浙江省温州市2018年中考数学卷及答案
- 格式:doc
- 大小:3.16 MB
- 文档页数:11
浙江省温州市2018年中考数学真题试题卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是( )B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( )A. 3aB. 4aC. 8aD. 12a 4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A. 12 B. 13 C. 310 D. 156.若分式25x x -+的值为0,则x 的值是( ) A. 2 B. 0 C. 2- D. 5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.) C.(1) D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.B. C. D.A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C. 994D. 532 卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 . 15.如图,直线4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.2三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20--(2)1)(2)化简:2++-m m(2)4(2)18.(本题8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B. (1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D2,0,1-,其中负数是:1-.【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】628a a a =g ,【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式【解析】Q 袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是21105=, 6.【答案】A【解析】解:由题意,得20x -=,解得,2x =.经检验,当2x =时,205x x -=+.故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点A 与点O 对应,点(1,0)A -,点(0,0)O ,所以图形向右平移1个单位长度,所以点B 的对应点B '的坐标为(0+,即,【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车x 辆,37座客车y 辆,根据题意可列出方程组104937466x y x y +=⎧⎨+=⎩. 【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】Q 点A ,B 在反比例函数1(0)y x x=>的图象上,点A ,B 的横坐标分别为1,2, ∴点A 的坐标为(1,1),点B 的坐标为1(2,)2, AC BD y Q ∥∥轴,∴点C ,D 的横坐标分别为1,2,Q 点C ,D 在反比例函数(0)k y k x=>的图象上, ∴点C 的坐标为(1,)k ,点D 的坐标为(2,)2k , 1AC k ∴=-,11222k k BD -=-=, 11(1)122OAC k S k -∴=-⨯=△,111(21)224ABD k k S --=⨯-=g △, OAC Q △与ABD △的面积之和为32, ∴113242k k --+=, 解得:3k =.【考点】反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征10.【答案】B【解析】设小正方形的边长为x ,3a =Q ,4b =,347AB ∴=+=,在Rt ABC △中,222AC BC AB +=,即222(3)(4)7x x +++=,整理得,27120x x +-=,解得x =或x =(舍去),∴该矩形的面积77(3)(4)2422--=++=, 【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】25(5)a a a a -=-.【考点】因式分解——提公因式法12.【答案】6【解析】设半径为r ,602180r ππ=g , 解得:6r =,【考点】弧长的计算13.【答案】3 【解析】根据题意知13272337x ++++++=, 解得:3x =,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】4x > 【解析】解:20262x x ->⎧⎨->⎩①②,解①得2x >,解②得4x >.故不等式组的解集是4x >.【考点】解一元一次不等式组15.【答案】【解析】延长DE 交OA 于F ,如图,当0x =时,44y x =+=,则(0,4)B ,当0y =时,40x +=,解得x =A ,0),在Rt AOB △中,tan 4OBA ∠=, 60OBA ∴∠=︒,C Q 是OB 的中点,2OC CB ∴==,Q 四边形OEDC 是菱形,2CD BC DE CE ∴====,CD OE ∥,BCD ∴△为等边三角形,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒,112EF OE ∴==,OAE △的面积112=⨯=故答案为【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG PM ⊥,OH AB ⊥, 由题意得:60MNP NMP MPN ∠=∠=∠=︒,Q 2,∴,即PM =,24MPN S ∴=△, OG PM ⊥Q ,且O 为正六边形的中心,12PG PM ∴==,72OG =,在Rt OPG △中,根据勾股定理得:7OP cm ==, 设OB xcm =,OH AB ⊥Q ,且O 为正六边形的中心,12BH x ∴=,2OH x =, 1(5)2PH x cm ∴=-,在Rt PHO △中,根据勾股定理得:2221)(5)492OP x =+-=, 解得:8x =(负值舍去),则该圆的半径为8cm .故答案为:8【考点】正多边形和圆三、解答题17.【答案】(1)5-(2)212m +【解析】(1)20(2)1)-41=-5=-(2)2(2)4(2)m m ++-24484m m m =+++-212m =+.【考点】实数的运算,去括号与添括号,完全平方公式,零指数幂18.【答案】(1)证明:AD EC Q ∥,A BEC ∴∠=∠,E Q 是AB 中点,AE EB ∴=,AED B ∠=∠Q ,AED EBC ∴△≌△.(2)解:AED EBC Q △≌△,AD EC ∴=,AD EC Q ∥,∴四边形AECD 是平行四边形,CD AE ∴=,6AB =Q ,132CD AB ∴==. 【考点】全等三角形的判定与性质19.【答案】(1)100(2)25【解析】解:(1)该市蛋糕店的总数为90150600360÷=家, 甲公司经营的蛋糕店数量为60600100360⨯=家; (2)设甲公司增设x 家蛋糕店,由题意得:20%(600)100x x ⨯+=+,解得:25x =,答:甲公司需要增设25家蛋糕店.【考点】扇形统计图20.【答案】(1)(2)【解析】解:(1)如图①所示:(2)如图②所示:【考点】作图——轴对称变换,作图——旋转变换21.【答案】(1)14a b =-⎧⎨=⎩(2)02K <<【解析】解:(1)将2x =代入2y x =,得:4y =,∴点(2,4)M , 由题意,得:22424b a a b ⎧-=⎪⎨⎪+=⎩,∴14a b =-⎧⎨=⎩;(2)如图,过点P 作PH x ⊥轴于点H ,Q 点P 的横坐标为m ,抛物线的解析式为24y x x =-+,24PH m m ∴=-+,(2,0)B Q ,2OB ∴=,12S OB PH ∴=g 212(4)2m m =⨯⨯-+ 24m m =-+,4S K m m∴==-+, 由题意得(4,0)A ,(2,4)M Q ,24m ∴<<,K Q 随着m 的增大而减小,02K ∴<<.【考点】一次函数图象上点的坐标特征,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,抛物线与x 轴的交点22.【答案】(1)由折叠的性质可知,ADE ADC △≌△,AED ACD ∴∠=∠,AE AC =,ABD AED ∠=∠Q ,ABD ACD ∴∠=∠,AB AC ∴=,AE AB ∴=;(2)如图,过A 作AH BE ⊥于点H ,AB AE =Q ,2BE =,1BH EH ∴==,ABE AEB ADB ∠=∠=∠Q ,1cos 3ADB ∠=, 1cos cos 3ABE ADB ∴∠=∠=, ∴13BH AB =. 3AC AB ∴==,90BAC ∠=︒Q ,AC AB =,BC ∴=【考点】三角形的外接圆与外心,翻折变换(折叠问题),解直角三角形23.【答案】(1)65x -1302x -1302x -(2)110元(3)安排26人生产乙产品时,可获得的最大利润为3198元【解析】(1)由已知,每天安排x 人生产乙产品时,生产甲产品的有(65)x -人,共生产甲产品2(65)1302x x --件.在乙每件120元获利的基础上,增加x 人,利润减少2x 元每件,则乙产品的每件利润为1202(5)1302x x --=-.故答案为:65x -;1302x -;1302x -;(2)由题意152(65)(1302)550x x x ⨯-=-+2807000x x ∴-+=解得110x =,270x =(不合题意,舍去)1302110x ∴-=(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m 人(1302)15230(65)W x x m x m =-+⨯+--22(25)3200x =--+265m x m =--Q653x m -∴= x Q 、m 都是非负整数∴取26x =时,13m =,6526x m --=即当26x =时,3198W =最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.【考点】一元二次方程的应用,二次函数的应用24.【答案】(1)PB AM ⊥Q 、PC AN ⊥,90ABP ACP ∴∠=∠=︒,180BAC BPC ∴∠+∠=︒,又180BPD BPC ∠+∠=︒,BPD BAC ∴∠=∠;(2)①如图1,45APB BDE ∠=∠=︒Q ,90ABP ∠=︒,BP AB ∴==BPD BAC ∠=∠Q ,tan tan BPD BAC ∴∠=∠,DPBP ∴=,2PD ∴=;②当BD BE =时,BED BDE ∠=∠,BPD BPE BAC ∴∠=∠=∠,tan 2BPE ∴∠=,AB =Q ,BP ∴=2BD ∴=;当BE DE =时,EBD EDB ∠=∠,APB BDE ∠=∠Q 、DBE APC ∠=∠,APB APC ∴∠=∠,AC AB ∴==过点B 作BG AC ⊥于点G ,得四边形BGCD 是矩形,AB =Q 、tan 2BAC ∠=,2AG ∴=,2BD CG ∴==;当BD DE =时,DEB DBE APC ∠=∠=∠,DEB DPB BAC ∠=∠=∠Q ,APC BAC ∴∠=∠,设PD x =,则2BD x =,PC∴2224x x+=-, 32x ∴=, 23BD x ∴==,综上所述,当2BD =、3或2时,BDE △为等腰三角形;(3)如图3,过点O 作OH DC ⊥于点H ,tan tan 1BPD MAN ∠=∠=Q ,BD PD ∴=,设2BD PD a ==、2PC b =,则OH a =、2CH a b =+、42AC a b =+,OC BE Q ∥且90BEP ∠=︒,90PFC ∴∠=︒,90PAC APC OCH APC ∴∠+∠=∠+∠=︒,OCH PAC ∴∠=∠,ACP CHO ∴△∽△, ∴OH PC CH AC=,即OH AC CH PC =g g , (42)2(2)a a b b a b ∴+=+,a b ∴=,即2CP a =、3CH a =,则OC =,CPF COH Q △∽△,∴CF CPCH OC=,即3CFa=则CF=,OF OC CF=-=,BE OCQ∥且BO PO=,OF∴为PBE△的中位线,EF PF∴=,∴122 3S OFS CF==.【考点】圆的综合题。
2018年浙江省温州市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018浙江温州,1,4分)2,0,1-,其中负数是()A. B.2 C.0 D.1-【答案】D【解析】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数。
因为在四个数中,只有-1有负号。
故选D【知识点】实数的分类,负数2.(2018浙江温州,,4)移动台阶如图所示,它的主视图是()A. B. C. D.【答案】B【解析】根据从正面看得到的图形是主视图,注意看到的线是实线看不到的线画虚线。
可得答案选B.【知识点】三视图,简单组合体的三视图3.(2018浙江温州,3,4)计算a6·a2的结果是()A. a3B. a4C. a8D. a12【答案】C【解析】利用同底数幂相乘底数不变指数相加, 得a6a2=a6+2=a8答案选C【知识点】同底数幂乘法法则4.(2018浙江温州,4,4)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【解析】利用中位数的定义,中位数是一组数据从小到大或从大到小排列后中间位置的数(当数的个数为偶数个时为中间两个数的平均数)。
这道题的数据从小到大排列后得6,7,7,7,8,9,9所以中间位置的数就是7故选C【知识点】中位数5.(2018浙江温州,5,4)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. 12B.13C.310D.15【答案】D【解析】利用概率的求法公式,事件发生的概率P(A)=事件发生的结果数所以可能出现的结果数A 所以从袋中任意摸出一个球,是白球的概率为21=105,故选D 【知识点】随机事件概率的公式求法6.(2018浙江温州,6,4)若分式25x x -+的值为0,则的值是() A. 2 B. 0 C. -2 D. -5【答案】A【解析】本题考查了分式值为零的条件分式值为零必须满足两个条件分母为0和分子不为0,所以由x-2=0得x=2 显然当x=2时分母为7不为0,所以选A【知识点】分式值为零的条件7.(2018浙江温州,7,4)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(-1,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB’,则点B 的对应点B’的坐标是()A.(1,0)B.) C.(1) D.(-1)【答案】C【解析】本题考查了平移的性质和在平面直角坐标系的点的坐标的表示法。
浙江省温州市2018年中考数学试卷一、选择题<本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.<4分)<2018•温州)计算:<﹣2)×3的结果是< )2.<4分)<2018•温州)小明对九<1)班全班同学“你最喜欢的球类工程是什么?<只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类工程是< )b5E2RGbCAP3.<4分)<2018•温州)下列各图中,经过折叠能围成一个立方体的是< )4.<4分)<2018•温州)下列各组数可能是一个三角形的边长的是)<5.<4分)<2018•温州)若分式的值为0,则x的值是< )6.<4分)<2018•温州)已知点P<1,﹣3)在反比例函数y=<k≠0)的图象上,则k的值是< )p1EanqFDPw﹣,求出析:y=<k∴﹣3=,解得k=﹣3.7.<4分)<2018•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是< )DXDiTa9E3dAC=BC=AC=BC=AB=8.<4分)<2018•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是< )RTCrpUDGiT=9.<4分)<2018•温州)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是< )5PCzVD7HxA析:∴=,即=,10.<4分)<2018•温州)在△ABC中,∠C为锐角,分别以AB,AC 为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是< )jLBHrnAILg析:即可求得结论.S2+S4=,,∴<S1+S3)﹣<S2+S4)=<S1﹣S2)+<S3﹣S4)=ππ二、填空题<本题有6小题,每小题5分,共30分)11.<5分)<2018•温州)因式分解:m2﹣5m= m<m﹣5).12.<5分)<2018•温州)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是8 分.xHAQX74J0X13.<5分)<2018•温州)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3= 110 度.LDAYtRyKfE14.<5分)<2018•温州)方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.,,﹣,﹣15.<5分)<2018•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为<﹣2,0),<﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′<A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是<1,3).Zzz6ZB2Ltk16.<5分)<2018•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据<单位:cm),从点N沿折线NF﹣FM<NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图<不重叠,无缝隙,不记损耗),则CN,AM的长分别是18cm、31cm .dvzfvkwMI1CB=65cmAB=42cm+r=三、解答题<本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17.<10分)<2018•温州)<1)计算:+<)+<)0<2)化简:<1+a)<1﹣a)+a<a﹣3)=2+1+1=318.<8分)<2018•温州)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.rqyn14ZNXI<1)求证:△ACD≌△AED;<2)若∠B=30°,CD=1,求BD的长.求出即可.19.<8分)<2018•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.EmxvxOtOco<1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;<2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.20.<10分)<2018•温州)如图,抛物线y=a<x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为<﹣1,0)SixE2yXPq5<1)求该抛物线的解读式;<2)求梯形COBD的面积.OCDA==621.<10分)<2018•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.6ewMyirQFL<1)求从袋中摸出一个球是黄球的概率;<2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?kavU42VRUs∴摸出一个球摸到黄球的概率为:=;由题意,得≥,≥,.22.<10分)<2018•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.y6v3ALoS89<1)求证:∠B=∠D;<2)若AB=4,BC﹣AC=2,求CE的长.,﹣23.<10分)<2018•温州)某校举办八年级学生数学素养大赛,比赛共设四个工程:七巧板拼图,趣题巧解,数学应用,魔方复原,每个工程得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况<单位:分)M2ub6vSTnP<1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个工程得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;0YujCfmUCw<2)本次大赛组委会最后决定,总分为80分以上<包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?eUts8ZQVRd解得:24.<14分)<2018•温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A<6,0),B<0.8),点C的坐标为<0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.sQsAEJkW5T<1)当0<m<8时,求CE的长<用含m的代数式表示);<2)当m=3时,是否存在点D,使▱CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;GMsIasNXkA<3)点D在整个运动过程中,若存在唯一的位置,使得▱CDEF为矩形,请求出所有满足条件的m的值.∴=,即=∴CE=﹣m;∴BC=8﹣m=5,CE=﹣m=3.∴=即=.,,CP=CE=﹣BAO=GCP=<﹣m=﹣m﹣m=m+.∴=﹣mm=∴=,即=解得:m=﹣.OG=OC﹣OG=﹣m﹣<﹣m)﹣m﹣.∴﹣﹣=﹣﹣.综上所述,m的值是或0或﹣或﹣.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是()3.计算62aa 的结果是() A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是() A.2B.0C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.(3,3)C.(1) D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的A.B. C.D.面积之和为32,则k 的值为() A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为. 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,c m 2,则该圆的半径为 cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.11。
浙江省温州市2018年中考数学试题及答案(Word 版)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. 给出四个实数5,2,0,1-,其中负数是( )A.5B.2C. 0D.-12. 移动台阶如图所示,它的主视图是( )A.B. C. D. 3. 计算62a a 的结果是( )A. 3aB. 4aC. 8aD. 12a4. 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9分B. 8分C. 7分D. 6分5. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.12 B. 13 C. 310 D. 156. 若分式25x x -+的值为0,则x 的值是( ) A. 2 B. 0 C. 2- D. 5-7. 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0,3).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.(3,3)C.(1,3)D.(1-,3)8. 学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9. 如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比 例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐 标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C. 994D. 532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点, C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经面积为4932cm 2,则该圆的半径为 过点M ,PB=5cm ,小正六边形的cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)27(21)--+- (2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =. 求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表产品种类每天工人数(人) 每天产量(件) 每件产品可获利润(元) 甲15 乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12SS 的值.。
浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D,2,0,,其中负数是:.1-1-【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】,628a a a = 【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式 【解析】袋子中共有10个小球,其中白球有2个,摸出一个球是白球的概率是, ∴21105=6.【答案】A【解析】解:由题意,得 ,20x -=解得,.2x =经检验,当时,. 2x =205x x -=+故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点与点对应,点,点,A O (1,0)A -(0,0)O 所以图形向右平移1个单位长度,所以点的对应点的坐标为,即,B B '(0+【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车辆,37座客车辆,根据题意可列出方程组. x y 104937466x y x y +=⎧⎨+=⎩【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】点,在反比例函数的图象上,点,的横坐标分别为1,2, A B 1(0)y x x=>A B 点的坐标为,点的坐标为, ∴A (1,1)B 1(2,)2轴,AC BD y ∥∥点,的横坐标分别为1,2,∴C D 点,在反比例函数的图象上, C D (0)k y k x=>点的坐标为,点的坐标为, ∴C (1,)k D (2,)2k ,, 1AC k ∴=-11222k k BD -=-=,, 11(1)122OAC k S k -∴=-⨯=△111(21)224ABD k k S --=⨯-= △与的面积之和为, OAC △ABD △32, ∴113242k k --+=解得:.3k =【考点】反比例函数系数的几何意义,反比例函数图象上点的坐标特征k 10.【答案】B【解析】设小正方形的边长为,x,,3a = 4b =,347AB ∴=+=在中,,Rt ABC △222AC BC AB +=即,222(3)(4)7x x +++=整理得,,27120x x +-=解得或(舍去), x =x =该矩形的面积, ∴4)24==【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】.25(5)a a a a -=-【考点】因式分解——提公因式法12.【答案】6【解析】设半径为,r , 602180r ππ= 解得:,6r =【考点】弧长的计算13.【答案】3 【解析】根据题意知, 13272337x ++++++=解得:,3x =则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】 4x >【解析】解:, 20262x x ->⎧⎨->⎩①②解①得,2x >解②得.4x >故不等式组的解集是.4x >【考点】解一元一次不等式组15.【答案】【解析】延长交于,如图,DE OA F当时,,则, 0x =44y =+=(0,4)B当时,,解得,, 0y =40x +=x =A 0)在中,, Rt AOB △tan OBA ∠=,60OBA ∴∠=︒是的中点,C OB ,2OC CB ∴==四边形是菱形,OEDC ,,2CD BC DE CE ∴====CD OE ∥为等边三角形,BCD ∴△,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒, 112EF OE ∴==的面积. OAE △112=⨯=故答案为.【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为,连接,,过作,, O OP OB O OG PM ⊥OH AB ⊥由题意得:,60MNP NMP MPN ∠=∠=∠=︒, 2,即, ∴PM =, 2MPN S ∴=△,且为正六边形的中心,OG PM ⊥ O,, 12PG PM ∴==72OG PM ==在中,根据勾股定理得:, Rt OPG △7OP cm ==设,OB xcm =,且为正六边形的中心,OH AB ⊥ O,, 12BH x ∴=OH =, 1(5)2PH x cm ∴=-在中,根据勾股定理得:, Rt PHO △2221)(5)492OP x =+-=解得:(负值舍去),8x =则该圆的半径为.8cm 故答案为:8。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是( )B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( )A. 3aB. 4aC. 8aD. 12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A. 12 B. 13 C. 310 D. 156.若分式25x x -+的值为0,则x 的值是( ) A. 2 B. 0 C. 2- D. 5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.C.(1D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A. B. C. D.A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C.994 D. 532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= . 12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 . 15.如图,直线4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm,小正六边形的面积为2cm 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(本题14分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC ⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E. (1)求证:∠BPD=∠BAC.(2)连接EB,ED,,当tan∠MAN=2,AB=时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.52,0,1-,其中负数是( ) A.5 B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( )A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是( ) A.2 B.C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.33C.(13D.(1-38.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D在反比例函数A. B. C. D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a=,4b =,则该矩形的面积为( )A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25aa -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 . 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线34y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 . 16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:20(2)27(21)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018温州市中考数学解析版数学(满分:150分考试时间120分钟)一、选择题(本题有10小题,每个小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分)(2018浙江温州市,1,4分)计算:(-2)×3的结果是()A .-6 B.-1 C.1 D.6【答案】A(2018浙江温州市,2,4分)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图.由图可知,该班同学最喜欢的球类项目是()A .羽毛球B.乒乓球C .排球 D.篮球【答案】D (2018浙江温州市,3,4分)下列个图中,经过折叠能围成一个立方体的是()【答案】A(2018浙江温州市,4,4分)下列各组数可能是一个三角形的边长的是()A .1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【答案】C (2018浙江温州市,5,4分)若分式3+-x 的值为0,则x 的值是()A .x =3B.x =0C.x =-3D.x =-4【答案】A (2018浙江温州市,6,4分)已知点P (1,-3)在反比例函数)0(≠=k k y 的图象上,则k 的值是()A.3B.-3C.31D.31-【答案】B(2018浙江温州市,7,4分)如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是()A.3 B.5 C.15 D.17【答案】B(2018浙江温州市,8,4分)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是()A .43B.34C.53D.54【答案】C(2018浙江温州市,9,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是()A.4.5B.8C.10.5D.14【答案】B (2018浙江温州市,10,4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧 BAC,如图所示,若AB =4,AC =2,12-S 4S π=,则S 3-S 4的值是()A.429πB.423πC.411πD.45π【答案】D。
2018年浙江省温州市中考数学卷(WORD 版含答案)
卷I
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.
2,0,1-,其中负数是( )
A.
B. 2
C. 0
D. 1-
2.移动台阶如图所示,它的主视图是( )
3.计算6
2a a 的结果是( )
A.
3a B.
4a
C.
8a
D.
12a
4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A. 9分
B. 8分
C. 7分
D. 6分
5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.
12
B.
13
C.
310
D.
15
6.若分式2
5
x x -+的值为0,则x 的值是( ) A.
2 B.
C.
2-
D.
5-
(1-,0),7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(0
.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应
点B ’的坐标是
( ) A.(1,0)
B.
C.(1
D.(1-
8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车
y 辆,根据题意可列出方程组( )
A.10
4937466x y x y +=⎧⎨
+=⎩
B.10
3749466
x y x y +=⎧⎨
+=⎩
C.466
493710
x y x y +=⎧⎨
+=⎩
D.466
374910
x y x y +=⎧⎨
+=⎩
9.如图,点A ,B 在反比例函数
1
(0)y x x
=
>的图象上,点C ,D 在反比例函数
(0)k
y k x
=
>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面
A. B. C.
D.
积之和为32
,则k 的值为( )
A. 4
B. 3
C. 2
D.
32
10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两
个这样的图形拼成,若3a
=,4b =,则该矩形的面积为( )
A. 20
B. 24
C.
994
D.
532
卷II
二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:2
5a
a -= .
12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 . 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .
14.不等式组20
262
x x ->⎧⎨
->⎩的解是 .
15.如图,直线
4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上
一点,四边形OEDC 是菱形,则△OAE 的面积为 . 16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.
图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正
六边形,若PQ
所在的直线经过点M ,PB=5cm ,小正六边形的面积为
2
cm 2
,则该圆的半径为
cm.
三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(本题10分)(1)计算:2
0(2)1)-
(2)化简:2
(2)4(2)m m ++-。