A. B. C. 四边形BCED D.7.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得米,米,,在D处测得电线杆顶端A的仰角为,则电线杆AB的高度为A.B.C.D.8.在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为A. 米B. 8米C. 米D. 12米9.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是A.B.C.D.10.圆桌面桌面中间有一个直径为的圆洞正上方的灯泡看作一个点发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影已知桌面直径为,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是A. B. C. D.二、填空题11.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,,,,点P到CD的距离是,则AB离地面的距离为______12.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影圆形已知灯泡距离地面,桌面距离地面桌面厚度不计算,若桌面的面积是,则地面上的阴影面积是______.第 3 页13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为______ .14.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是______,面积是______.15.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为______.16.如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进行了如下测量某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为3米,落在地面上的影子BF的长为8米,而电信杆落在围墙上的影子GH的长度为米,落在地面上的银子DH的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是______米17.如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是______ .第 5 页18. 墙壁D 处有一盏灯 如图 ,小明站在A 处测得他的影长与身长相等都为 ,小明向墙壁走1m 到B 处发现影子刚好落在A 点,则灯泡与地面的距离 ______ .19. 桌面上放两件物体,它们的三视图图,则这两个物体分别是______ ,它们的位置是______ .20. 桌上放着一个三棱锥和一个圆柱体,如图的三幅图分别是从哪个方向看的?按图填写顺序______ 正面、左面、上面三、计算题21. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成角时,第二次是阳光与地面成 角时,两次测量的影长相差8米,求树高AB 多少米 结果保留根号22. 如图,是住宅区内的两幢楼,它们的高 ,两楼间的距离 ,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为角时,求甲楼的影子在乙楼上有多高精确到,;若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?23.某兴趣小组开展课外活动如图,小明从点M出发以米秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为米,然后他将速度提高到原来的倍,再行走2秒到达点F,此时点A,C,E三点共线.请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长不写画法;求小明到达点F时的影长FH的长.24.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积结果保留根号【答案】1. C2. C3. C4. D5. C6. D7. B8. B9. D10. D11.12.13.14. 13;15. 10m16. 1117. B、A、C、D18.19. 长方体和圆柱;圆柱在前,长方体在后20. 左面、上面、正面21. 解:在中,,,在中,,,,第 7 页,.答:树高AB为米22. 解:如图,延长OB交DC于E,作,交AB于F,在中,,,.设,则.根据勾股定理知,,负值舍去,.因此,.当甲幢楼的影子刚好落在点C处时,为等腰三角形,因此,当太阳光与水平线夹角为时,甲楼的影子刚好不落在乙楼的墙上.23. 解:如图,点O和FH为所作;,,,设,作于K,如图,,∽ ,,即,,∽ ,,即,由得,解得,,,,∽ ,,即,.答:小明到达点F时的影长FH的长为.24. 解:根据该密封纸盒的三视图知道它是一个六棱柱,其高为12cm,底面边长为5cm,其侧面积为,密封纸盒的上、下底面的面积和为:,其表面积为.第 9 页。
2017-2018年中考数学专题复习题:代数式一、选择题1.下列代数式书写规范的是A. B. C. D.2.已知,则代数式的值为A. 0B. 1C. 2D. 33.若,则的值为A. 2B.C. 2或D. 0或2或4.若当时,代数式的值为4,则当时,代数式值为A. 7B. 12C. 11D. 105.按下面的程序计算,当输入时,输出结果为501;当输入时,输出结果为506;如果开始输入的值x为正数,最后输出的结果为656,那么满足条件的x的值最多有A. 5个B. 4个C. 3个D. 2个6.如图,长为a,宽为b的长方形中阴影部分的面积是A.B.C. abD.7.一件工作甲单独做a小时完成,乙单独做b小时完成,甲、乙两人一起完成这项工作需要的小时数是A. B. C. D.8.某商场进了一批商品,每件商品的进价为a元,提价后作为销售价,由于商品滞销,商场决定降价作为促销价,则商场对每件商品A. 赚了元B. 亏了元C. 赚了元D. 不赔不赚9.若x表示一个两位数,y也表示一个两位数,小明想用x、y来组成一个四位数,且把x放在y的右边,你认为下列表达式中正确的是A. B. C. D. yx10.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元平方米,2月份比1月份下降了,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:A. 元B. 元C. 元D. 元二、填空题11.某工厂去年的产值是a万元,今年比去年增加,今年的产值是______ 万元.12.某种品牌的彩电降价以后,每台售价为a元,则该品牌彩电每台原价为______ .13.m是方程的一个根,则代数式的值是______.14.当时,的值是,则时,的值是______.15.若有理数a,b互为倒数,c,d互为相反数,则______.16.某超市的苹果价格如图,试说明代数式的实际意义______ .17.下列各式:0,,,,,,,,,其中代数式的有______ 个18.用语言叙述下列代数式的意义是______ .19.若,那么的值为______.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为______ .三、计算题21.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪裁剪后边角料不再利用.A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.用x的代数式分别表示裁剪出的侧面和底面的个数;若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?22.已知,,,求:的值,其中.23.一般情况下不成立,但有些数可以使得它成立,例如:我们称使得成立的一对数a,b为“相伴数对”,记为.若是“相伴数对”,求b的值;写出一个“相伴数对”,其中,且;若是“相伴数对”,求代数式的值.24.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠该班需球拍5副,乒乓球若干盒不小于5盒问:设购买乒乓球x盒时,在甲家购买所需多少元?在乙家购买所需多少元?用含x的代数式表示,并化简当购买乒乓球多少盒时,两种优惠办法付款一样?当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?【答案】1. D2. B3. C4. D5. B6. B7. A8. B9. A10. B11.12. 元13. 614.15. 116. 用100元买每斤元的苹果x斤余下的钱17. 618. 去年的产量是x千克,今年的产量比去年增长等19. 920. 421. 解:裁剪时x张用A方法,裁剪时张用B方法.侧面的个数为:个,底面的个数为:个;由题意,得,解得:,经检验,是原分式方程的解,盒子的个数为:.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.22. 解:,当时,原式.23. 解:是“相伴数对”,,解得:;答案不唯一;由是“相伴数对”可得:,即,即,则原式.24. 解:设购买乒乓球x盒时,在甲家购买所需元;在乙家购买所需元;根据题意得:,解得:,则当购买乒乓球20盒时,两种优惠办法付款一样;当选择甲商店时,收费为元,当选择乙商店时,收费为元,则选择乙商店合算.。
第二节 方程、函数类综合应用函数类应用问题,是根据实际背景材料来确定函数关系式,利用函数的增减性解决问题的方法,这类问题通常与方程或不等式进行联合考查.一般先建立方程(不等式)等模型,然后建立函数关系式,最后确定自变量的取值范围,通过取值范围来确定最佳选择等知识点.其中建立方程(不等式)在这类问题中属于基础考点,确定自变量的范围是解决问题的关键.,中考重难点突破)【例1】(2016汇川升学二模)某厂制作甲、乙两种环保包装盒.已知同样用6 m 的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3 000个,且甲盒的数量不少于乙盒数量的2倍.那么请写出所需材料总长度l(m )与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料.【解析】(1)设制作每个乙盒子用x m 材料,则制作每个甲盒子用(1+20%)x m 材料,根据同样用6 m 的材料制成甲盒的个数比制成乙盒的个数少2个,列出方程即可;(2)根据所需材料的总长度=甲盒子材料的总长度+乙盒子材料的总长度,列出函数关系式;再根据甲盒的数量不少于乙盒数量的2倍求出n 的取值范围,最后根据一次函数的性质即可解答.【答案】解:(1)设制作每个乙盒用x m 材料,制作每个甲盒用(1+20%)x m 材料,由题意得6x =6(1+20%)x+2,解得x =0.5, 经检验,x =0.5是方程的解.∴(1+20%)x =0.6. 答:制作每个甲盒用0.6 m 材料,制作每个乙盒用0.5 m 材料;(2)∵甲盒数量是n 个,∴乙盒数量是(3 000-n)个.∴l =0.6n +0.5(3 000-n)=0.1n +1 500.∵甲盒的数量不少于乙盒数量的2倍,∴n ≥2(3 000-n),∴n ≥2 000.∴当n =2 000时,所需材料最少,最少为:0.1×2 000+1 500=1 700(m ).【例2】(2017牡丹江中考)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y 与x 之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润为Q 元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x 的取值范围.【解析】本题考查了一次函数的应用;二次函数的应用.【答案】解:(1)设y =kx +b ,根据题意,得⎩⎪⎨⎪⎧55k +b =65,60k +b =60,解得⎩⎪⎨⎪⎧k =-1,b =120, 所求一次函数的解析式为y =-x +120;(2)利润Q 与销售单价x 之间的函数关系式为:Q =(x -50)(-x +120)=-x 2+170x -6 000;Q =-x 2+170x -6 000=-(x -85)2+1 225;因为x 需满足⎩⎪⎨⎪⎧x ≥50,x -5050≤40%,解得50≤x≤70, 因为a =-1<0,在对称轴左侧,y 随x 的增大而增大.所以当定价x =70时,该商店可获得最大利润,最大利润为Q =1 000元;(3)根据题意得Q =-(x -85)2+1 225≥600,即-(x -85)2≥-625,解得60≤x≤110,又因为获利不得高于40%,即x -5050≤40%,解得x≤70, 所以销售单价x 的取值范围为60≤x≤70.【规律总结】解这类实际应用的题目往往先要建立方程或不等式的模型去解出未知量;然后结合题意建立函数解析式;结合实际情况确定自变量的取值范围.◆模拟题区1.(2017遵义十一中三模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A 型车的进价为500元/辆,售价为700元/辆,B 型车进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A 型车不少于B 型车的2倍,但不超过B 型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设前4个月自行车销量的月平均增长率为m ,根据题意,列方程64(1+m)2=100,解得m 1=-94(不合题意,舍去),m 2=0.25=25%,100×(1+25%)=125(辆). 答:该商城4月份卖出125辆自行车;(2)设销售利润为W 元,购进B 型车x 辆,则购进A 型车30 000-1 000x 500=(60-2x)辆, 根据题意得不等式组2x ≤60-2x≤2.8x,解得12.5≤x≤15,∵自行车辆数为整数,∴13≤x ≤15,即x =13,14或15.销售利润W =(700-500)×(60-2x)+(1 300-1 000)x.整理得:W =-100x +12 000,∵W 随着x 的增大而减小,∴当x =13时,销售利润W 有最大值,此时60-2x =34.答:该商城应购进A 型车34辆,B 型车13辆.◆中考真题区2.(宿迁中考)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数解析式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.解:(1)y =⎩⎪⎨⎪⎧120x (0<x≤30),-x 2+150x (30<x≤m),(150-m )x (m <x≤100);(2)由(1)可知当0<x≤30或m <x≤100,函数值y 都是随着x 的增加而增加,当30<x≤m 时,y =-x 2+150x =-(x -75)2+5 625,∵a =-1<0,∴x ≤75时,y 随着x 的增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.3.(湖州中考)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x ,由题意可列出方程2(1+x)2=2.88,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t ,三人间的房间数为100-3t ,由题意,得t +4t +3(100-3t)=200,解得t =25.答:t 的值是25;②设该养老中心建成后能提供养老床位y 个,由题意,得y =t +4t +3(100-3t)=-4t +300(10≤t ≤30),∵k =-4<0,∴y 随t 的增大而减小.当t =10时,y 的最大值为300-4×10=260(个),当t =30时,y 的最小值为300-4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.。
中考数学专题复习 数形结合一、总体概述数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
纵观多年来的中考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果。
既节省时间,又提高解题的准确性,越来越倍受命题者的青睐。
二、典型例题【例题1】已知如图,二次函数21(0)y ax bx c a =++≠与一次函数 y 2=kx+ m (k ≠0)的图象相交于点 A (-2,4),B (8,2)(如图 7),则能使y 1>y 2成立的x 的取值范围是________.【例题2】已知抛物线过点(1,0),(―1,8)在y 轴上截距为5,若函数图象与x 轴交于A 、B ,与y 轴交于C ,顶点为D ,求四边形ABCD 的面积。
【例题3】如图,一次函数y =kx +b (k ≠0)的图象过点P (﹣,0),且与反比例函数y =(m ≠0)的图象相交于点A (﹣2,1)和点B . (1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【例题4】如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA=x ,PB=y ,则(x ﹣y )的最大值是 .三、当堂达标1.如图1所示的44⨯正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠=( ) A .330° B .315° C .310° D .320°2.如图2,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是( ) A .(4),0 B .(1,0) C.(- D .(2),0第2题图3.已知二次函数22y x x m =-++的部分图象如图3所示,则关于x 的一元二次方程220x x m -++=的解为 .4.如图,在矩形ABCD 中,2AB =,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是( )A .B .C .D .第1题图7 65 4 321C P B。
中考复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是()A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是()A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有()A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P 落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
5.2017-2018年中考数学专题复习题:二次函数、选择题1. 下列函数是二次函数的是I IA.' - | B. - - . .■2.已知—•一 '是关于x 的二次函数,那么m的值为B. 23.直线_二 与抛物线—1的交点个数是Ji2B. 1个D.互相重合的两个4. 在平面直角坐标系中,二次函数欝-.沁< / >■ - 的图象如图所示,点.1「,活门-.'::;是该二次函数图象上的两点,其中- _ ",则下列结论正确的是A. 一 二B.一 二C. y 的最小值是 -匸D. y 的最小值是 --A. A. 0个 C. 2个F表是一组二次函数- ' ;的自变量x与函数值y的对应值:8.8.A. 1个 /(In)\-2 101 2 3 \4 5B. 2个 如图,抛物线-与双曲线-的交点A 的横坐标是则关于x 的不等式-- > :[的解集是A.那么方程 ’. _ _ 的一个近似根是A. 1B. 1. .C. 1.2D. 1 -i6.若二次函数一 ..-1的图象与x 轴有两个不同的交点,则 m 的取值 范围是i IA. 二 IB. e : :;C. :.且 = 1D.■"-[且 .=1如图是抛物线- .一 .:的部分图象,其顶点坐标为1. , ■,且与x 轴的一个交点在点 和:.订之间,则下列结论:■: - ? - 7<■;兀二次方程■ - , • I ; - t 1有两个互异实根.7.其中正确结论的个数是|C. 3个D. 4个B. .-.C. ::七一;Y ..D. - 1 -9. 一抛物线的形状、开口方向与,—;相同,顶点为■ | ,,则此抛物线的解析式为,A. 丁一打一叮 AB. - ' ■C.mS D.- ■-60元,每星期可卖出300件,市场调查反映,如果调整商io.某商品现在的售价为每件品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为A.y= 60(300 4-20r)B.C.丿二300(60-20r)D.y= (6D-z)(3)O-2Dx)、填空题11. 将二次函数y二护一- 5化为y= a(x - h)2+ k的形式为y = _________________ .12. 二次函数y = + + 2图象的顶点坐标是 ___________ .13. 当- _ • _时,二次函数-:-.-一有最大值4,则实数m的值为14. 已知一•烏当1二。
【知识归纳】1.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若<,则+;(2)若>,>0则(或);(3)若>,<0则(或).3.一元一次不等式:只含有未知数,且未知数的次数是,且不等式的两边都是,称为一元一次不等式;一元一次不等式的一般形式为或;解一元一次不等式的一般步骤:去分母、、移项、、系数化为1.4.一元一次不等式组:几个合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的,叫做由它们组成的不等式组的解集.5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是,即“大大小小取不了”.6.列不等式(组)解应用题的一般步骤:①审:;②找:;③设:;④列:;⑤解:;⑥答:.【知识归纳答案】1.不等式的有关概念:不等号、未知数、未知数、集合、解集、2.不等式的基本性质:(1)、<(2)>、>;(3)<、<3.一元一次不等式:一个、1,、整式,、、去括号、合并同类项4.一元一次不等式组:一元一次不等式、公共部分5.由两个一元一次不等式组成的不等式组的解集有四种情况:,、;;空集.6.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).真题解析1.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0B.x﹣y>0C.x+y<0D.x﹣y<0【考点】C2:不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故选:A.2.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【考点】C2:不等式的性质.【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.【解答】解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.2【考点】C3:不等式的解集.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.学科网4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:∵x>﹣1,∴在﹣1处是空心圆点且折线向右,∵x<2,∴在2处是空心圆点且折现向左,不等式组的解集在数轴上表示在数轴上表示为:故选B.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.二.填空题(共5小题)6.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了10元/千克.【考点】C9:一元一次不等式的应用.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10.学科网7.不等式组的解集是4<x≤5.【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤5,解不等式②得:x>4,∴不等式组的解集为4<x≤5,故答案为:4<x≤5.8.学完一元一次不等式的解法后,老师布置了如下练习:解不等式:≥7﹣x,并把它的解集在数轴上表示出来.以下是小明的解答过程:第一步:去分母,得15﹣3x≥2(7﹣x),第二步:去括号,得15﹣3x≥14﹣2x,第三步:移项,得﹣3x+2x≥14﹣15,第四步:合并同类项,得﹣x≥﹣1,第五步:系数化为1,得x≥1.第六步:把它的解集在数轴上表示为:请指出从第几步开始出现了错误第五步,你判断的依据是不等式基本性质3(不等式的两边同时乘以或除以一个负数不等号的方向要改变).【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【分析】根据不等式的基本性质逐个判断即可.【解答】解:15﹣3x≥2(7﹣x),去括号,得15﹣3x≥14﹣2x,移项,得﹣3x+2x≥14﹣15,合并同类项,得﹣x≥﹣1,系数化为1,得x≤1(不等式的两边同时乘以或除以一个负数,不等号的方向要改变).故答案为:第五步,不等式的基本性质3(不等式的两边同时乘以或除以一个负数,不等号的方向要改变)9.不等式1﹣2x≥3的解是x≤﹣1.【考点】C6:解一元一次不等式.【分析】移项,合并菱形,系数化成1即可.【解答】解:1﹣2x≥3,﹣2x≥2,x≤﹣1,故答案为:x≤﹣110.2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是8场.【考点】C9:一元一次不等式的应用.【分析】设该校足球队获胜的场次是x场,根据比赛规则和比赛结果列出不等式并解答.【解答】解:设该校足球队获胜的场次是x场,依题意得:3x+(11﹣x﹣1)≥25,3x+10﹣x≥25,2x≥15,x≥7.5.因为x是正整数,所以x最小值是8,即该校足球队获胜的场次最少是8场.故答案是:8.学科网三.解答题(共10小题)11.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【考点】C3:不等式的解集.【分析】(1)把m=1代入不等式,求出解集即可;学科网(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解答】解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;学科网(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当x<﹣1时,不等式的解集为x>2.12.小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.【考点】C6:解一元一次不等式.【分析】根据一元一次不等式的解法,找出错误的步骤,并写出正确的解答过程即可.【解答】解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.学科网13.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.14.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得,解得:答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.15.某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【解答】解:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买种花木a棵,则购买B种花木棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.学科网16.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,由PQ ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.17.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,根据2016年全国谷子年总产量为150万吨列出方程组求解即可;(2)可设我省应种植z万亩的谷子,根据我省谷子的年总产量不低于52万吨列出不等式求解即可.【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.18.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y 个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11﹣a)≥300+30,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.19.(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【考点】CB:解一元一次不等式组;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;20.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得x≥1;(2)解不等式②,得x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集.【解答】解:(1)解不等式①,得:x≥1;(2)解不等式②,得:x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3,故答案为:x≥1,x≤3,1≤x≤3.学科网。
知识点20 二次函数几何方面的应用1. (2018贵州遵义,17题,4分)如图,抛物线y=x 2+2x-3与x 轴交于A 、B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE 、DF ,则DE+DF 的最小值为______第17题图【答案】2【解析】点D 、E 、F 分别是BC 、BP 、PC 的中点,所以DE 、DF 是△PBC 的中位线,DE=12PC ,DF=12PB ,所以DE+DF=12(PC+PB),即求PC+PB 的最小值,因为B 、C 为定点,P 为对称轴上一动点,点A 、B 关于对称轴对称,所以连接AC ,与对称轴的交点就是点P 的位置,PC+PB 的最小值等于AC 长度,由抛物线解析式可得,A(-3,0),C(0,-3),AC=DE+DF=12(PC+PB)=2【知识点】三角形中位线,勾股定理,二次函数,最短距离问题2. .(2018江苏淮安,14,3) 将二次函数y=x 2-1的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 . 【答案】y=x 2+2【解析】由平移规律“左加右减”、“上加下减”,可得平移后的解析式.解:. 由平移规律,直线y=x 2-1向上平移3个单位长度,则平移后直线为y=x 2-1+3 即y=x 2+2故答案为y=x 2+2.【知识点】二次函数图象与几何变换3. (2018山东省泰安市,17,3)如图,在ABC ∆中,6AC =,10BC =,3tan 4C =,点D 是AC 边上的动点(不与点C 重合),过D 作DE BC ⊥,垂足为E ,点F 是BD 的中点,连接EF ,设C D x =,DEF ∆的面积为S ,则S 与x 之间的函数关系式为 .【答案】233252S x x =-+ 【解析】,由3tan 4C =可以知道线段DE 、EC 的数量关系, CD x =,则由勾股定理,可以将DE 、EC 用含x 的代数式来表示,由点F 是BD 的中点,则1=2DEF BDE S S ∆∆,从而列出S 与x 之间关系式. 解:∵3tan 4C =∴设3,4.DE k EC k ==,由勾股定理得:5DC k =. ∵CD x =,∴34,.55DE k EC k == ∴410.5BE k =- ∵点F 是BD 的中点 ∴21113433===(10)22255252DEF BDE S S S x x x x ∆∆⨯⨯-=-+故答案是:233252S x x =-+ 【知识点】三角函数,勾股定理,三角形中线性质,二次函数. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1. (2018湖北鄂州,23,12分)如图,已知直线1122y x=+与抛物线2y ax bx c=++相交于A(-1,0),B(4,m)两点,抛物线2y ax bx c=++交y轴于点C(0,32-),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式及点M的坐标;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求此时△PAB的面积及点P的坐标;(3)点Q为x轴上一动点,点N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应),求Q点的坐标.【思路分析】(1)将B (4,m )一次函数的关系式即可解得点B 的坐标,再将A 、B 、C 三点的坐标代入二次函数关系式即可求出其关系式,再将其化为顶点式就能得到点M 的坐标;(2)过点P 作PE ⊥x 轴,交AB 于点E ,交x 轴与点G ,过点B 作BF ⊥x 轴于点F ,则S △CDE =12PE ·AF ,求出直线AB 的关系式,设点P 的坐标为(m ,13222m m --),则点E 的坐标为(m ,1122m +),即可得到S △CDE 的函数关系式,将其化为顶点式即可求出最大值;(3)由勾股定理的逆定理可证得△MAD 是等腰直角三角形,则QMN 也是等腰直角三角形,从而得到点Q 的坐标. 【解析】解:(1)将B (4,m )代入1122y x =+得, 1154222m =⨯+=,∴B (4,52),将A (-1,0),B (4, 52),C (0,32-)代入2y ax bx c =++得05164232a b c a b c c -+=++==-⎧⎪⎪⎪⎨⎪⎪⎪⎩,解得12132a b c ==-=-⎧⎪⎪⎨⎪⎪⎩,∴抛物线的解析式为13222y x x =--,()()()1311312222112222222y x x x x =--=---=--,故顶点M 的坐标为(1,-2); (2)如下图(1),过点P 作PE ⊥x 轴,交AB 于点E ,交x 轴与点G ,过点B 作BF ⊥x 轴于点F ,∵A (-1,0),B(4,52),∴AF =4―(―1)=5,设直线AB 的关系式为y =kx +b ,设点P 的坐标为(m ,13222m m --),则点E 的坐标为(m ,1122m +),∵点P 为直线AB 下方,∴PE =(1122m +)-(13222m m --)=132222m m -++,∴S △CDE =S △APE +S △BPE =12PE ·AG +12PE ·FG =12PE ·(AG +FG )=12PE ·AF =12×5(132222m m -++)=2531254216x --+⎛⎫⎪⎝⎭,∴当32m =时,△PAB 的面积最大,且最大面积为12516,当32m =时,21313331522222228m m --=⨯--=-⎛⎫ ⎪⎝⎭,故此时点P 的坐标为(32,158-); (3)∵抛物线的解析式为13222y x x =--,()12122y x =--,∴抛物线的对称轴为:直线x =1,又∵A (-1,0),∴点D 的坐标为(3,0),又∵M 的坐标为(1,-2),∴AD =3―(―1)=4,AD 2=42=16,AM 2=(―1―3)2+(―1―3)2=8,DM 2=(3―1)2+(―2―0)2=8,∴AD 2=AM 2+DM 2,且AM =DM ,∴△MAD 是等腰直角三角形,∠AMD =90°,又∵△QMN ∽△MAD ,∴△QMN 也是等腰直角三角形且QM =QN ,∠MQN=90°,∠QMN =45°,又∵∠AMD =90°,∴∠AMQ =∠QMD =45°,此时点D (或点A )与点N 重合,(如下图(2))此时MQ ⊥x 轴,故点Q 的坐标为(1,0).【知识点】二次函数关系式;顶点式;一次函数;相似三角形的性质;等腰直角三角形的性质和判定;勾股定理的逆定理;三角形面积公式2. (2018湖北黄冈,24题,14分)如图,在直角坐标系XOY 中,菱形OABC 的边OA 在x 轴正半轴上,点B ,C 在第一象限,∠C=120°,边长OA=8.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A 出发沿边AB-BC-CO 以每秒2个单位长的速度作匀速运动.过点M 作直线MP 垂直于x 轴并交折线OCB 与P ,交对角线OB 与Q ,点M 和点N 同时出发,分别沿各自路线运动,点N 运动到原点O 时,M 和N 两点同时停止运动. (1)当t=2时,求线段PQ 的长; (2)求t 为何值时,点P 与N 重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.第24题图【思路分析】(1)由题可知Rt△POM 中,∠POM=60°,Rt△QOM 中,∠QOM=30°,当t =2时,OM =2,可得PM 和QM 的长度,进而求得PQ ;(2)根据点P 和点N 的运动速度,可知点P 和点N 在边BC 上相遇,因为BC=8,用含有t 的代数式表示出PC 和NB 的长度,二者之和为8,解方程可得t 的值;(3)根据(2)中的分析,可以将运动的过程分为4个阶段:0≤t ≤4,4≤t ≤203,203<t ≤8,8<t ≤12,前3个阶段,边PN 都与x 轴平行,求出PN 长度和点P 到x 轴距离即可求出△APN 的面积,第4个阶段,△APN 的三边与坐标轴都不平行,因此,由APN AON CPN APB =S S S S S ---△△△△菱形,其中菱形面积易求,三个三角形都有一边与x 轴平行,可以逐个求出面积,从而得到△APN 的面积。
中考数学专题复习 化归思想问题一、总体概述数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等.二、典型例题【例题1】如图,反比例函数y=-8x与一次函数y=-x+2的图象交于A 、B 两点.(1)求 A 、B 两点的坐标;(2)求△AOB 的面积.【例题2】如图,半径为1cm,圆心角为900的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )【例题3】已知:如图所示,正方形ABCD ,E 为CD 上一点,过B 点作BF ⊥BE 于B ,求证:∠1=∠2【例题4】已知△ABC 的三边为a ,b ,c ,且222a b c a b a c b c ++=++,试判断△ABC 的形状.三、当堂达标一、选择题1.已知|x+y|+2x-y (2)=0,则( )1221. . . .1112x x x x A B C D y y y y =-=-==⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩ 2.一次函数y=kx +b 的图象经过点A (0,-2)和B (-3,6)两点,那么该函数的表达式是( ) 8.2 6 .238.8 6 .23A y x B y x C y x D y x =-+=--=--=--3.设一个三角形的三边长为3,l -2m ,8,则m 的取值范围是( )A .0<m <12B. -5<m <-2 C .-2<m <5 D .-72<m <-l 4.已知11553x xy y x yx xy y +--=--,则的值为( ) A 、72 B 、-72 C 、27 D 、-27。
中考数学专题讲座一代数综合题 代数综合题是中考题中较难的题目,要想得高分必须做好这类题,•这类题主要以方程或函数为基础进行综合.解题时一般用分析综合法解,认真读题找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题.解题时,•计算不能出差错,思维要宽,考虑问题要全面. 【典例精析】 例.已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x一,O),B(x2,0)(x一
一0. (一)求A、B两点的坐标; (2)求抛物线的解析式及点C的坐标; (3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所符合条件的点的坐标;若不存在,请说明理由.
【中考样题】 一.已知抛物线y=x2+(m-4)x+2m+4与x轴交于点A(x一,0)、B(x2,0)两点,与y轴交于点C,且x一 (一)求过点C、B、D的抛物线的解析式; (2)若P是(一)所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD和△CBD的积相等,求直线PH的解析式. 2.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒一cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD. (一)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积; (2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒一cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.•设点Q运动的时间t秒(0≤t≤一0),直线PM与QN截平行四边形ABCD•所得图形的面积为Scm2. ①求S关于t的函数关系式;②(附加题)求S的最大值.
3.矩形OABC在直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,3),直线y=34x与BC边相交于点D.(一)求点D的坐标; (2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式; (3)P为x轴上方,(2)中抛物线上一点,求△POA面积的最大值; (4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.
综合应用题(讲义)
课前预习
1.已知函数y=x2-2x-3,借助函数图象,解决下列问题:
①当1
<x≤6 时,y 的取值范围是.2
②解不等式x2-2x-3≥0.
2.实际生活中的变化过程往往不能只用一个函数来进行描述.以阶梯水
费为例:用户每月的用水不超过10 吨时,水价为每吨1.2 元;超过10 吨时,超过的部分按每吨 1.8 元收费.若某户居民某月份用水x 吨,应交水费y 元,则y 关于x 的函
数关系式可表示为
y
1.2x
1.8x 6
(0 x ≤10)
.
(x 10)
当用水量0<x≤10 时,适用函数关系式;当x>10 时,适用函数关系式.我们把这样的函数叫做分段函数,分段函数尤其要注意其自变量的取值范围.
3.解决下列问题:
某企业利润w 关于其产品售价x 之间的函数关系式为
若要该企业利润w 最大,售价x 应定为多少?提示
:①求出当 0<x≤3 时,w 的最大值;
②求出当 3<x≤5 时,w 的最大值;
③两段函数的最值进行比较,较大的为整个函数的最大值.
知识点睛
应用题的处理思路
1.理解题意,梳理信息
综合类应用题信息的呈现形式:
①表达式——要清楚变量含义、变量间关系;
②图象、表格——明确文字信息与图象、表格中量的对应关系;
③文字信息——抓取关键词、关键语句、量与量之间关系;如:×
××与×××成正比例,
售价每上涨××元,每个月少卖××件.
④隐含信息
如:自变量、因变量的范围限制,整数、正数等.
2.辨识类型,建立模型
3.求解验证,回归实际
精讲精练
1.某公司生产的某种时令商品每件成本为 20 元,经过市场调研发现,这
种商品在未来 40 天内的日销售量m(件)与时间t
(天)的关系如下表:
在未来 40 天内,每天的价格y(元/件)与时间t(天)的函
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m 与t 之间的关系式.
(2)请预测未来40 天中哪一天的日销售利润最大,且最大日销售利润是多少?
(3)在实际销售的前 20 天中,该公司决定每销售一件商品就捐赠a(a<4)元利润给希望工程.公司通过销售记录发现,前20 天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求a 的取值范围.
2.某公司经营杨梅业务,以 3 万元/吨的价格向农户收购杨梅后,分拣成 A
平均销售价格为 9 万元/吨.
(1)直接写出 A 类杨梅平均销售价格y 与销售量x 之间的函数关系式.
(2)该公司第一次收购了 20 吨杨梅,其中 A 类杨梅x 吨,经营这批杨梅所获得的毛利润为w 万元.(毛利润=销售总收入-经营总成本)
①求w 关于x 的函数关系式;
②若该公司获得了 30 万元的毛利润,则用于直销的 A 类杨梅有多少吨
?
(3)该公司第二次准备投入 132 万元资金,请设计一种经营方案,使
该公司获得最大毛利润,并求出最大毛利润.
3.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x 表
示科技馆从 8:30 开门后经过的时间(分钟),纵坐标y 表示到达科技馆的总人数.图中曲线对应的函数解析
10:00 之后来的游客较少可忽略
请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过 684
人,后来的人在馆外休息区等待.从 10:30 开始到 12:00 馆
内陆续有人离馆,平均每分钟离馆 4 人,直到馆内人数减少
到624 人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?
4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了
一个购买商品房的政策性方案.
根据这个购房方案:
(1)若某三口之家欲购买 120 平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x 平方米,缴纳房款
y 万元,请求出y 关于x 的函数关系式;
(3)若该家庭购买商品房的人均面积为50 平方米,缴纳房款为y 万元,且 57<y≤60,求m 的取值范围.。