2018年浙江省温州市中考数学试卷
- 格式:docx
- 大小:400.51 KB
- 文档页数:31
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是()A.3aB.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.C.(1) D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组() A. B. C.D.A. B. C. D.104937466x y x y +=⎧⎨+=⎩ 103749466x y x y +=⎧⎨+=⎩ 466493710x y x y +=⎧⎨+=⎩ 466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S Km =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.(4分)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣12.(4分)移动台阶如图所示,它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分 B.8分 C.7分 D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.6.(4分)若分式的值为0,则x的值是()A.2 B.0 C.﹣2 D.﹣57.(4分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0) B.(,)C.(1,)D.(﹣1,)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.9.(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k >0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.(5分)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.16.(5分)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(10分)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.22.(10分)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在BD上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP的面积为S1,△CFE的面积为S2,请写出的值.2018年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.【点评】此题主要考查了实数,正确把握负数的定义是解题关键.2.(4分)移动台阶如图所示,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是三个台阶,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a12【分析】根据同底数幂相乘,底数不变,指数相加进行计算.【解答】解:a6•a2=a8,故选:C.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法的计算法则.4.(4分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分 B.8分 C.7分 D.6分【分析】将数据重新排列后,根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4分)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(4分)若分式的值为0,则x的值是()A.2 B.0 C.﹣2 D.﹣5【分析】分式的值等于零时,分子等于零.【解答】解:由题意,得x+5=0,解得,x=﹣5.经检验,当x=﹣5时,=0.故选:A.【点评】本题考查了分式的值为零的条件.注意,分式方程需要验根.7.(4分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0) B.(,)C.(1,)D.(﹣1,)【分析】根据平移的性质得出平移后坐标的特点,进而解答即可.【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以点B的对应点B'的坐标为(0+1,),即(1,),故选:C.【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10,两种客车载客量之和=466.【解答】解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k >0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∴S△OAC∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是求出AC,BD的长.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.D.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积.【解答】解:设小正方形的边长为x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,解得x=或x=(舍去),∴该矩形的面积=(+3)(+4)=24,故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:a2﹣5a=a(a﹣5).【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12.(5分)已知扇形的弧长为2π,圆心角为60°,则它的半径为6.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r,2,解得:r=6,故答案为:6【点评】此题考查弧长公式,关键是根据弧长公式解答.13.(5分)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为3.【分析】根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3,解得:x=3,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.(5分)不等式组的解是x>4.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,解①得x>2,解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(5分)如图,直线y=﹣x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为2.【分析】延长DE交OA于F,如图,先利用一次函数解析式确定B(0,4),A(4,0),利用三角函数得到∠OBA=60°,接着根据菱形的性质判定△BCD为等边三角形,则∠BCD=∠COE=60°,所以∠EOF=30°,则EF=OE=1,然后根据三角形面积公式计算.【解答】解:延长DE交OA于F,如图,当x=0时,y=﹣x+4=4,则B(0,4),当y=0时,﹣x+4=0,解得x=4,则A(4,0),在Rt△AOB中,tan∠OBA==,∴∠OBA=60°,∵C是OB的中点,∴OC=CB=2,∵四边形OEDC是菱形,∴CD=BC=DE=CE=2,CD∥OE,∴△BCD为等边三角形,∴∠BCD=60°,∴∠COE=60°,∴∠EOF=30°,∴EF=OE=1,△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.(5分)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为8cm.【分析】设两个正六边形的中心为O,连接OP,OB,过O作OG⊥PM,OH⊥AB,由正六边形的性质及邻补角性质得到三角形三角形PMN为等边三角形,由小正六边形的面积求出边长,确定出PM的长,进而求出三角形PMN的面积,利用垂径定理求出PG的长,在直角三角形OPG中,利用勾股定理求出OP的长,设OB=xcm,根据勾股定理列出关于x的方程,求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O,连接OP,OB,过O作OG⊥PM,OH⊥AB,由题意得:∠MNP=∠NMP=∠MPN=60°,∵小正六边形的面积为cm2,∴小正六边形的边长为7cm,即PM=7cm,=cm2,∴S△MPN∵OG⊥PM,且O为正六边形的中心,∴PG=PM=cm,在Rt△OPG中,根据勾股定理得:OP==7cm,设OB=xcm,∵OH⊥AB,且O为正六边形的中心,∴BH=x,OH=x,∴PH=(5﹣x)cm,在Rt△PHO中,根据勾股定理得:OP2=(x)2+(5﹣x)2=49,解得:x=8(负值舍去),则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算,再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.(8分)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形,推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC,∴∠A=∠BEC,∵E是AB中点,∴AE=EB,∵∠AED=∠B,∴△AED≌△EBC.(2)解:∵△AED≌△EBC,∴AD=EC,∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,∵AB=6,∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量,再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店,根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.20.(8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(10分)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.【分析】(1)根据直线y=2x求得点M(2,4),由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组,解之可得;(2)作PH⊥x轴,根据三角形的面积公式求得S=﹣m2+4m,根据公式可得K的解析式,再结合点P的位置得出m的范围,利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:,∴;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m,∴K==﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.【点评】本题主要考查抛物线与x轴的交点,解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.(10分)如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在BD上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC,结合∠ABD=∠AED知∠ABD=∠ACD,从而得出AB=AC,据此得证;(2)作AH⊥BE,由AB=AE且BE=2知BH=EH=1,根据∠ABE=∠AEB=∠ADB知cos∠ABE=cos ∠ADB==,据此得AC=AB=3,利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知,△ADE≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB;(2)如图,过A作AH⊥BE于点H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ABE=∠AEB=∠ADB,cos∠ADB=,∴cos∠ABE=cos∠ADB=,∴=.∴AC=AB=3,∵∠BAC=90°,AC=AB,∴BC=3.【点评】本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.(12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为(130﹣2x)元.故答案为:65﹣x;2(65﹣x);130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26=3198即当x=26时,W最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.24.(14分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED为等腰三角形,求所有满足条件的BD的长.(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC∥BE时,记△OFP的面积为S1,△CFE的面积为S2,请写出的值.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°,据此得∠BAC+∠BPC=180°,根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2,根据tan∠BAC=tan∠BPD==2知BP=PD,据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC,由tan∠BPD=tan∠MAN=1知BD=PD,据此设BD=PD=2a、PC=2b,从而得出OH=a、CH=a+2b、AC=4a+2b,证△ACP∽△CHO得=,据此得出a=b及CP=2a、CH=3a、OC=a,再证△CPF∽△COH,得=,据此求得CF=a、OF=a,证OF为△PBE的中位线知EF=PF,从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN,∴∠ABP=∠ACP=90°,∴∠BAC+∠BPC=180°,又∠BPD+∠BPC=180°,∴∠BPD=∠BAC;(2)①如图1,∵∠APB=∠BDE=45°,∠ABP=90°,∴BP=AB=2,∵∠BPD=∠BAC,∴tan∠BPD=tan∠BAC,∴=2,∴BP=PD,∴PD=2;②当BD=BE时,∠BED=∠BDE,∴∠BPD=∠BPE=∠BAC,∴tan∠BPE=2,∵AB=2,∴BP=,∴BD=2;当BE=DE时,∠EBD=∠EDB,∵∠APB=∠BDE、∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=2,过点B作BG⊥AC于点G,得四边形BGCD是矩形,∵AB=2、tan∠BAC=2,∴AG=2,∴BD=CG=2﹣2;当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴=2,∴,∴x=,∴BD=2x=3,综上所述,当BD=2、3或2﹣2时,△BDE为等腰三角形;(3)如图3,过点O作OH⊥DC于点H,∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a、PC=2b,则OH=a、CH=a+2b、AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠PAC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠PAC,∴△ACP∽△CHO,∴=,即OH•AC=CH•PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a、CH=3a,则OC=a,∵△CPF∽△COH,∴=,即=,则CF=a,OF=OC﹣CF=a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴==.【点评】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。
浙江省温州市2018年中考数学试卷(WORD含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的)1.给出四个实数5,2,0,1-,其中负数是()A.5B.2C.0D.1-2.移动台阶如图所示,它的主视图是()3.计算62a a g的结果是()A. 3aB. 4aC. 8aD. 12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. 12B.13C.310D.156.若分式25xx-+的值为0,则x的值是()A. 2B. 0C. 2-D. 5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(1-,0),(0,3).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()A.(1,0)B.(3,3)C.(1,3)D.(1-,3)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.104937466x yx y+=⎧⎨+=⎩B.103749466x yx y+=⎧⎨+=⎩C.466493710x yx y+=⎧⎨+=⎩D.466374910x yx y+=⎧⎨+=⎩A. B. C. D.9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 32 10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C. 994D. 532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 . 15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932c m 2,则该圆的半径为 cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)27(21)--+-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨ PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表 产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元) 甲15 乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()A.B. 2C. 0D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是() A.3a B.4a C.8a D.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B的对应点B ’的坐标是()A.(1,0)B.) C.(1D.(1-)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组() A.104937466x y x y +=⎧⎨+=⎩ B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩A. B. C. D.9.如图,点A ,B 在反比例函数1(0)y xx =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994 D.532卷II 二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线43y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正cm 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S Km =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学真题一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-12. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.3. ( 2分) 计算的结果是()A. B. C. D.4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.6. ( 2分) 若分式的值为0,则的值是()A. 2B. 0C. -2D. -57. ( 2分) 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()A. (1,0)B. (,)C. (1,)D. (-1,)8. ( 2分) 学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车辆,37座客车辆,根据题意可列出方程组()A. B.C. D.9. ( 2分) 如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD// 轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则的值为()A. 4B. 3C. 2D.10. ( 2分) 我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若,,则该矩形的面积为()A. 20B. 24C.D.二、填空题11. ( 1分) 分解因式:________.12. ( 1分) 已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.13. ( 1分) 一组数据1,3,2,7,,2,3的平均数是3,则该组数据的众数为________.14. ( 1分) 不等式组的解是________.15. ( 1分) 如图,直线与轴、轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.16. ( 1分) 小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.三、解答题17. ( 10分)(1)计算:(2)化简:18. ( 10分) 如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19. ( 10分) 现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20. ( 10分) 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21. ( 10分) 如图,抛物线交轴正半轴于点A,直线经过抛物线的顶点M.已知该抛物线的对称轴为直线,交轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为,△OBP的面积为S,记.求K关于的函数表达式及K的范围.22. ( 10分) 如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C 的对应点E落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB= ,BE=2,求BC的长.23. ( 15分 ) 温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排人生产乙产品. (1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润. (3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的值.24. ( 15分 ) 如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E .(1)求证:∠BPD =∠BAC .(2)连接EB ,ED ,当tan ∠MAN =2,AB =2时,在点P 的整个运动过程中.①若∠BDE =45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN =1,OC //BE 时,记△OFP 的面积为S 1 , △CFE 的面积为S 2 , 请写出的值.【参考答案】一、选择题1. 【答案】D【解析】根据题意:负数是-1,故答案为:D.2. 【答案】B【解析】A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意.故答案为:B.3. 【答案】C【解析】a6 ·a2=a8故答案为:C.4. 【答案】C【解析】将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.5.【答案】D【解析】根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D.6.【答案】A【解析】根据题意得:x-2=0,且x+5≠0,解得x=2.故答案为:A.7.【答案】C【解析】∵A(-1,0),∴OA=1, ∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O 重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,).故答案为:C.8. 【答案】A【解析】设49座客车x辆,37座客车y辆,根据题意得:故答案为:A.9.【答案】B 【解析】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.10. 【答案】B【解析】;设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得:2(ax+x2+bx)=(a+x)(b+x),化简得:ax+x2+bx-ab=0,又∵a = 3 ,b = 4 ,∴x2+7x=12;∴该矩形的面积为=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案为:B.二、填空题11.【答案】a(a-5)【解析】原式=a(a-5)故答案为:a(a-5).12.【答案】6【解析】设扇形的半径为r,根据题意得:,解得:r=6故答案为:6.13.【答案】3【解析】1+3+2+7+x+2+3=3×7解得:x=3,这组数据中出现次数最多的是3,故该组数据的众数为3.故答案为:3.14.【答案】x>4【解析】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为:x>4.15. 【答案】【解析】把x=0代入y = −x + 4 得出y=4,∴B(0,4);∴OB=4; ∵C是OB的中点,∴OC=2,∵四边形OEDC 是菱形,∴DE=OC=2;DE∥OC,把y=0代入y = −x + 4 得出x=,∴A(,0);∴OA=,设D(x, ) ,∴E(x,-x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;∴EF=1,∴S△AOE=·OA·EF=2.故答案为:2.16. 【答案】8【解析】设两个正六边形的中心为O,连接OP,OB,过点O作OG⊥PM于点G,OH⊥AB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2,∵OG⊥PM,且O是正六边形的中心,∴PG=PM=∴OG=,在Rt△OPG 中,根据勾股定理得:OP2=OG2+PG2,即=OP2,∴OP=7cm,设OB为x,∵OH⊥AB,且O是正六边形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根据勾股定理得OP2=PH2+OH2,即;解得:x1=8,x2=-3(舍)故该圆的半径为8cm.故答案为:8.三、解答题17.解:(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+1218. (1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= AB=319. 解:(1)150×=600(家)600×=100(家)答:甲蛋糕店数量为100家,该市蛋糕店总数为600家.(2)设甲公司增设x家蛋糕店,由题意得20%(600+x)=100+x 解得x=25(家)答:甲公司需要增设25家蛋糕店.20. 解:(1)(2)21. 解:(1)将x=2代入y=2x得y=4∴M(2,4)由题意得,∴(2)解:如图,过点P作PH⊥x轴于点H∵点P的横坐标为m,抛物线的函数表达式为y=-x2+4x ∴PH=-m2+4m∵B(2,0),∴OB=2∴S= OB·PH= ×2×(-m2+4m)=-m2+4m∴K= =-m+4由题意得A(4,0)∵M(2,4)∴2<m<4∵K随着m的增大而减小,∴0<K<222. (1)证明:由题意得△ADE≌△ADC,∴∠AED=∠ACD,AE=AC∵∠ABD=∠AED,∴∠ABD=∠ACD∴AB=AC∴AE=AB(2)解:如图,过点A作AH⊥BE于点H∵AB=AE,BE=2∴BH=EH=1∵∠ABE=∠AEB=ADB,cos∠ADB=∴cos∠ABE=cos∠ADB=∴=∴A C=AB=3∵∠BAC=90°,AC=AB∴BC=23. 解:(1)130-2(2)由题意得15×2(65-x )=x (130-2x )+550 ∴x 2-80x +700=0解得x 1=10,x 2=70(不合题意,舍去) ∴130-2x =110(元)答:每件乙产品可获得的利润是110元. (3)设生产甲产品m 人W =x (130-2x )+15×2m +30(65-x -m )=-2x 2+100x +1950=-2(x -25)2+3200 ∵2m =65-x -m∴m =∵x ,m 都是非负整数∴取x =26时,此时m =13,65-x -m =26, 即当x =26时,W 最大值=3198(元)答:安排26人生产乙产品时,可获得的最大总利润为3198元. 24. (1)证明 :∵PB ⊥AM ,PC ⊥AN ∴∠ABP =∠ACP =90°, ∴∠BAC +∠BPC =180° ∵∠BPD +∠BPC =180°∴∠BPD =∠BAC(2)解:①如图1,∵∠APB =∠BDE =45°,∠ABP =90°, ∴BP =AB =∵∠BPD =∠BAC∴tan ∠BPD =tan ∠BAC∴=2∴BP = PD ∴PD =2∴∠BPD =∠BPE =∠BAC ∴tan ∠BPE =2 ∵AB = ∴BP =∴BD =2②如图2,当BE =DE 时,∠EBD =∠EDB∵∠APB =∠BDE ,∠DBE =∠APC ∴∠APB =∠APC∴AC=AB=过点B作BG⊥AC于点G,得四边形BGCD是矩形∵AB= ,tan∠BAC=2∴AG=2∴BD=CG=③如图4,当BD=DE时,∠DEB=∠DBE=∠APC∵∠DEB=∠DPB=∠BAC∴∠APC=∠BAC设PD=x,则BD=2x∴=2∴=2∴x=∴BD=2x=3综上所述,当BD为2,3或时,△BDE为等腰三角形(3)=如图5,过点O作OH⊥DC于点H∵tan∠BPD=tan∠MAN=1∴BD=DP令BD=DP=2a,PC=2b得OH=a,CH=a+2b,AC=4a+2b由OC∥BE得∠OCH=∠PAC∴=∴OH·AC=CH·PC∴a(4a+2b)=2b(a+2b)∴a=b∴CF= ,OF=∴=。
浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D2,0,1-,其中负数是:1-.【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】628a a a =g ,【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式【解析】Q 袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是21105=, 6.【答案】A【解析】解:由题意,得20x -=,解得,2x =.经检验,当2x =时,205x x -=+.故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点A 与点O 对应,点(1,0)A -,点(0,0)O ,所以图形向右平移1个单位长度,所以点B 的对应点B '的坐标为(0+,即,【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车x 辆,37座客车y 辆,根据题意可列出方程组104937466x y x y +=⎧⎨+=⎩. 【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】Q 点A ,B 在反比例函数1(0)y x x=>的图象上,点A ,B 的横坐标分别为1,2, ∴点A 的坐标为(1,1),点B 的坐标为1(2,)2, AC BD y Q ∥∥轴,∴点C ,D 的横坐标分别为1,2,Q 点C ,D 在反比例函数(0)k y k x=>的图象上, ∴点C 的坐标为(1,)k ,点D 的坐标为(2,)2k , 1AC k ∴=-,11222k k BD -=-=, 11(1)122OAC k S k -∴=-⨯=△,111(21)224ABD k k S --=⨯-=g △, OAC Q △与ABD △的面积之和为32, ∴113242k k --+=, 解得:3k =.【考点】反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征10.【答案】B【解析】设小正方形的边长为x ,3a =Q ,4b =,347AB ∴=+=,在Rt ABC △中,222AC BC AB +=,即222(3)(4)7x x +++=,整理得,27120x x +-=,解得x =或x =(舍去),∴该矩形的面积77(3)(4)2422--=++=, 【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】25(5)a a a a -=-.【考点】因式分解——提公因式法12.【答案】6【解析】设半径为r ,602180r ππ=g , 解得:6r =,【考点】弧长的计算13.【答案】3 【解析】根据题意知13272337x ++++++=, 解得:3x =,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】4x > 【解析】解:20262x x ->⎧⎨->⎩①②,解①得2x >,解②得4x >.故不等式组的解集是4x >.【考点】解一元一次不等式组15.【答案】【解析】延长DE 交OA 于F ,如图,当0x =时,44y x =+=,则(0,4)B ,当0y =时,40x +=,解得x =A ,0),在Rt AOB △中,tan 4OBA ∠=, 60OBA ∴∠=︒,C Q 是OB 的中点,2OC CB ∴==,Q 四边形OEDC 是菱形,2CD BC DE CE ∴====,CD OE ∥,BCD ∴△为等边三角形,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒,112EF OE ∴==,OAE △的面积112=⨯=故答案为【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG PM ⊥,OH AB ⊥, 由题意得:60MNP NMP MPN ∠=∠=∠=︒,Q 2,∴,即PM =,24MPN S ∴=△, OG PM ⊥Q ,且O 为正六边形的中心,12PG PM ∴==,72OG =,在Rt OPG △中,根据勾股定理得:7OP cm ==, 设OB xcm =,OH AB ⊥Q ,且O 为正六边形的中心,12BH x ∴=,2OH x =, 1(5)2PH x cm ∴=-,在Rt PHO △中,根据勾股定理得:2221)(5)492OP x =+-=, 解得:8x =(负值舍去),则该圆的半径为8cm .故答案为:8【考点】正多边形和圆三、解答题17.【答案】(1)5-(2)212m +【解析】(1)20(2)1)-41=-5=-(2)2(2)4(2)m m ++-24484m m m =+++-212m =+.【考点】实数的运算,去括号与添括号,完全平方公式,零指数幂18.【答案】(1)证明:AD EC Q ∥,A BEC ∴∠=∠,E Q 是AB 中点,AE EB ∴=,AED B ∠=∠Q ,AED EBC ∴△≌△.(2)解:AED EBC Q △≌△,AD EC ∴=,AD EC Q ∥,∴四边形AECD 是平行四边形,CD AE ∴=,6AB =Q ,132CD AB ∴==. 【考点】全等三角形的判定与性质19.【答案】(1)100(2)25【解析】解:(1)该市蛋糕店的总数为90150600360÷=家, 甲公司经营的蛋糕店数量为60600100360⨯=家; (2)设甲公司增设x 家蛋糕店,由题意得:20%(600)100x x ⨯+=+,解得:25x =,答:甲公司需要增设25家蛋糕店.【考点】扇形统计图20.【答案】(1)(2)【解析】解:(1)如图①所示:(2)如图②所示:【考点】作图——轴对称变换,作图——旋转变换21.【答案】(1)14a b =-⎧⎨=⎩(2)02K <<【解析】解:(1)将2x =代入2y x =,得:4y =,∴点(2,4)M , 由题意,得:22424b a a b ⎧-=⎪⎨⎪+=⎩,∴14a b =-⎧⎨=⎩;(2)如图,过点P 作PH x ⊥轴于点H ,Q 点P 的横坐标为m ,抛物线的解析式为24y x x =-+,24PH m m ∴=-+,(2,0)B Q ,2OB ∴=,12S OB PH ∴=g 212(4)2m m =⨯⨯-+ 24m m =-+,4S K m m∴==-+, 由题意得(4,0)A ,(2,4)M Q ,24m ∴<<,K Q 随着m 的增大而减小,02K ∴<<.【考点】一次函数图象上点的坐标特征,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,抛物线与x 轴的交点22.【答案】(1)由折叠的性质可知,ADE ADC △≌△,AED ACD ∴∠=∠,AE AC =,ABD AED ∠=∠Q ,ABD ACD ∴∠=∠,AB AC ∴=,AE AB ∴=;(2)如图,过A 作AH BE ⊥于点H ,AB AE =Q ,2BE =,1BH EH ∴==,ABE AEB ADB ∠=∠=∠Q ,1cos 3ADB ∠=, 1cos cos 3ABE ADB ∴∠=∠=, ∴13BH AB =. 3AC AB ∴==,90BAC ∠=︒Q ,AC AB =,BC ∴=【考点】三角形的外接圆与外心,翻折变换(折叠问题),解直角三角形23.【答案】(1)65x -1302x -1302x -(2)110元(3)安排26人生产乙产品时,可获得的最大利润为3198元【解析】(1)由已知,每天安排x 人生产乙产品时,生产甲产品的有(65)x -人,共生产甲产品2(65)1302x x --件.在乙每件120元获利的基础上,增加x 人,利润减少2x 元每件,则乙产品的每件利润为1202(5)1302x x --=-.故答案为:65x -;1302x -;1302x -;(2)由题意152(65)(1302)550x x x ⨯-=-+2807000x x ∴-+=解得110x =,270x =(不合题意,舍去)1302110x ∴-=(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m 人(1302)15230(65)W x x m x m =-+⨯+--22(25)3200x =--+265m x m =--Q653x m -∴= x Q 、m 都是非负整数∴取26x =时,13m =,6526x m --=即当26x =时,3198W =最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.【考点】一元二次方程的应用,二次函数的应用24.【答案】(1)PB AM ⊥Q 、PC AN ⊥,90ABP ACP ∴∠=∠=︒,180BAC BPC ∴∠+∠=︒,又180BPD BPC ∠+∠=︒,BPD BAC ∴∠=∠;(2)①如图1,45APB BDE ∠=∠=︒Q ,90ABP ∠=︒,BP AB ∴==BPD BAC ∠=∠Q ,tan tan BPD BAC ∴∠=∠,DPBP ∴=,2PD ∴=;②当BD BE =时,BED BDE ∠=∠,BPD BPE BAC ∴∠=∠=∠,tan 2BPE ∴∠=,AB =Q ,BP ∴=2BD ∴=;当BE DE =时,EBD EDB ∠=∠,APB BDE ∠=∠Q 、DBE APC ∠=∠,APB APC ∴∠=∠,AC AB ∴==过点B 作BG AC ⊥于点G ,得四边形BGCD 是矩形,AB =Q 、tan 2BAC ∠=,2AG ∴=,2BD CG ∴==;当BD DE =时,DEB DBE APC ∠=∠=∠,DEB DPB BAC ∠=∠=∠Q ,APC BAC ∴∠=∠,设PD x =,则2BD x =,PC∴2224x x+=-, 32x ∴=, 23BD x ∴==,综上所述,当2BD =、3或2时,BDE △为等腰三角形;(3)如图3,过点O 作OH DC ⊥于点H ,tan tan 1BPD MAN ∠=∠=Q ,BD PD ∴=,设2BD PD a ==、2PC b =,则OH a =、2CH a b =+、42AC a b =+,OC BE Q ∥且90BEP ∠=︒,90PFC ∴∠=︒,90PAC APC OCH APC ∴∠+∠=∠+∠=︒,OCH PAC ∴∠=∠,ACP CHO ∴△∽△, ∴OH PC CH AC=,即OH AC CH PC =g g , (42)2(2)a a b b a b ∴+=+,a b ∴=,即2CP a =、3CH a =,则OC =,CPF COH Q △∽△,∴CF CPCH OC=,即3CFa=则CF=,OF OC CF=-=,BE OCQ∥且BO PO=,OF∴为PBE△的中位线,EF PF∴=,∴122 3S OFS CF==.【考点】圆的综合题。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1- 2.移动台阶如图所示,它的主视图是()3.计算62a a 的结果是()A.3aB.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12 B.13 C.310 D.156.若分式25x x -+的值为0,则x 的值是() A.2 B.0 C.2- D.5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B的对应点B ’的坐标是()A.(1,0)B.(3,3) C.(1D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组() A. B. C. D.A. B. C. D.104937466x y x y +=⎧⎨+=⎩ 103749466x y x y +=⎧⎨+=⎩466493710x y x y +=⎧⎨+=⎩ 466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为() A. 4 B. 3 C. 2 D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932c m 2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x=,交x 轴于点B.(1)求a ,b 的值. (2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记S K m =.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E.(1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是()B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是()3.计算62aa 的结果是() A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是() A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为() A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是() A.2B.0C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,).现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是()A.(1,0)B.(3,3)C.(1) D.(1-8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组()A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的A.B. C.D.面积之和为32,则k 的值为() A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为()A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.)11.分解因式:25a a -=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为. 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为.14.不等式组20262x x ->⎧⎨->⎩的解是.15.如图,直线343y x =-+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为.16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,c m 2,则该圆的半径为 cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.11。
浙江省温州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】D,2,0,,其中负数是:.1-1-【考点】实数2.【答案】B【解析】从正面看是三个台阶,【考点】简单组合体的三视图3.【答案】C【解析】,628a a a = 【考点】同底数幂的乘法4.【答案】C【解析】将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C .【考点】中位数5.【答案】D【考点】概率公式 【解析】袋子中共有10个小球,其中白球有2个,摸出一个球是白球的概率是, ∴21105=6.【答案】A【解析】解:由题意,得 ,20x -=解得,.2x =经检验,当时,. 2x =205x x -=+故选:A .【考点】分式的值为零的条件7.【答案】C【解析】因为点与点对应,点,点,A O (1,0)A -(0,0)O 所以图形向右平移1个单位长度,所以点的对应点的坐标为,即,B B '(0+【考点】坐标与图形变化——平移8.【答案】A【解析】解:设49座客车辆,37座客车辆,根据题意可列出方程组. x y 104937466x y x y +=⎧⎨+=⎩【考点】由实际问题抽象出二元一次方程组9.【答案】B【解析】点,在反比例函数的图象上,点,的横坐标分别为1,2, A B 1(0)y x x=>A B 点的坐标为,点的坐标为, ∴A (1,1)B 1(2,)2轴,AC BD y ∥∥点,的横坐标分别为1,2,∴C D 点,在反比例函数的图象上, C D (0)k y k x=>点的坐标为,点的坐标为, ∴C (1,)k D (2,)2k ,, 1AC k ∴=-11222k k BD -=-=,, 11(1)122OAC k S k -∴=-⨯=△111(21)224ABD k k S --=⨯-= △与的面积之和为, OAC △ABD △32, ∴113242k k --+=解得:.3k =【考点】反比例函数系数的几何意义,反比例函数图象上点的坐标特征k 10.【答案】B【解析】设小正方形的边长为,x,,3a = 4b =,347AB ∴=+=在中,,Rt ABC △222AC BC AB +=即,222(3)(4)7x x +++=整理得,,27120x x +-=解得或(舍去), x =x =该矩形的面积, ∴4)24==【考点】数学常识,勾股定理的证明第Ⅱ卷二、填空题11.【答案】(5)a a -【解析】.25(5)a a a a -=-【考点】因式分解——提公因式法12.【答案】6【解析】设半径为,r , 602180r ππ= 解得:,6r =【考点】弧长的计算13.【答案】3 【解析】根据题意知, 13272337x ++++++=解得:,3x =则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.【考点】算术平均数,众数14.【答案】 4x >【解析】解:, 20262x x ->⎧⎨->⎩①②解①得,2x >解②得.4x >故不等式组的解集是.4x >【考点】解一元一次不等式组15.【答案】【解析】延长交于,如图,DE OA F当时,,则, 0x =44y =+=(0,4)B当时,,解得,, 0y =40x +=x =A 0)在中,, Rt AOB △tan OBA ∠=,60OBA ∴∠=︒是的中点,C OB ,2OC CB ∴==四边形是菱形,OEDC ,,2CD BC DE CE ∴====CD OE ∥为等边三角形,BCD ∴△,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒, 112EF OE ∴==的面积. OAE △112=⨯=故答案为.【考点】一次函数图象上点的坐标特征,菱形的性质16.【答案】8【解析】设两个正六边形的中心为,连接,,过作,, O OP OB O OG PM ⊥OH AB ⊥由题意得:,60MNP NMP MPN ∠=∠=∠=︒, 2,即, ∴PM =, 2MPN S ∴=△,且为正六边形的中心,OG PM ⊥ O,, 12PG PM ∴==72OG PM ==在中,根据勾股定理得:, Rt OPG △7OP cm ==设,OB xcm =,且为正六边形的中心,OH AB ⊥ O,, 12BH x ∴=OH =, 1(5)2PH x cm ∴=-在中,根据勾股定理得:, Rt PHO △2221)(5)492OP x =+-=解得:(负值舍去),8x =则该圆的半径为.8cm 故答案为:8。
浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
浙江省温州市2018年中考数学试卷一、选择题1. 给出四个实数,2,0,-1,其中负数是()A. B. 2 C. 0 D. -12. 移动台阶如图所示,它的主视图是()A. B. C. D.3. 计算的结果是()A. B. C. D.4. 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分5. 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.6. 若分式的值为0,则x的值是()A. 2B. 0C. -2D. -57. 如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是()学+科+网...学+科+网...A. (1,0)B. (,)C. (1,)D. (-1,)8. 学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.9. 如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A. 4B. 3C. 2D.10. 我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A. 20B. 24C.D.二、填空题11. 分解因式:a2-5a =________.12. 已知扇形的弧长为2,圆心角为60°,则它的半径为________.13. 一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为________.14. 不等式组的解是________.15. 如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.16. 小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为________cm.三、解答题17. (1)计算:;(2)化简:(m+2)2 +4(2-m)18. 如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.19. 现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20. 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的¨PAQB;(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21. 如图,抛物线y=ax2+bx(a≠0) 交x轴正半轴于点A,直线y=2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值;(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m ,△OBP的面积为S,.求K关于m 的函数表达式及K的范围.22. 如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在上.(1)求证:AE=AB;(2)若∠CAB=90°,cos∠ADB=,BE=2,求BC的长.23. 温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24. 如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,当tan∠MAN=2,AB=2时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长;②若△BED为等腰三角形,求所有满足条件的BD的长;(3)连接OC,EC,OC交AP于点F,当tan∠MAN=1,OC//BE时,记△OFP的面积为S1,△CFE 的面积为S2,请写出的值.。
2018年浙江省温州市中考数学卷(WORD 版含答案)卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.52,0,1-,其中负数是( ) A.5 B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( )A.3a B.4aC.8aD.12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是( ) A.2 B.C.2-D.5-0),(0,7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( )A.(1,0)B.33C.(13D.(1-38.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A.104937466x y x y +=⎧⎨+=⎩B.103749466x y x y +=⎧⎨+=⎩C.466493710x y x y +=⎧⎨+=⎩D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D在反比例函数A. B. C. D.(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( ) A. 4B. 3C. 2D.3210.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a=,4b =,则该矩形的面积为( )A. 20B. 24C.994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25aa -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 . 13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线34y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 . 16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M ,PB=5cm ,小正六边形的面积为4932cm 2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:20(2)27(21)-(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC沿直线AD 折叠,点C 的对应点E 落在上. (1)求证:AE=AB.(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x 人生产乙产品. (1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24. (本题14分)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E. (1)求证:∠BPD=∠BAC.(2)连接EB ,ED ,,当tan ∠MAN=2,AB=时,在点P 的整个运动过程中.①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4.00分)(2018•温州)给出四个实数 5,2,0,﹣1,其中负数是( ) A . 5 B .2C .0D .﹣12.(4.00分)(2018•温州)移动台阶如图所示,它的主视图是( )A .B .C .D .3.(4.00分)(2018•温州)计算a 6•a 2的结果是( ) A .a 3 B .a 4 C .a 8 D .a 124.(4.00分)(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A .9分 B .8分 C .7分 D .6分5.(4.00分)(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A .12B .13C .310D .156.(4.00分)(2018•温州)若分式x−2x +5的值为0,则x 的值是( )A .2B .0C .﹣2D .﹣57.(4.00分)(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(﹣1,0),(0, 3).现将该三角板向右平移使点A 与点O 重合,得到△OCB ′,则点B 的对应点B ′的坐标是( )A .(1,0)B .( 3, 3)C .(1, 3)D .(﹣1, 3)8.(4.00分)(2018•温州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .x +y =1049x +37y =466 B . x +y =1037x +49y =466C .x +y =46649x +37y =10 D . x +y =46637x +49y =10 9.(4.00分)(2018•温州)如图,点A ,B 在反比例函数y=1x (x >0)的图象上,点C ,D 在反比例函数y=kx (k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .3210.(4.00分)(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A.20 B.24 C.994D.532二、填空题(本题有6小题,每小题5分,共30分)11.(5.00分)(2018•温州)分解因式:a2﹣5a=.12.(5.00分)(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.(5.00分)(2018•温州)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.14.(5.00分)(2018•温州)不等式组x−2>02x−6>2的解是.15.(5.00分)(2018•温州)如图,直线y=﹣33x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为.16.(5.00分)(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为4932cm2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10.00分)(2018•温州)(1)计算:(﹣2)2﹣27+(2﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8.00分)(2018•温州)如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC.(2)当AB=6时,求CD的长.19.(8.00分)(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(8.00分)(2018•温州)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(10.00分)(2018•温州)如图,抛物线y=ax 2+bx (a ≠0)交x 轴正半轴于点A ,直线y=2x 经过抛物线的顶点M .已知该抛物线的对称轴为直线x=2,交x 轴于点B .(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP .设点P 的横坐标为m ,△OBP 的面积为S ,记K=S m.求K 关于m 的函数表达式及K的范围.22.(10.00分)(2018•温州)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在BD 上. (1)求证:AE=AB .(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.23.(12.00分)(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24.(14.00分)(2018•温州)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E . (1)求证:∠BPD=∠BAC .(2)连接EB ,ED ,当tan ∠MAN=2,AB=2 5时,在点P 的整个运动过程中. ①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC ∥BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出S 1S 2的值.2018年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4.00分)(2018•温州)给出四个实数5,2,0,﹣1,其中负数是()A.5B.2 C.0 D.﹣1【考点】27:实数.【专题】1 :常规题型.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数5,2,0,﹣1,其中负数是:﹣1.故选:D.【点评】此题主要考查了实数,正确把握负数的定义是解题关键.2.(4.00分)(2018•温州)移动台阶如图所示,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是三个台阶,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(4.00分)(2018•温州)计算a6•a2的结果是()A .a 3B .a 4C .a 8D .a 12 【考点】46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加进行计算. 【解答】解:a 6•a 2=a 8, 故选:C .【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法的计算法则.4.(4.00分)(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A .9分 B .8分 C .7分 D .6分 【考点】W4:中位数.【专题】1 :常规题型;542:统计的应用.【分析】将数据重新排列后,根据中位数的定义求解可得. 【解答】解:将数据重新排列为6、7、7、7、8、9、9, 所以各代表队得分的中位数是7分, 故选:C .【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4.00分)(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A .12B .13C .310D .15【考点】X4:概率公式.【专题】1 :常规题型;543:概率及其应用.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是210=1 5,故选:D.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.(4.00分)(2018•温州)若分式x−2x+5的值为0,则x的值是()A.2 B.0 C.﹣2 D.﹣5【考点】63:分式的值为零的条件.【专题】513:分式.【分析】分式的值等于零时,分子等于零.【解答】解:由题意,得x+5=0,解得,x=﹣5.经检验,当x=﹣5时,x−2x+5=0.故选:A.【点评】本题考查了分式的值为零的条件.注意,分式方程需要验根.7.(4.00分)(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0) B.(3,3)C.(1,3)D.(﹣1,3)【考点】Q3:坐标与图形变化﹣平移.【专题】55:几何图形.【分析】根据平移的性质得出平移后坐标的特点,进而解答即可. 【解答】解:因为点A 与点O 对应,点A (﹣1,0),点O (0,0), 所以图形向右平移1个单位长度,所以点B 的对应点B'的坐标为(0+1, 3),即(1, 3), 故选:C .【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.8.(4.00分)(2018•温州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .x +y =1049x +37y =466 B . x +y =1037x +49y =466C .x +y =46649x +37y =10 D . x +y =46637x +49y =10 【考点】99:由实际问题抽象出二元一次方程组. 【专题】521:一次方程(组)及应用.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10,两种客车载客量之和=466.【解答】解:设49座客车x 辆,37座客车y 辆,根据题意可列出方程组x +y =1049x +37y =466. 故选:A .【点评】考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.(4.00分)(2018•温州)如图,点A ,B 在反比例函数y=1x (x >0)的图象上,点C ,D 在反比例函数y=kx(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32【考点】G5:反比例函数系数k 的几何意义;G6:反比例函数图象上点的坐标特征.【专题】1 :常规题型.【分析】先求出点A ,B 的坐标,再根据AC ∥BD ∥y 轴,确定点C ,点D 的坐标,求出AC ,BD ,最后根据,△OAC 与△ABD 的面积之和为32,即可解答.【解答】解:∵点A ,B 在反比例函数y=1x(x >0)的图象上,点A ,B 的横坐标分别为1,2,∴点A 的坐标为(1,1),点B 的坐标为(2,12),∵AC ∥BD ∥y 轴,∴点C ,D 的横坐标分别为1,2,∵点C ,D 在反比例函数y=kx (k >0)的图象上,∴点C 的坐标为(1,k ),点D 的坐标为(2,k2),∴AC=k ﹣1,BD=k 2−12=k−12,∴S △OAC =12(k ﹣1)×1=k−12,S △ABD =12•k−12×(2﹣1)=k−14,∵△OAC 与△ABD 的面积之和为32, ∴k−12+k−14=32,解得:k=3. 故选:B .【点评】本题考查了反比例函数系数k 的几何意义,解决本题的关键是求出AC ,BD 的长.10.(4.00分)(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.532【考点】1O:数学常识;KR:勾股定理的证明.【专题】1 :常规题型.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积.【解答】解:设小正方形的边长为x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,解得x=−7+972或x=−7−972(舍去),∴该矩形的面积=(−7+972+3)(−7+972+4)=24,故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.二、填空题(本题有6小题,每小题5分,共30分)11.(5.00分)(2018•温州)分解因式:a2﹣5a=a(a﹣5).【考点】53:因式分解﹣提公因式法.【专题】11 :计算题.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12.(5.00分)(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为6.【考点】MN:弧长的计算.【专题】55:几何图形.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r,2π=60π⋅r 180,解得:r=6,故答案为:6【点评】此题考查弧长公式,关键是根据弧长公式解答.13.(5.00分)(2018•温州)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为3.【考点】W1:算术平均数;W5:众数.【专题】1 :常规题型;542:统计的应用.【分析】根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知1+3+2+7+x +2+37=3,解得:x=3,则数据为1、2、2、3、3、3、7, 所以众数为3, 故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.(5.00分)(2018•温州)不等式组 x −2>02x −6>2的解是 x >4 .【考点】CB :解一元一次不等式组. 【专题】52:方程与不等式.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可. 【解答】解:x −2>0①2x −6>2②,解①得x >2, 解②得x >4.故不等式组的解集是x >4. 故答案为:x >4.【点评】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(5.00分)(2018•温州)如图,直线y=﹣33x +4与x 轴、y 轴分别交于A ,B两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 2 3 .【考点】F8:一次函数图象上点的坐标特征;L8:菱形的性质. 【专题】11 :计算题.【分析】延长DE 交OA 于F ,如图,先利用一次函数解析式确定B (0,4),A (4 3,0),利用三角函数得到∠OBA=60°,接着根据菱形的性质判定△BCD 为等边三角形,则∠BCD=∠COE=60°,所以∠EOF=30°,则EF=12OE=1,然后根据三角形面积公式计算.【解答】解:延长DE 交OA 于F ,如图, 当x=0时,y=﹣ 33x +4=4,则B (0,4),当y=0时,﹣33x +4=0,解得x=4 3,则A (4 3,0),在Rt △AOB 中,tan ∠OBA=4 34= 3,∴∠OBA=60°, ∵C 是OB 的中点, ∴OC=CB=2,∵四边形OEDC 是菱形,∴CD=BC=DE=CE=2,CD ∥OE , ∴△BCD 为等边三角形, ∴∠BCD=60°, ∴∠COE=60°, ∴∠EOF=30°, ∴EF=12OE=1,△OAE 的面积=12×4 3×1=2 3.故答案为2 3.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx +b ,(k ≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(﹣bk ,0);与y轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx +b .也考查了菱形的性质.16.(5.00分)(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为49 32cm 2,则该圆的半径为 8 cm .【考点】MM :正多边形和圆. 【专题】55B :正多边形与圆.【分析】设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG ⊥PM ,OH ⊥AB ,由正六边形的性质及邻补角性质得到三角形三角形PMN 为等边三角形,由小正六边形的面积求出边长,确定出PM 的长,进而求出三角形PMN 的面积,利用垂径定理求出PG 的长,在直角三角形OPG 中,利用勾股定理求出OP 的长,设OB=xcm ,根据勾股定理列出关于x 的方程,求出方程的解即可得到结果. 【解答】解:设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG ⊥PM ,OH ⊥AB ,由题意得:∠MNP=∠NMP=∠MPN=60°, ∵小正六边形的面积为49 32cm 2,∴小正六边形的边长为7 3cm ,即PM=7 3cm , ∴S △MPN =147 34cm 2,∵OG ⊥PM ,且O 为正六边形的中心, ∴PG=12PM=7 32cm ,在Rt △OPG 中,根据勾股定理得:OP=(72)+(732)=7cm ,设OB=xcm ,∵OH ⊥AB ,且O 为正六边形的中心, ∴BH=12x ,OH=32x ,∴PH=(5﹣12x )cm ,在Rt △PHO 中,根据勾股定理得:OP 2=( 32x )2+(5﹣12x )2=49,解得:x=8(负值舍去), 则该圆的半径为8cm . 故答案为:8【点评】此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10.00分)(2018•温州)(1)计算:(﹣2)2﹣ 27+( 2﹣1)0. (2)化简:(m +2)2+4(2﹣m ).【考点】2C :实数的运算;36:去括号与添括号;4C :完全平方公式;6E :零指数幂.【专题】11 :计算题.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. (2)根据完全平方公式和去括号法则计算,再合并同类项即可求解. 【解答】解:(1)(﹣2)2﹣ 27+( 2﹣1)0 =4﹣3 3+1 =5﹣3 3;(2)(m +2)2+4(2﹣m ) =m 2+4m +4+8﹣4m =m 2+12.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.(8.00分)(2018•温州)如图,在四边形ABCD 中,E 是AB 的中点,AD ∥EC ,∠AED=∠B .(1)求证:△AED ≌△EBC . (2)当AB=6时,求CD 的长.【考点】KD :全等三角形的判定与性质. 【专题】552:三角形.【分析】(1)利用ASA 即可证明;(2)首先证明四边形AECD 是平行四边形,推出CD=AE=12AB 即可解决问题;【解答】(1)证明:∵AD ∥EC , ∴∠A=∠BEC , ∵E 是AB 中点,∴AE=EB , ∵∠AED=∠B , ∴△AED ≌△EBC .(2)解:∵△AED ≌△EBC , ∴AD=EC , ∵AD ∥EC ,∴四边形AECD 是平行四边形, ∴CD=AE , ∵AB=6, ∴CD=12AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8.00分)(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.【考点】VB :扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量,再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店,根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷90360=600家,甲公司经营的蛋糕店数量为600×60360=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.20.(8.00分)(2018•温州)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.【考点】P7:作图﹣轴对称变换;R8:作图﹣旋转变换.【专题】13 :作图题.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(10.00分)(2018•温州)如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=Sm.求K关于m的函数表达式及K的范围.【考点】F8:一次函数图象上点的坐标特征;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式;HA:抛物线与x 轴的交点.【专题】1 :常规题型;533:一次函数及其应用;535:二次函数图象及其性质.【分析】(1)根据直线y=2x求得点M(2,4),由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组,解之可得;(2)作PH⊥x轴,根据三角形的面积公式求得S=﹣m2+4m,根据公式可得K的解析式,再结合点P的位置得出m的范围,利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x,得:y=4,∴点M(2,4),由题意,得:−b2a=24a+2b=4,∴a=−1 b=4;(2)如图,过点P作PH⊥x轴于点H,∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,∴PH=﹣m2+4m,∵B(2,0),∴OB=2,∴S=12 OB•PH=12×2×(﹣m2+4m)=﹣m2+4m,∴K=Sm=﹣m+4,由题意得A(4,0),∵M(2,4),∴2<m<4,∵K随着m的增大而减小,∴0<K<2.【点评】本题主要考查抛物线与x 轴的交点,解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.(10.00分)(2018•温州)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在BD 上. (1)求证:AE=AB .(2)若∠CAB=90°,cos ∠ADB=13,BE=2,求BC 的长.【考点】MA :三角形的外接圆与外心;PB :翻折变换(折叠问题);T7:解直角三角形.【专题】1 :常规题型;559:圆的有关概念及性质.【分析】(1)由折叠得出∠AED=∠ACD 、AE=AC ,结合∠ABD=∠AED 知∠ABD=∠ACD ,从而得出AB=AC ,据此得证;(2)作AH ⊥BE ,由AB=AE 且BE=2知BH=EH=1,根据∠ABE=∠AEB=∠ADB 知cos ∠ABE=cos ∠ADB=BH AB =13,据此得AC=AB=3,利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知,△ADE ≌△ADC , ∴∠AED=∠ACD ,AE=AC , ∵∠ABD=∠AED , ∴∠ABD=∠ACD , ∴AB=AC , ∴AE=AB ;(2)如图,过A 作AH ⊥BE 于点H ,∵AB=AE ,BE=2, ∴BH=EH=1,∵∠ABE=∠AEB=∠ADB ,cos ∠ADB=13, ∴cos ∠ABE=cos ∠ADB=13,∴BH AB =13.∴AC=AB=3,∵∠BAC=90°,AC=AB , ∴BC=3 2.【点评】本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.(12.00分)(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品. (1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.【考点】AD:一元二次方程的应用;HE:二次函数的应用.【专题】34 :方程思想;523:一元二次方程及应用;536:二次函数的应用.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为(130﹣2x)元.故答案为:65﹣x;2(65﹣x);130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=65−x 3∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26即当x=26时,W最大值=3198答:安排26人生产乙产品时,可获得的最大利润为3198元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.24.(14.00分)(2018•温州)如图,已知P 为锐角∠MAN 内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连接AP ,BD ,AP 交⊙O 于点E . (1)求证:∠BPD=∠BAC .(2)连接EB ,ED ,当tan ∠MAN=2,AB=2 5时,在点P 的整个运动过程中. ①若∠BDE=45°,求PD 的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC ∥BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出S 1S 2的值.【考点】MR :圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质;55A :与圆有关的位置关系. 【分析】(1)由PB ⊥AM 、PC ⊥AN 知∠ABP=∠ACP=90°,据此得∠BAC +∠BPC=180°,根据∠BPD +∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2 5,根据tan ∠BAC=tan ∠BPD=BD DP=2知BP= 5PD ,据此可得答案;②根据等腰三角形的定义分BD=BE 、BE=DE及BD=DE 三种情况分类讨论求解可得;(3)作OH ⊥DC ,由tan ∠BPD=tan ∠MAN=1知BD=PD ,据此设BD=PD=2a 、PC=2b ,从而得出OH=a 、CH=a +2b 、AC=4a +2b ,证△ACP ∽△CHO 得OH CH =PC AC,据此得出a=b 及CP=2a 、CH=3a 、OC= 10a ,再证△CPF ∽△COH ,得CF CH =CPOC,据此求得CF=3 105a 、OF=2 105a ,证OF 为△PBE 的中位线知EF=PF ,从而依据S 1S 2=OF CF可得答案.【解答】解:(1)∵PB ⊥AM 、PC ⊥AN , ∴∠ABP=∠ACP=90°, ∴∠BAC +∠BPC=180°, 又∠BPD +∠BPC=180°, ∴∠BPD=∠BAC ;(2)①如图1,∵∠APB=∠BDE=45°,∠ABP=90°, ∴BP=AB=2 5, ∵∠BPD=∠BAC , ∴tan ∠BPD=tan ∠BAC , ∴BD DP=2,∴BP= 5PD , ∴PD=2;②当BD=BE 时,∠BED=∠BDE , ∴∠BPD=∠BPE=∠BAC , ∴tan ∠BPE=2, ∵AB=2 5, ∴BP= 5,∴BD=2;当BE=DE 时,∠EBD=∠EDB , ∵∠APB=∠BDE 、∠DBE=∠APC , ∴∠APB=∠APC , ∴AC=AB=2 5,过点B 作BG ⊥AC 于点G ,得四边形BGCD 是矩形,∵AB=2 5、tan ∠BAC=2, ∴AG=2,∴BD=CG=2 5﹣2;当BD=DE 时,∠DEB=∠DBE=∠APC , ∵∠DEB=∠DPB=∠BAC , ∴∠APC=∠BAC , 设PD=x ,则BD=2x , ∴AC PC =2,∴2x +24−x =2,∴x=32, ∴BD=2x=3,综上所述,当BD=2、3或2 5﹣2时,△BDE 为等腰三角形;(3)如图3,过点O 作OH ⊥DC 于点H ,。
浙江省温州市2018年中考数学真题试题卷I一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.2,0,1-,其中负数是( )B. 2C. 0D. 1-2.移动台阶如图所示,它的主视图是( )3.计算62a a 的结果是( ) A. 3aB. 4aC. 8aD. 12a4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( ) A. 9分B. 8分C. 7分D. 6分5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A.12B.13C.310D.156.若分式25x x -+的值为0,则x 的值是( ) A. 2B. 0C. 2-D. 5-7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A ,B 的坐标分别为(1-,0),(0.现将该三角板向右平移使点A 与点O 重合,得到△OCB ’,则点B 的对应点B ’的坐标是( ) A.(1,0)B.)C.(1D.(1-)8.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A. B. C.D.A.104937466x y x y +=⎧⎨+=⎩ B.103749466x y x y +=⎧⎨+=⎩ C.466493710x y x y +=⎧⎨+=⎩ D.466374910x y x y +=⎧⎨+=⎩9.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A. 4B. 3C. 2D. 32 10.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A. 20B. 24C. 994D.532卷II二、填空题(本题有6小题,每小题5分,共30分.) 11.分解因式:25a a -= .12.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .13.一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 .14.不等式组20262x x ->⎧⎨->⎩的解是 .15.如图,直线4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则△OAE 的面积为 .16.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm,2,则该圆的半径为 cm. 三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:20(2)1)--(2)化简:2(2)4(2)m m ++-18.(本题8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B. (1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.19.(本题8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数. (2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(本题8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)在图1中画出一个面积最小的 PAQB.(2)在图2中画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.21.(本题10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M.已知该抛物线的对称轴为直线2x =,交x 轴于点B.(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(本题10分)如图,D 是△ABC 的BC 边上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB=13,BE=2,求BC的长.23.(本题12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.(1)根据信息填表(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(本题14分)如图,已知P为锐角∠MAN内部一点,过点P作PB⊥AM于点B,PC⊥AN 于点C,以PB为直径作⊙O,交直线CP于点D,连接AP,BD,AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB,ED,,当tan∠MAN=2,AB=时,在点P的整个运动过程中.①若∠BDE=45°,求PD的长.②若△BED 为等腰三角形,求所有满足条件的BD 的长.(2)连接OC ,EC ,OC 交AP 于点F ,当tan ∠MAN=1,OC//BE 时,记△OFP 的面积为S 1,△CFE 的面积为S 2,请写出12S S 的值.。
2018年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)(2018•,2,0,1-,其中负数是()A B.2 C.0 D.1-2.(4分)(2018•温州)移动台阶如图所示,它的主视图是()A.B.C.D.3.(4分)(2018•温州)计算62a a的结果是()A.3a B.4a C.8a D.12a4.(4分)(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.156.(4分)(2018•温州)若分式25xx-+的值为0,则x的值是()A.2 B.0 C.2-D.5-7.(4分)(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(1,0)-,.现将该三角板向右平移使点A与点O重合,得到OCB∆',则点B的对应点B'的坐标是()A .(1,0)B .C .D .(-8.(4分)(2018•温州)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩9.(4分)(2018•温州)如图,点A ,B 在反比例函数1(0)y x x =>的图象上,点C ,D 在反比例函数(0)ky k x =>的图象上,////AC BD y 轴,已知点A ,B 的横坐标分别为1,2,OAC ∆与ABD ∆的面积之和为32,则k 的值为( )A .4B .3C .2D .3210.(4分)(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A.20 B.24 C.994D.532二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2018•温州)分解因式:25a a-=.12.(5分)(2018•温州)已知扇形的弧长为2π,圆心角为60︒,则它的半径为.13.(5分)(2018•温州)一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.14.(5分)(2018•温州)不等式组20262xx->⎧⎨->⎩的解是.15.(5分)(2018•温州)如图,直线4y=+与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则OAE∆的面积为.16.(5分)(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,5PB cm=,小正六边形的面积2,则该圆的半径为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(2018•温州)(1)计算:20(2)1)--. (2)化简:2(2)4(2)m m ++-.18.(8分)(2018•温州)如图,在四边形ABCD 中,E 是AB 的中点,//AD EC ,AED B ∠=∠. (1)求证:AED EBC ∆≅∆. (2)当6AB =时,求CD 的长.19.(8分)(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题: (1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.(8分)(2018•温州)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)画出一个面积最小的PAQB .(2)画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD 由线段PQ 以某一格点为旋转中心旋转得到.21.(10分)(2018•温州)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M .已知该抛物线的对称轴为直线2x =,交x 轴于点B . (1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP .设点P 的横坐标为m ,OBP ∆的面积为S ,记SK m=.求K 关于m 的函数表达式及K 的范围.22.(10分)(2018•温州)如图,D 是ABC ∆的BC 边上一点,连接AD ,作ABD ∆的外接圆,将ADC ∆沿直线AD 折叠,点C 的对应点E 落在O 上. (1)求证:AE AB =.(2)若90CAB ∠=︒,1cos 3ADB ∠=,2BE =,求BC 的长.23.(12分)(2018•温州)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品. (1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.24.(14分)(2018•温州)如图,已知P 为锐角MAN ∠内部一点,过点P 作PB AM ⊥于点B ,PC AN ⊥于点C ,以PB 为直径作O ,交直线CP 于点D ,连接AP ,BD ,AP 交O 于点E .(1)求证:BPD BAC ∠=∠.(2)连接EB ,ED ,当tan 2MAN ∠=,AB =P 的整个运动过程中. ①若45BDE ∠=︒,求PD 的长.②若BED ∆为等腰三角形,求所有满足条件的BD 的长.(3)连接OC ,EC ,OC 交AP 于点F ,当tan 1M AN ∠=,//OC BE 时,记OFP ∆的面积为1S ,CFE ∆的面积为2S ,请写出12S S 的值.2018年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4,2,0,1-,其中负数是()A B.2 C.0 D.1-【解答】,2,0,1-.-,其中负数是:1故选:D.2.(4分)移动台阶如图所示,它的主视图是()A.B.C.D.【解答】解:从正面看是三个台阶,故选:B.3.(4分)计算62a a的结果是()A.3a B.4a C.8a D.12a【解答】解:628=,a a a故选:C.4.(4分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分【解答】解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(4分)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.15【解答】解:袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是21 105=,故选:D.6.(4分)若分式25xx-+的值为0,则x的值是()A.2 B.0 C.2-D.5-【解答】解:由题意,得20x-=,解得,2x=.经检验,当2x=时,25xx-=+.故选:A.7.(4分)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(1,0)-,.现将该三角板向右平移使点A与点O重合,得到OCB∆',则点B 的对应点B'的坐标是()A.(1,0)B.C.D.(-【解答】解:因为点A与点O对应,点(1,0)A-,点(0,0)O,所以图形向右平移1个单位长度,所以点B的对应点B'的坐标为(0+,即,故选:C.8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组( )A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩【解答】解:设49座客车x 辆,37座客车y 辆,根据题意可列出方程组104937466x y x y +=⎧⎨+=⎩.故选:A .9.(4分)如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,////AC BD y 轴,已知点A ,B 的横坐标分别为1,2,OAC ∆与ABD ∆的面积之和为32,则k 的值为( )A .4B .3C .2D .32【解答】解:点A ,B 在反比例函数1(0)y x x=>的图象上,点A ,B 的横坐标分别为1,2,∴点A 的坐标为(1,1),点B 的坐标为1(2,)2,////AC BD y 轴,∴点C ,D 的横坐标分别为1,2,点C ,D 在反比例函数(0)ky k x=>的图象上,∴点C 的坐标为(1,)k ,点D 的坐标为(2,)2k ,1AC k ∴=-,11222k k BD -=-=, 11(1)122OAC k S k ∆-∴=-⨯=,111(21)224ABD k k S ∆--=⨯-=, OAC ∆与ABD ∆的面积之和为32,∴113242k k --+=, 解得:3k =. 故选:B .10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3a =,4b =,则该矩形的面积为( )A .20B .24C .994D .532【解答】解:设小正方形的边长为x , 3a =,4b =, 347AB ∴=+=,在Rt ABC ∆中,222AC BC AB +=, 即222(3)(4)7x x +++=, 整理得,27120x x +-=,解得x =或x =(舍去),∴该矩形的面积4)24==, 故选:B .二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:25a a -= (5)a a - .【解答】解:25(5)a a a a -=-.故答案是:(5)a a -.12.(5分)已知扇形的弧长为2π,圆心角为60︒,则它的半径为 6 .【解答】解:设半径为r ,602180r ππ=, 解得:6r =,故答案为:613.(5分)一组数据1,3,2,7,x ,2,3的平均数是3,则该组数据的众数为 3 .【解答】解:根据题意知13272337x ++++++=, 解得:3x =,则数据为1、2、2、3、3、3、7,所以众数为3,故答案为:3.14.(5分)不等式组20262x x ->⎧⎨->⎩的解是 4x > . 【解答】解:20262x x ->⎧⎨->⎩①②, 解①得2x >,解②得4x >.故不等式组的解集是4x >.故答案为:4x >.15.(5分)如图,直线4y x =+与x 轴、y 轴分别交于A ,B 两点,C 是OB 的中点,D 是AB 上一点,四边形OEDC 是菱形,则OAE ∆的面积为【解答】解:延长DE 交OA 于F ,如图,当0x =时,44y =+=,则(0,4)B ,当0y =时,40+=,解得x =A ,0),在Rt AOB ∆中,tan OBA ∠== 60OBA ∴∠=︒, C 是OB 的中点,2OC CB ∴==,四边形OEDC 是菱形,2CD BC DE CE ∴====,//CD OE ,BCD ∴∆为等边三角形,60BCD ∴∠=︒,60COE ∴∠=︒,30EOF ∴∠=︒,112EF OE ∴==,OAE ∆的面积112=⨯=故答案为16.(5分)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ 所在的直线经过点M ,5PB cm =2,则该圆的半径为 8 cm .【解答】解:设两个正六边形的中心为O ,连接OP ,OB ,过O 作OG PM ⊥,OH AB ⊥, 由题意得:60MNP NMP MPN ∠=∠=∠=︒,小正六边形的面积为2,∴,即PM =,2MPN S ∆∴, OG PM ⊥,且O 为正六边形的中心,12PG PM ∴==,72OG ==,在Rt OPG ∆中,根据勾股定理得:7OP cm =, 设OB xcm =,OH AB ⊥,且O 为正六边形的中心,12BH x ∴=,OH =, 1(5)2PH x cm ∴=-,在Rt PHO ∆中,根据勾股定理得:2221)(5)492OP x =+-=, 解得:8x =(负值舍去),则该圆的半径为8cm .故答案为:8三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:20(2)1)--.(2)化简:2(2)4(2)m m ++-.【解答】解:(1)20(2)1)-41=-5=-(2)2(2)4(2)m m ++-24484m m m =+++-212m =+.18.(8分)如图,在四边形ABCD 中,E 是AB 的中点,//AD EC ,AED B ∠=∠.(1)求证:AED EBC ∆≅∆.(2)当6AB =时,求CD 的长.【解答】(1)证明://AD EC ,A BEC ∴∠=∠, E 是AB 中点,AE EB ∴=,AED B ∠=∠,AED EBC ∴∆≅∆.(2)解:AED EBC ∆≅∆,AD EC ∴=,//AD EC ,∴四边形AECD 是平行四边形,CD AE ∴=,6AB =,132CD AB ∴==. 19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.【解答】解:(1)该市蛋糕店的总数为90150600360÷=家, 甲公司经营的蛋糕店数量为60600100360⨯=家;(2)设甲公司增设x 家蛋糕店,由题意得:20%(600)100x x ⨯+=+,解得:25x =,答:甲公司需要增设25家蛋糕店.20.(8分)如图,P ,Q 是方格纸中的两格点,请按要求画出以PQ 为对角线的格点四边形.(1)画出一个面积最小的PAQB .(2)画出一个四边形PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ 以某一格点为旋转中心旋转得到.【解答】解:(1)如图①所示:(2)如图②所示:21.(10分)如图,抛物线2(0)y ax bx a =+≠交x 轴正半轴于点A ,直线2y x =经过抛物线的顶点M .已知该抛物线的对称轴为直线2x =,交x 轴于点B .(1)求a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP .设点P 的横坐标为m ,OBP ∆的面积为S ,记S K m=.求K 关于m 的函数表达式及K 的范围.【解答】解:(1)将2x =代入2y x =,得:4y =,∴点(2,4)M , 由题意,得:22424b a a b ⎧-=⎪⎨⎪+=⎩,∴14a b =-⎧⎨=⎩;(2)如图,过点P 作PH x ⊥轴于点H ,点P 的横坐标为m ,抛物线的解析式为24y x x =-+,24PH m m ∴=-+,(2,0)B ,2OB ∴=,12S OB PH ∴= 212(4)2m m =⨯⨯-+ 24m m =-+,4S K m m∴==-+, 由题意得(4,0)A ,(2,4)M ,24m ∴<<, K 随着m 的增大而减小,02K ∴<<.22.(10分)如图,D 是ABC ∆的BC 边上一点,连接AD ,作ABD ∆的外接圆,将ADC ∆沿直线AD 折叠,点C 的对应点E 落在O 上.(1)求证:AE AB =.(2)若90CAB ∠=︒,1cos 3ADB ∠=,2BE =,求BC 的长.【解答】解:(1)由折叠的性质可知,ADE ADC ∆≅∆,AED ACD ∴∠=∠,AE AC =,ABD AED ∠=∠,ABD ACD ∴∠=∠,AB AC ∴=,AE AB ∴=;(2)如图,过A 作AH BE ⊥于点H ,AB AE =,2BE =,1BH EH ∴==,ABE AEB ADB ∠=∠=∠,1cos 3ADB ∠=, 1cos cos 3ABE ADB ∴∠=∠=, ∴13BH AB =. 3AC AB ∴==,90BAC ∠=︒,AC AB =,BC ∴=23.(12分)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W (元)的最大值及相应的x 值.【解答】解:(1)由已知,每天安排x 人生产乙产品时,生产甲产品的有(65)x -人,共生产甲产品2(65)1302x x --件.在乙每件120元获利的基础上,增加x 人,利润减少2x 元每件,则乙产品的每件利润为1202(5)1302x x --=-.故答案为:65x -;1302x -;1302x -;(2)由题意152(65)(1302)550x x x ⨯-=-+ 2807000x x ∴-+=解得110x =,270x =(不合题意,舍去)1302110x ∴-=(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m 人(1302)15230(65)W x x m x m =-+⨯+--22(25)3200x =--+265m x m =--653x m -∴= x 、m 都是非负整数∴取26x =时,13m =,6526x m --=即当26x =时,3198W =最大值答:安排26人生产乙产品时,可获得的最大利润为3198元.24.(14分)如图,已知P 为锐角MAN ∠内部一点,过点P 作PB AM ⊥于点B ,PC AN⊥于点C ,以PB 为直径作O ,交直线CP 于点D ,连接AP ,BD ,AP 交O 于点E .(1)求证:BPD BAC ∠=∠.(2)连接EB ,ED ,当tan 2MAN ∠=,AB =P 的整个运动过程中. ①若45BDE ∠=︒,求PD 的长.②若BED ∆为等腰三角形,求所有满足条件的BD 的长.(3)连接OC ,EC ,OC 交AP 于点F ,当tan 1M AN ∠=,//OC BE 时,记OFP ∆的面积为1S ,CFE ∆的面积为2S ,请写出12S S 的值.【解答】解:(1)PB AM ⊥、PC AN ⊥,90ABP ACP ∴∠=∠=︒,180BAC BPC ∴∠+∠=︒,又180BPD BPC ∠+∠=︒,BPD BAC ∴∠=∠;(2)①如图1,45APB BDE ∠=∠=︒,90ABP ∠=︒,BP AB ∴==,BPD BAC ∠=∠,tan tan BPD BAC ∴∠=∠, ∴2BD DP=,BP ∴,2PD ∴=;②当BD BE =时,BED BDE ∠=∠, BPD BPE BAC ∴∠=∠=∠,tan 2BPE ∴∠=, 2AB =,BP ∴=,2BD ∴=;当BE DE =时,EBD EDB ∠=∠, APB BDE ∠=∠、DBE APC ∠=∠, APB APC ∴∠=∠,AC AB ∴==过点B 作BG AC ⊥于点G ,得四边形BGCD 是矩形,2AB =、tan 2BAC ∠=,2AG ∴=,2BD CG ∴==;当BD DE =时,DEB DBE APC ∠=∠=∠, DEB DPB BAC ∠=∠=∠,APC BAC ∴∠=∠,设PD x =,则2BD x =,∴2AC PC =, ∴2224x x+=-, 32x ∴=, 23BD x ∴==,综上所述,当2BD =、3或2时,BDE ∆为等腰三角形;(3)如图3,过点O 作OH DC ⊥于点H ,tan tan 1BPD MAN ∠=∠=,BD PD ∴=,设2BD PD a ==、2PC b =, 则OH a =、2CH a b =+、42AC a b =+, //OC BE 且90BEP ∠=︒,90PFC ∴∠=︒,90PAC APC OCH APC ∴∠+∠=∠+∠=︒, OCH PAC ∴∠=∠,ACP CHO ∴∆∆∽, ∴OH PC CH AC=,即OH AC CH PC =, (42)2(2)a a b b a b ∴+=+,a b ∴=,即2CP a =、3CH a =,则OC =,CPF COH ∆∆∽, ∴CF CP CH OC =,即3CF a ,则CF =,OF OC CF =-=, //BE OC 且BO PO =,OF ∴为PBE ∆的中位线,EF PF ∴=, ∴1223S OF S CF ==.。
浙江省温州市2018年中考数学试卷一、选择题<本题有10小题,每小题4分,共40分。
每小题只有一个选项是正确的,不选,多选,错选,均不给分)1. <4分)<2018?温州)计算:<-2)x 3的结果是<)A - 6B - 1C 1D 6• • • ・考有理数的乘法.点:八、、・分根据有理数的乘法运算法则进行计算即可得解.析:解解: <- 2)X3 = - 2X3 = - 6.答:故选A.点本题考查了有理数的乘法,是基础题,计算时要注意符号的处评:理.2. <4分)<2018?温州)小明对九<1)班全班同学“你最喜欢的球类工程是什么?<只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类工程是<)b5E2RGbCAP九仃漑同学最書欧的球类项目読计图A羽毛球B乒乓球C排球D篮球•• • ・考扇形统计图.点:八、、・分禾U用扇形图可得喜欢各类比赛的人数的百分比,选择同学们最析:喜欢的工程,即对应的扇形的圆心角最大的,由此即可求出答案.解 解:喜欢乒乓篮球比赛的人所占的百分比最大,故该班最喜欢 答:的球类工程是篮球.故选D.点 本题考查的是扇形图的定义.在扇形统计图中,各部分占总体 评:的百分比之和为1,每部分占总体的百分比等于该部分所对应 的扇形圆心角的度数与360°的比.3. <4分)<2018?温州)下列各图中,经过折叠能围成一个立方体由平面图形的折叠及正方体的展开图解题.解:A 、可以折叠成一个正方体; :B 、是“凹”字格,故不能折叠成一个正方体;C 、折叠后有两个面重合,缺少一个底面,所以也不能折叠成一 个正方体;D 是“田”字格,故不能折叠成一个正方体. 故选A .点 本题考查了展开图折叠成几何体.注意只要有“田”、“凹” 评:字格的展开图都不是正方体的表面展开图.4. <4分)<2018?温州)下列各组数可能是一个三角形的边长的是 < )A 1, 2, 4B 4, 5, 9C 4, 6, 8D 5, 5, 11考三角形三边关系占:八、、・展开图折叠成几何体.考点分析解咎 的是< ) C分看哪个选项中两条较小的边的和不大于最大的边即可.析:解解:A、因为1+2V4,所以本组数不能构成三角形.故本选项答:错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C 、因为 项正确;D 因为 误; 故选C. 点本题主要考查了三角形的三边关系定理:任意两边之和大于第 评:三边,形. 5. <4分)9-4v 5V 8+4,所以本组数可以构成三角形.故本选5+5V 11,所以本组数不能构成三角形.故本选项错只要满足两短边的和大于最长的边,就可以构成三角<2018?温州)若分式 的值为0,则x 的值是<)A x=3B x=0C x=- 3D x= - 4考 点:八、、・分 析: 解 答: 分式的值为零的条件.根据分式值为零的条件可得 x - 3=0,且x+4工0,再解即可.解:由题意得:x - 3=0,且x+4工0,解得:x=3,故选:A .此题主要考查了分式值为零的条件,关键是掌握分式值为零的占八、、 评:条件是分子等于零且分母不等于零. 注意:“分母不为零”这个条件不能少.6. <4分)<2018?温州)已知点P<1, - 3)在反比例函数y 二丄vk M 0)的图象上,贝y k 的值是< A 3 B - 3 C 丄 D —二3 3)p1EanqFDPw反比例函数图象上点的坐标特征.考 点:八、、・分析:解答: 把点P<1,- 3)代入反比例函数y 丄,求出k 的值即可.X占八、、 评:解:T 点P<1,- 3)在反比例函数y 仝<心0)的图象上, •••- 3=r ,解得 k=- 3. 故选B.本题考查的是反比例函数图象上点的坐标特点,即反比例函数 图象上各点的坐标一定适合此函数的解读式.7. <4分)<2018?温州)如图,在O O 中,0C !弦AB 于点C,考垂径定理;勾股定理点:八、、・分 根据垂径定理可得 AC=BC=AB 在Rt △ OBC 中可求出OB 析:: 解解:T OCL 弦AB 于点C,答:二 AC=BC=AB, 在 Rt △ OBC 中, OB= ‘「•「「•'= n . 故选B.点本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟 评:练掌握垂径定理的内容. 8. <4分)<2018?温州)如图,在△ ABC 中,/ C=90 , AB=5 A 上 B 二 —D 上 a 3考锐角三角函数的定义占:八、、・分利用正弦函数的定义即可直接求解.析:解解:si nA 二丄—.答. '11' AB=4 OC=1贝卩OB 的长是< )DXDiTa9E3dBC=3贝卩si nA 的值是<)RTCrpUDGiT A答: 故选C.点本题考查锐角三角函数的定义及运用:在直角三角形中,锐角评:的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻 边.9. <4分)<2018?温州)如图,在△ ABC 中,点D, E 分别在边ABAC 上,DE// BC 已知 AE=6, ,贝卩 EC 的长是 < )5PCzVD7HxABL 4考平行线分线段成比例.点:八、、・分根据平行线分线段成比例定理列式进行计算即可得解. 析:故选B.点本题考查了平行线分线段成比例定理,找准对应关系是解题的 评:关键.10. <4分)<2018?温州)在厶ABC 中, Z C 为锐角,分别以 AB, AC C 10.5 D 14解 答: 解:T DE// BC A DB D 6 EC AE T , 即 解得EC=8B 8 4'为直径作半圆,过点B, A , C 作I <',如图所示.若AB=4 AC=2 S1 点:八、、・分 首先根据AB AC 的长求得S1+S3和S2+S4的值,然后两值相减 析:即可求得结论.解解:T AB=4 AC=2答:二 S1+S3二n, S2+S4J , 2S1-S2」,•••VS1+S3 - VS2+S4 =<S1-S2) +<S3- S4)密 nS3— S4= n, 4故选D.点 本题考查了圆的认识,解题的关键是正确的表示出S1+S3和评:S2+S4的值.二、填空题 <本题有6小题,每小题5分,共30分) 11.<5 分)<2018?温州)因式分解:m2- 5m= m<- 5).考因式分解-提公因式法.点:八、、・分先确定公因式m 然后提取分解.析:解 解: m2- 5m=m<m5).答:故答案为:m<n - 5). )jLBHrnAlLg考圆的认识点 此题考查了提公因式法分解因式,关键是确定公因式m评: 12. <5分)<2018?温州)在演唱比赛中,5位评委给一位歌手的打 分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的 平均得分是 8 分.XHAQX74J0X 算术平均数. 根据算术平均数的计算公式,先求出这 5个数的和,再除以5 :即可.解:根据题意得::<8.2+8.3+7.8+7.7+8.0 ) - 5=8<分 );故答案为:8.点此题考查了算术平均数,用到的知识点是算术平均数的计算公评:式,熟记公式是解决本题的关键.考点分析解咎13. <5分)<2018?温州)如图,直线a , b 被直线c 所截,若a /b ,Z 1=40°,/ 2=70°,则/ 3= 110 度.LDAYtRyKfE根据两直线平行,内错角相等求出/ 答. 解:T a // b ,Z 1=40° .•./ 4=Z 1=40°• / 3二/ 2+Z 4=70° +40° =110°.故答案为:110. b/ a A / b 点 本题考查了平行线的性质,对顶角相等的性质,是基础题,熟 评:记性质是解题的关键.14. <5分)<2018?温州)方程 x2 - 2x - 1=0 的解是 x1 = 1+ ::, x2=1 - . ■:.解一元二次方程-配方法. 首先把常数项2移项后,然后在左右两边同时加上一次项系数 -2的一半的平方,然后开方即可求得答案. 解:T x2 - 2x - 1=0, 二x2 - 2x=1,二x2 - 2x+1=2,••• vx - 1) 2=2,二 x=1 ± ,二原方程的解为:x1=1+ ' X2=1-考点分析解岔平行线的性质;三角形内角和疋理. 4,再根据对顶角相等解考点分析解岔故答案为:x1=1也,x2=1-近.点 此题考查了配方法解一元二次方程.解题时注意配方法的一般评:步骤:<1)把常数项移到等号的右边;<2)把二次项的系数化为1; <3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1, 一次项的系数是2的倍数.15. <5分)<2018?温州)如图,在平面直角坐标系中,△ ABC 的两 个顶点A, B 的坐标分别为<-2, 0),<-1,0),BCLx 轴,将△ ABC 以 y 轴为对称轴作轴对称变换,得到△ A B‘ C <A 和A ', B 和B‘,C 和C 分别是对应顶点),直线y=x+b 经过点A, C ,则点C 的坐标是 <1, 3) . Zzz6ZB2Ltk一次函数图象上点的坐标特征;坐标与图形变化 -对称. 根据轴对称的性质可得 OB=OB ,然后求出AB ,再根据直线 y=x+b 可得AB' =B ' C ,然后写出点 C 的坐标即可. 解:T A <- 2, 0), B <— 1, 0), ••• AO=2 OB=1 •••△ A B' ^和厶ABC 关于y 轴对称, • OB=OB =1, • AB' =AO+OB =2+仁3, T 直线y=x+b 经过点A, C , • AB' =B ' C =3, •••点C 的坐标为<1, 3). 故答案为:<1, 3). 点 本题考查了一次函数图象上点的坐标特征,坐标与图形变化- 评:对称,根据直线解读式的k 值等于1得到AB' =B ' C 是解本 题的关键. 考点分析解空16. <5分)<2018?温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B 的距离及相关数据<单位:cm,从点N沿折线NF- FMvNF BC FM/ AB切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图<不重叠,无缝隙,不记损耗),则CN AM的长分别是18cm31cm . dvzfvkwMI1考圆的综合题占:八、、・分如图,延长0K交线段AB于点M,延长PQ交BC于点G,交析:FN于点N',设圆孔半径为r .在Rt△ KBG中,根据勾股定理,得r=16<cm).根据题意知,圆心0在矩形EFGH勺对角线上,贝卩KN二AB=42cm OM =KM +r~CB=65cm则根据图中相关线段间的和差关系求得CN=QGQN =44- 26=18<cn),AM=BC PD- KM =130- 50 - 49=31<cn).解解:如图,延长OK交线段AB于点M,延长PQ交BC于点答:G,交FN 于点N .设圆孔半径为r.在Rt△ KBG中,根据勾股定理,得BG2+KG2二BK2即卩<130- 50)2+<44+r)2=1002,解得,r=16<cm).根据题意知,圆心O在矩形EFGH勺对角线上,则KN =^AB=42cm OM =KM +r二—CB=65cm••• QN =KN - KQ=42- 16=26<cn),KM =49<cn),••• CN 二QGQN =44- 26=18<cn ),••• AM=BC PD - KM =130-50 - 49=31<cn ), 综上所述,CN AM 的长分别是18cm 31cm 故填:18cm 31cm本题以改造矩形桌面为载体,让学生在问题解决过程中,考查 了矩形、直角三角形及圆等相关知识,积累了将实际问题转化 为数学问题经验,渗透了图形变换思想,体现了数学思想方法 在现实问题中的应用价值.三、解答题 <本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程)17. <10分)<2018?温州)<1)计算::「:+<」亠)+—) 0<2)化简:<1+a ) <1 - a ) +a <a- 3)考 整式的混合运算;实数的运算;零指数幕.点:八、、・专计算题.题:分<1 )原式第一项化为最简二次根式,第二项去括号,最后一项 析:利用零指数幕法则计算,合并即可得到结果;<2)原式第一项利用平方差公式化简,第二项利用单项式乘多 项式法则计算,去括号合并即可得到结果.解 解:<1)原式=2用」+二—1 +1= 3 :■:;答:<2)原式=1 - a2+a2- 3a=1 - 3a .点 此题考查了整式的混合运算,以及实数的运算,涉及的知识评:有:完全平方公式,平方差公式,去括号法则,以及合并同类 项法则,熟练掌握公式及法则是解本题的关键.18. <8分)<2018?温州)如图,在△ ABC 中,/ C=90,AD 平分 / CAB 交 CB 于点 D,过点 D 作 DEL AB 于点 E . rqyn 14ZNXI点 八、、V1)求证:△ ACD^A AED<2)若/ B=30°, CD=1 求BD的长.考全等三角形的判定与性质;角平分线的性质;含30度角的直角点:三角形. 分<1 )根据角平分线性质求出CD=DE根据HL定理求出另三角形析:全等即可;<2)求出/ DEB=90 , DE=1根据含30度角的直角三角形性质求出即可.解<1)证明:T AD 平分/ CAB DEL AB,/ C=90°, 答:二CD=ED / DEA/ C=90°,•••在Rt△ ACD和Rt△ AED中(CD 二DE••• Rt△ ACD^ Rt△ AED<HL ;<2)解:T DC=DE=,1 DEI AB,•/ DEB=90 ,B=30°,•BD=2DE=2点本题考查了全等三角形的判定,角平分线性质,含30度角的直评:角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.19. <8分)<2018?温州)如图,在方格纸中,△ ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.EmxvxOtOco<1)将厶ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;<2)以点C为旋转中心,将△ ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.占:八、、・考作图-旋转变换;作图-平移变换.点本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握专图表型.题:分析: <1)根据网格结构,把△ ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;<2)把厶ABC绕点C顺时针旋转90°即可使点P在三角形内部.评:网格结构是解题的关键.20. <10分)<2018?温州)如图,抛物线y二a<x- 1)2+4与x轴交于点A, B,与y轴交于点C,过点C作CD// x轴交抛物线的对称轴于点D,连接BD已知点A的坐标为<-1, 0)SixE2yXPq5<1)求该抛物线的解读式;考待定系数法求二次函数解读式;二次函数的性质;抛物线与x 点:轴的交点.专计算题.题:分<1 )将A坐标代入抛物线解读式,求出a的值,即可确定出解析:读式;<2)抛物线解读式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,利用梯形面积公式即可求出梯形COB啲面积.解解:<1)将A<- 1, 0)代入y=a<x- 1)2+4 中,得:0=4a+4, 答:解得:a= - 1,则抛物线解读式为y= - <x- 1)2+4;<2)对于抛物线解读式,令x=0,得到y=3,即OC=3 T抛物线解读式为y=- <x- 1)2+4的对称轴为直线x=1,••• CD=1v A<- 1, 0),• B<3, 0), 即卩OB=3贝卩S梯形OCDA= :=6.点此题考查了利用待定系数法求二次函数解读式,二次函数的性评:质,以及二次函数与x轴的交点,熟练掌握待定系数法是解本题的关键.21. <10分)<2018?温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.6ewMyirQFL<1)求从袋中摸出一个球是黄球的概率;<2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于丄,问至少取出了多少个黑球?考kavU42VRUs概率公式;一兀一次不等式的应用.点:分析:<1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;<2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.解答:解:<1)丁一个不透明的袋中装有5个黄球,13个黑球和22 个红球,•••摸出一个球摸到黄球的概率为:门”三;5+1a <2)设取走x个黑球,则放入x个黄球,由题意,得毙:22寻,解得:x峙答:至少取走了9个黑球.占八、、评此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P<A』.n22.<10分)<2018?温州)如图,AB为O O的直径,点C在O 0上,延长BC至点D,使DC=CB延长DA与O O的另一个交点为E,连接AG CE y6v3ALoS89<1)求证:/ B=Z D<2)若AB=4 BC- AC=2 求CE的长.考圆周角定理;等腰三角形的判定与性质;勾股定理.点:八、、・分V1)由AB为。
2018 年浙江省温州市中考数学试卷一、选择题(本题有 10 小题,每小题 4 分,共 40 分.每小题只有一个选项是正 确的,不选、多选、错选,均不给分)1.(4.00 分)给出四个实数 ,2,0,﹣1,其中负数是() A . B .2 C .0 D .﹣ 12.(4.00 分)移动台阶如图所示,它的主视图是() 4.(4.00 分)某校九年级 “诗歌大会 ”比赛中,各班代表队得分如下 (单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9 分B .8 分C .7 分D .6 分 5.(4.00 分)在一个不透明的袋中装有 10 个只有颜色不同的球, 其中 5 个红球、3 个黄球和 2 个白球.从袋中任意摸出一个球,是白球的概率为( B . C . D .4.00 分)若分式 的值为 0,则 x 的值是( )7.(4.00 分)如图,已知一个直角三角板的直角顶点与原点重合, 另两个顶点 A ,B 的坐标分别为(﹣ 1,0),(0, ).现将该三角板向右平移使点 A 与点 O 重 合,得到△ OCB ′,则点 B 的对应点 B ′的坐标是( )C .C . a 8D .a 12A . 6.A . 2B .0C .﹣ 2D .﹣5 A .a 6?a 2的结果是a 3 B .a 48.(4.00 分)学校八年级师生共 466 人准备参加社会实践活动.现已预备了 49 座和 37 座两种客车共 10 辆,刚好坐满.设 49 座客车 x 辆,37 座客车 y 辆,根 D .9.(4.00 分)如图,点 A ,B 在反比例函数 y= (x>0)的图象上,点 C ,D 在 反比例函数 y= (k>0)的图象上, AC ∥BD ∥y 轴,已知点 A , B 的横坐标分别A .4B .3C .2D .10.( 4.00 分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股 形)分割成一个正方形和两对全等的直角三角形, 得到一个恒等式. 后人借助这种分割方法所得的图形证明了勾股定理, 如图所示的矩形由两个这样的图形拼成,, ) C .(1, ) D .(﹣ 1, )据题意可列出方程组) B .C . ,则 k 的值为( )A .20B .24C .D .二、填空题(本题有 6小题,每小题 5 分,共 30分)11.(5.00 分)分解因式: a 2﹣5a= .12.(5.00 分)已知扇形的弧长为 2π,圆心角为 60°,则它的半径为. 13.(5.00分)一组数据 1,3,2,7,x ,2,3 的平均数是 3,则该组数据的众 数为 .14.(5.00 分)不等式组 的解是 .15.(5.00分)如图,直线 y=﹣ x+4 与x 轴、y 轴分别交于 A ,B 两点,C 是 OB 的中点,D 是AB 上一点,四边形 OEDC 是菱形,则△OAE 的面积为 .16.(5.00分)小明发现相机快门打开过程中,光圈大小变化如图 1 所示,于是 他绘制了如图 2 所示的图形.图 2 中六个形状大小都相同的四边形围成一个圆的 内接正六边形和一个小正六边形, 若 PQ 所在的直线经过点 M ,PB=5cm ,小正六 边形的面积为 cm 2,则该圆的半径为 cm .8 小题,共 80 分 .解答需写出必要的文字说明、演算步骤或 证明过程)17.(10.00分)(1)计算:(﹣ 2)2﹣ +( ﹣1)0.、解答题(本题有(2)化简:(m+2)2+4(2﹣m).18.(8.00 分)如图,在四边形 ABCD中,E是 AB的中点,AD∥EC,∠AED=∠B.(1)求证:△ AED≌△ EBC.19.(8.00 分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营 150 家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的 20%,求甲公司需要增设的蛋糕店数量.20.(8.00 分)如图, P, Q是方格纸中的两格点,请按要求画出以 PQ为对角线的格点四边形.(1)在图 1 中画出一个面积最小的 ?PAQB.(2)在图 2 中画出一个四边形 PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线 CD由线段 PQ 以某一格点为旋转中心旋转得到.注:图 1,图 2 在答题纸上.21.(10.00分)如图,抛物线 y=ax2+bx(a≠0)交 x 轴正半轴于点 A,直线y=2x 经过抛物线的顶点 M .已知该抛物线的对称轴为直线 x=2,交 x 轴于点B.(1)求 a,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 OP,BP.设点P的横坐标为 m,△OBP的面积为 S,记 K= .求 K关于 m 的函数表达式及 K的22.(10.00分)如图,D 是△ABC的 BC边上一点,连接 AD,作△ ABD的外接圆,将△ ADC沿直线 AD折叠,点 C的对应点 E落在 BD上.( 1)求证: AE=AB.(2)若∠ CAB=9°0,cos∠ADB= ,BE=2,求 BC的长.23.(12.00分)温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120元,每增加 1 件,当天平均每件利润减少 2 元.设每天安排 x人生产乙产品.1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x( 2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550 元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一件产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 W(元)的最大值及相应的 x 值.24.(14.00分)如图,已知 P为锐角∠ MAN 内部一点,过点 P 作 PB⊥AM 于点B,PC⊥AN 于点 C,以 PB为直径作⊙ O,交直线 CP于点 D,连接 AP,BD,AP 交⊙ O于点 E.( 1)求证:∠ BPD=∠BAC.(2)连接 EB,ED,当 tan∠MAN=2,AB=2 时,在点 P 的整个运动过程中.①若∠ BDE=4°5,求 PD的长.②若△ BED为等腰三角形,求所有满足条件的 BD的长.(3)连接 OC,EC,OC交 AP于点 F,当 tan∠MAN=1,OC∥BE时,记△ OFP 的面积为 S1,△ CFE的面积为 S2,请写出的值.2018 年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10 小题,每小题4 分,共40 分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4.00 分)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣ 1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣ 1,其中负数是:﹣ 1.故选: D.【点评】此题主要考查了实数,正确把握负数的定义是解题关键.2.(4.00 分)移动台阶如图所示,它的主视图是()C.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是三个台阶,故选: B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(4.00 分)计算 a6?a2的结果是()A.a3 B.a4 C.a8 D.a12【分析】根据同底数幂相乘,底数不变,指数相加进行计算.【解答】解: a6?a2=a8,故选: C.点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法的计算法第7 页(共28页)则.4.(4.00 分)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9 分 B.8 分 C.7 分 D.6 分【分析】将数据重新排列后,根据中位数的定义求解可得.【解答】解:将数据重新排列为 6、7、7、7、8、9、9,所以各代表队得分的中位数是 7 分,故选: C.【点评】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(4.00 分)在一个不透明的袋中装有 10 个只有颜色不同的球,其中 5 个红球、3 个黄球和 2 个白球.从袋中任意摸出一个球,是白球的概率为()B.C.D.分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有 10 个小球,其中白球有 2 个,∴摸出一个球是白球的概率是 = ,故选: D.【点评】此题主要考查了概率的求法,如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m种结果,那么事件 A 的概率 P(A)= .6.(4.00 分)若分式的值为 0,则 x 的值是(A.2 B.0 C.﹣ 2 D.﹣5【分析】分式的值等于零时,分子等于零.【解答】 解:由题意,得 x+5=0, 解得, x=﹣ 5. 经检验,当 x=﹣5 时, =0. 故选: A .【点评】 本题考查了分式的值为零的条件.注意,分式方程需要验根.7.(4.00 分)如图,已知一个直角三角板的直角顶点与原点重合, 另两个顶点 A , B 的坐标分别为(﹣ 1,0),(0, ).现将该三角板向右平移使点 A 与点 O 重合,得到△ OCB ′,则点 B 的对应点 B ′的坐标是(A .(1,0)B .( , )C .(1, )D .(﹣ 1, ) 【分析】 根据平移的性质得出平移后坐标的特点,进而解答即可.【解答】 解:因为点 A 与点 O 对应,点 A (﹣ 1, 0),点 O (0,0), 所以图形向右平移 1 个单位长度,所以点 B 的对应点 B'的坐标为( 0+1, ),即( 1, ), 故选: C .【点评】此题考查坐标与图形变化, 关键是根据平移的性质得出平移后坐标的特 点.8.(4.00 分)学校八年级师生共 466 人准备参加社会实践活动.现已预备了 49 座和 37 座两种客车共 10 辆,刚好坐满.设 49 座客车 x 辆,37 座客车 y 辆,根 据题意可列出方程组( ). B . D .分析】 本题中的两个等量关系: 49 座客车数量 +37 座客车数量 =10,两种客车 载客量之和 =466.【解答】 解:设 49 座客车 x 辆, 37 座客车 y 辆,根据题意可列出方程组A .C ...故选: A .【点评】考查了由实际问题抽象出二元一次方程组, 根据实际问题中的条件列方 程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.(4.00 分)如图,点 A ,B 在反比例函数 y= (x>0)的图象上,点 C ,D 在 反比例函数 y= (k>0)的图象上, AC ∥BD ∥y 轴,已知点 A , B 的横坐标分别【分析】先求出点 A ,B 的坐标,再根据 AC ∥BD ∥y 轴,确定点 C ,点 D 的坐标, 求出 AC ,BD ,最后根据,△ OAC 与△ ABD 的面积之和为 ,即可解答.【解答】 解:∵点 A ,B 在反比例函数 y= (x>0)的图象上,点 A ,B 的横坐 标分别为 1,2,∴点 A 的坐标为( 1,1),点 B 的坐标为( 2, ),∵ AC ∥BD ∥y 轴, ∴点 C ,D 的横坐标分别为 1,2,∵点 C ,D 在反比例函数 y= (k>0)的图象上,∴点 C 的坐标为( 1,k ),点 D 的坐标为( 2, ),,则k 的值为(A .4B .3C .2D .∴ AC=k﹣ 1, BD= ,∴ S△OAC= (k﹣1)×1= , S△ABD= ? ×( 2﹣1)= ,OAC ABD∵△ OAC与△ABD的面积之和为,∴,∴,解得: k=3.故选: B.【点评】本题考查了反比例函数系数 k 的几何意义,解决本题的关键是求出AC,BD的长.10.( 4.00 分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,A.20 B.24 C.D.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为 x,在直角三角形 ACB中,利用勾股定理可建立关于 x 的方程,解方程求出 x 的值,进而可求出该矩形的面积.【解答】解:设小正方形的边长为 x,∵ a=3,b=4,∴AB=3+4=7,在 Rt△ABC中, AC2+BC2=AB2,即( 3+x)2+( x+4)2=72,整理得, x2+7x﹣12=0,解得 x= 或 x= (舍去),∴该矩形的面积 =(+3)(+4) =24,故选: B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.二、填空题(本题有6小题,每小题5 分,共30分)11.(5.00 分)分解因式: a2﹣5a= a(a﹣5).【分析】提取公因式 a 进行分解即可.【解答】解: a2﹣ 5a=a(a﹣5).故答案是: a(a﹣ 5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12.(5.00 分)已知扇形的弧长为2π,圆心角为 60°,则它的半径为 6 .【分析】根据弧长公式直接解答即可.解答】解:设半径为 r,解得: r=6,故答案为: 6点评】此题考查弧长公式,关键是根据弧长公式解答.13.(5.00分)一组数据 1,3,2,7,x,2,3 的平均数是 3,则该组数据的众第12 页(共28 页)数为 3 【分析】根据平均数的定义可以先求出 x 的值,再根据众数的定义求出这组数的 众数即可.【解答】 解:根据题意知=3,解得: x=3,则数据为 1、2、 2、3、 3、 3、 7, 所以众数为 3, 故答案为: 3.【点评】本题考查的是平均数和众数的概念. 注意一组数据的众数可能不只一个. 14.(5.00 分)不等式组 的解是 x>4分析】 先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可. 解答】 解①得 x>2,解②得 x>4.故不等式组的解集是 x>4.故答案为: x> 4.【点评】 考查了解一元一次不等式组, 一元一次不等式组的解法: 解一元一次不 等式组时, 一般先求出其中各不等式的解集, 再求出这些解集的公共部分. 解集 的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.OB 的中点,D 是 AB 上一点,四边形 OEDC 是菱形,则△ OAE 的面积为 2y 轴分别交于 A ,B 两点, C 是15.(5.00 分)如图,直【分析】延长 DE交 OA 于 F,如图,先利用一次函数解析式确定 B(0,4),A (4 ,0),利用三角函数得到∠ OBA=6°0,接着根据菱形的性质判定△ BCD 为等边三角形,则∠ BCD=∠COE=6°0,所以∠ EOF=3°0,则 EF= OE=1,然后根据三角形面积公式计算.【解答】解:延长 DE交 OA 于 F,如图,当 x=0时, y=﹣ x+4=4,则 B(0,4),当 y=0 时,﹣ x+4=0,解得 x=4 ,则 A(4 , 0),在 Rt△AOB中, tan∠OBA= = ,∴∠ OBA=6°0,∵C是 OB的中点,∴OC=CB=,2∵四边形 OEDC是菱形,∴CD=BC=DE=CE,=2CD∥OE,∴△ BCD为等边三角形,∴∠ BCD=6°0,∴∠ COE=6°0,∴∠ EOF=3°0,∴ EF= OE=1,△OAE的面积 = ×4 ×1=2 .故答案为 2 .【点评】本题考查了一次函数图象上点的坐标特征:一次函数 y=kx+b,(k≠ 0,且 k,b 为常数)的图象是一条直线.它与 x 轴的交点坐标是(﹣, 0);与y 轴的交点坐标是( 0, b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.(5.00 分)小明发现相机快门打开过程中,光圈大小变化如图 1 所示,于是他绘制了如图 2 所示的图形.图 2 中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若 PQ 所在的直线经过点 M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为 8 cm.【分析】设两个正六边形的中心为 O,连接 OP,OB,过 O作 OG⊥PM,OH⊥AB,由正六边形的性质及邻补角性质得到三角形三角形 PMN 为等边三角形,由小正六边形的面积求出边长,确定出 PM 的长,进而求出三角形 PMN 的面积,利用垂径定理求出 PG的长,在直角三角形 OPG中,利用勾股定理求出OP的长,设 OB=xcm,根据勾股定理列出关于 x 的方程,求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为 O,连接 OP,OB,过 O作OG⊥PM,OH ⊥AB,由题意得:∠ MNP=∠NMP=∠MPN=6°0 ,∵小正六边形的面积为cm2,∴小正六边形的边长为 7 cm ,即 PM=7 cm ,2∴ S △MPN =cm , ∵OG ⊥PM ,且 O 为正六边形的中心, ∴PG= PM= cm ,在 Rt △ OPG 中,根据勾股定理得:设 OB=xcm , ∵OH ⊥AB ,且 O 为正六边形的中心,∴ BH= x , OH= x ,∴ PH=(5﹣ x )cm ,在 Rt △PHO 中,根据勾股定理得: OP 2=( x )2+(5﹣ x )2=49,解得: x=8(负值舍去),点评】 此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有 8 小题,共 80分.解答需写出必要的文字说明、演算步骤或 证明过程)17.(10.00分)(1)计算:(﹣ 2)2﹣ +( ﹣1)0.(2)化简:(m+2)2+4(2﹣m ).【分析】(1)本题涉及零指数幂、乘方、二次根式化简 3 个考点.在计算时,需 要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算,再合并同类项即可求解.【解答】 解:(1)(﹣ 2)2﹣ +( ﹣1)0=4﹣ 3 +1=5﹣ 3 ;=7cm , 则该圆的半径为 8cm .(2)(m+2)2+4(2﹣m)2=m2+4m+4+8﹣ 4m=m2+12.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.(8.00 分)如图,在四边形 ABCD中,E是 AB的中点,AD∥EC,∠AED=∠B.(1)求证:△ AED≌△ EBC.【分析】(1)利用 ASA即可证明;( 2)首先证明四边形 AECD是平行四边形,推出 CD=AE= AB 即可解决问题;【解答】(1)证明:∵ AD∥EC,∴∠ A=∠ BEC,∵E是 AB中点,∴AE=EB,∵∠ AED=∠B,∴△ AED≌△ EBC.(2)解:∵△ AED≌△ EBC,∴AD=EC,∵AD∥EC,∴四边形 AECD是平行四边形,∴CD=AE,∵AB=6,∴ CD= AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.(8.00 分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营 150 家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的 20%,求甲公司需要增设的蛋糕店数量.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量,再用总数量乘以甲公司数量占总数量的比例可得;( 2)设甲公司增设 x 家蛋糕店,根据“该市增设蛋糕店数量达到全市的 20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为 150÷ =600 家,甲公司经营的蛋糕店数量为 600× =100 家;(2)设甲公司增设 x 家蛋糕店,由题意得: 20%×( 600+x)=100+x,解得: x=25,答:甲公司需要增设 25 家蛋糕店. 【点评】本题主要考查扇形统计图与一元一次方程的应用, 解题的关键是掌握扇 形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的 百分数及根据题意确定相等关系,并据此列出方程.20.(8.00 分)如图, P , Q 是方格纸中的两格点,请按要求画出以 PQ 为对角线 的格点四边形.(1)在图 1 中画出一个面积最小的 ?PAQB .(2)在图 2 中画出一个四边形 PCQD ,使其是轴对称图形而不是中心对称图形, 且另一条对角线 CD 由线段 PQ 以某一格点为旋转中心旋转得到.注:图 1,图 2 在答题纸上.分析】(1)画出面积是 4 的格点平行四边形即为所求;2)画出以 PQ 为对角线的等腰梯形即为所求.解答】 解:(1)如图①所示:【点评】本题考查了作图﹣旋转变换: 根据旋转的性质可知, 对应角都相等都等 于旋转角, 对应线段也相等, 由此可以通过作相等的角, 在角的边上截取相等的 线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.2)如图②所21.(10.00分)如图,抛物线 y=ax2+bx(a≠0)交 x 轴正半轴于点 A,直线y=2x经过抛物线的顶点 M .已知该抛物线的对称轴为直线 x=2,交 x 轴于点 B .(1)求 a ,b 的值.(2)P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 OP ,BP .设点 P 的横坐标为 m ,△OBP 的面积为 S ,记 K= .求 K 关于 m 的函数表达式及 K 的【分析】(1)根据直线 y=2x 求得点 M (2,4),由抛物线的对称轴及抛物线上的 点 M 的坐标列出关于 a 、b 的方程组,解之可得;(2)作 PH ⊥x 轴,根据三角形的面积公式求得 S=﹣m 2+4m ,根据公式可得 K 的 解析式,再结合点 P 的位置得出 m 的范围,利用一次函数的性质可得答案. 【解答】 解:(1)将 x=2 代入 y=2x ,得: y=4,∴点 M ( 2, 4),由题意,得: ,∴;过点 P 作 PH ⊥x 轴于点 H ,y=﹣x 2+4x ,2)如抛物线的解析式∵B(2,0),∴OB=2,∴ S= OB?PH2= × 2×(﹣ m +4m)2=﹣m2+4m,∴ K= =﹣m+4,由题意得 A(4,0),∵M(2,4),∴2<m<4,∵K随着 m 的增大而减小,∴0<K<2.【点评】本题主要考查抛物线与 x 轴的交点,解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.(10.00 分)如图,D 是△ABC的 BC边上一点,连接 AD,作△ ABD的外接圆,将△ ADC沿直线 AD折叠,点 C的对应点 E落在 BD上.( 1)求证: AE=AB.(2)若∠ CAB=9°0,cos∠ADB= ,BE=2,求 BC的长.【分析】(1)由折叠得出∠ AED=∠ACD、AE=AC,结合∠ ABD=∠AED 知∠ ABD=∠ ACD,从而得出 AB=AC,据此得证;(2)作 AH⊥BE,由 AB=AE且 BE=2知 BH=EH=1,根据∠ ABE=∠AEB=∠ADB知 cos∠ABE=cos∠ADB= = ,据此得 AC=AB=3,利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知,△ ADE≌△ ADC,∴∠ AED=∠ACD, AE=AC,∵∠ ABD=∠AED,∴∠ ABD=∠ACD,∴AB=AC,∴AE=AB;2)如图,过 A 作 AH⊥BE于点 H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ ABE=∠AEB=∠ADB,cos∠ADB= ,∴cos∠ ABE=cos∠ADB= ,∴ = .∴ = .∴AC=AB=3,∵∠ BAC=9°0, AC=AB,∴ BC=3 .【点评】本题主要考查三角形的外接圆,解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.(12.00分)温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120元,每增加 1 件,当天平均每件利润减少 2 元.设每天安排 x 人生产乙产品.1)根据信息填表( 2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550 元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一件产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 W(元)的最大值及相应的 x 值.【分析】(1)根据题意列代数式即可;( 2)根据( 1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到 m 与 x之间的关系式,用 x 表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知,每天安排 x 人生产乙产品时,生产甲产品的有( 65 ﹣ x)人,共生产甲产品 2(65﹣x)件.在乙每件 120 元获利的基础上,增加 x 人,利润减少 2x 元每件,则乙产品的每件利润为( 130﹣2x)元.故答案为: 65﹣ x;2(65﹣x);130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴ x2﹣80x+700=0解得 x1=10, x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是 110 元.(3)设生产甲产品 m 人W=x(130﹣2x)+15×2m+30(65﹣x﹣m) =﹣2(x﹣25)2+3200∵ 2m=65﹣ x﹣m∴m=∵ x、m 都是非负数∴取 x=26 时, m=13,65﹣ x﹣ m=26即当 x=26 时, W 最大值=3198 答:安排 26 人生产乙产品时,可获得的最大利润为3198 元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.24.(14.00 分)如图,已知 P 为锐角∠ MAN 内部一点,过点 P 作 PB⊥AM 于点B,PC⊥AN 于点 C,以 PB为直径作⊙ O,交直线 CP于点 D,连接 AP,BD,AP 交⊙ O于点 E.( 1)求证:∠ BPD=∠BAC.(2)连接 EB,ED,当 tan∠MAN=2,AB=2 时,在点 P 的整个运动过程中.①若∠ BDE=4°5,求 PD的长.②若△ BED为等腰三角形,求所有满足条件的 BD的长.(3)连接 OC,EC,OC交 AP于点 F,当 tan∠MAN=1,OC∥BE时,记△ OFP 的面积为 S1,△ CFE的面积为 S2,请写出的值.【分析】(1)由 PB⊥AM、PC⊥AN知∠ ABP=∠ACP=9°0,据此得∠ BAC+∠ BPC=18°0,根据∠ BPD+∠BPC=18°0即可得证;(2)①由∠ APB=∠BDE=4°5、∠ABP=90°知 BP=AB=2 ,根据tan∠BAC=tan∠BPD= =2 知 BP= PD,据此可得答案;②根据等腰三角形的定义分 BD=BE、BE=DE 及 BD=DE三种情况分类讨论求解可得;(3)作 OH⊥DC,由 tan∠BPD=tan∠MAN=1知 BD=PD,据此设 BD=PD=2a、PC=2b,从而得出 OH=a、CH=a+2b、AC=4a+2b,证△ ACP∽△ CHO 得 = ,据此得出 a=b及 CP=2a、CH=3a、OC= a,再证△ CPF∽△ COH,得 = ,据此求得 CF= a、OF= a,证 OF为△ PBE的中位线知 EF=PF,从而依据 = 可得答案.【解答】解:(1)∵ PB⊥AM、PC⊥ AN,∴∠ ABP=∠ACP=9°0,∴∠ BAC+∠BPC=18°0,又∠ BPD+∠BPC=18°0,∴∠ BPD=∠BAC;∵∠ APB=∠BDE=4°5,∠ ABP=90°,∴ BP=AB=2 ,∵∠ BPD=∠BAC,∴ tan∠ BPD=tan∠ BAC,∴ =2,∴ BP= PD,∴PD=2;②当 BD=BE时,∠ BED=∠BDE,∴∠ BPD=∠BPE=∠BAC,∴ tan∠ BPE=2,∵ AB=2 ,∴ BP= ,∴BD=2;当 BE=DE时,∠ EBD=∠ EDB,∵∠ APB=∠BDE、∠ DBE=∠APC,∴∠ APB=∠APC,∴ AC=AB=2 ,过点 B 作 BG⊥AC于点 G,得四边形 BGCD是矩形,∵ AB=2 、tan∠BAC=2,∴AG=2,∴ BD=CG=2 ﹣ 2;当 BD=DE时,∠ DEB=∠ DBE=∠APC,∵∠ DEB=∠DPB=∠ BAC,∴∠ APC=∠BAC,设 PD=x,则 BD=2x,∴ =2,∴ =2,∴,∴,∴ x= ,∴ BD=2x=3,综上所述,当 BD=2、3 或 2 ﹣2时,△ BDE为等腰三角形;3)如图 3,过点 O作 OH⊥DC于点 H,∵ tan∠ BPD=tan∠MAN=1,∴BD=PD,设 BD=PD=2a、 PC=2b,则 OH=a、 CH=a+2b、 AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠ PFC=90°,∴∠PAC+∠APC=∠OCH+∠APC=9°0,∴∠ OCH=∠PAC,∴△ ACP∽△ CHO,∴ = ,即 OH?AC=CH?P,C∴a(4a+2b)=2b(a+2b),∴a=b,即 CP=2a、 CH=3a,则 OC= a ,∵△ CPF∽△ COH,∴ = ,即 = ,∴ = ,即 = ,则 CF= a, OF=OC﹣ CF= a,∵ BE∥OC且 BO=PO,∴ OF为△ PBE的中位线,∴EF=PF,∴ = = .∴.【点评】本题主要考查圆的综合问题,解题的关键是掌握圆周角定相似三角理、形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.第31 页(共28 页)。