微波催化氧化技术在废水处理中的应用
- 格式:pdf
- 大小:548.38 KB
- 文档页数:8
微波催化氧化处理活性艳红X-3B陈红英;江燕雯;李军【摘要】以MnO2/Al2O3为催化剂,采用微波催化氧化技术处理活性艳红X-3B 染料废水.试验考察了催化剂用量、辐照时间、辐照功率和初始质量浓度等因素对处理效果的影响.试验得出了最佳处理工艺条件:催化剂用量150 g/L,微波辐照功率560W,辐照时间3 min,该工艺对500 mg/L染料废水的脱色率为87.18%,TOC去除率为64.14%.动力学研究表明:该反应过程符合一级反应动力学规律,其动力学方程为lnCt=-0.368 2t+5.296 0,反应速率常数为0.368 2/min,反应的半衰期为1.882 5 min.【期刊名称】《浙江工业大学学报》【年(卷),期】2014(042)002【总页数】5页(P194-198)【关键词】微波;催化氧化;染料废水;MnO2/Al2O3【作者】陈红英;江燕雯;李军【作者单位】浙江工业大学建筑工程学院,浙江杭州310014;浙江工业大学建筑工程学院,浙江杭州310014;浙江工业大学建筑工程学院,浙江杭州310014【正文语种】中文【中图分类】X703.1随着工业技术的迅猛发展和生产规模的不断扩大,我国的工业废水量日益增多,水污染日益严重,目前我国的地表水和地下水均受到不同程度的污染[1].水中污染物主要来自各工业领域,其中化工、染料、造纸等行业产生的有机废水对水资源造成的污染最为严重,染料工业污染中尤以染料废水的污染问题最为突出.近些年来,我国每年污水排放量达390多亿吨,其中工业污水占51%,而染料废水又占总工业废水排放量的35%,而且还以l%的速度在逐年增加.每排放1 t染料废水,就能造成20 t水体的污染.随着印染工业的迅猛发展,染料废水已成为水体中几种最主要的污染源之一[2].染料废水成分复杂,COD质量浓度高,有机物含量高,颜色深,毒性大,加之近年来染料向着抗光解、抗氧化、抗生物氧化等方向发展,使得染料废水的处理难度加大[3].目前染料废水的处理方法主要有吸附法、混凝沉淀法、生物法、电解法和氧化法等.这些方法都有一定程度的不足,吸附法是将有机物从液相中转移到固相中,因而需要进一步处理,同时还存在二次污染和吸附剂回收等问题[4];混凝沉淀法和生物法产生的污泥量大,污泥处置困难,同时生物法对废水的可生化性和COD的要求高[5-6];电解法对色度去除率高,能有效提高可生化性,综合效果好,运行费用低,但处理量较小[7];化学氧化法往往需要消耗大量的化学药品,而且有可能造成二次污染[8];光催化氧化效率高,无二次污染,但目前仍处于实验室阶段[9].与传统技术相比,微波催化氧化技术具有快速、高效及不会造成二次污染等显著优点,同时可使废水处理工程小型化、分散化,具有较高的社会和环境效益[10].基于以上优点,刘宗瑜[11]、关晓彤[12]、姜思朋[13]和洪光[14]等对该技术处理染料废水进行了研究,都取得了理想的处理效果,但普遍存在处理量少,微波辐照时间长,以致体系水温严重升高甚至沸腾等问题,因而不符合实际的工况,难以付诸实践.为克服以上缺点,笔者探索了一种新型催化剂用于微波催化氧化反应.本试验以活性艳红X-3B染料为处理对象,研究以MnO2/Al2O3为催化剂的微波催化氧化工艺处理染料废水的可行性,考查并优化了处理工艺条件,研究探讨了该工艺对活性艳红X-3B的脱色反应动力学.1 试验部分1.1 试验仪器与材料活性红X-3B,购于武汉某公司;50%硝酸锰溶液,上海华精生物高科技有限公司;Fe(NO3)3,上海试四赫维化工有限公司;直径为2~3 mm的颗粒状氧化铝;活性炭;MM721AAU-PW型格兰仕微波炉,广东美的微波电器制造有限公司;TU-1901型紫外可见分光光度计,北京普析通用仪器有限责任公司;SXZ-12-16箱式电阻炉,济南精密科学仪器仪表有限公司;DHG-9146A型电热恒温鼓风干燥箱,上海精宏实验设备有限公司;multi N/C 2100型TOC测定仪,德国耶拿分析仪器股份有限公司;KQ2200型超声波清洗器,昆山市超声仪器有限公司;THZ-C恒温振荡器,太仓市科教器材厂.1.2 试验步骤将100 mL一定质量浓度的活性艳红X-3B染料废水倒入装有催化剂的静态反应器中,放入微波炉中辐照一定时间,冷却至室温后补加蒸馏水定容至100 mL,水样经0.45 μm的玻璃纤维滤膜过滤后取样分析.1.3 分析方法采用TU-1901型紫外—可见分光光度计在200~600 nm范围内对染料溶液进行UV扫描,测得活性艳红X-3B的最大吸收波长为539 nm.在最大吸收波长条件下,采用紫外-可见分光光度计测定染料降解前后的吸光度值.在一定质量浓度范围内,染料质量浓度与染料在最大吸收波长处的吸光度成线性关系,关系式为y=0.0151C+0.003 8(R2=0.999 9),根据吸光度可求得染料质量浓度.染料脱色率的计算公式为(1)式中:C0为染料废水初始质量浓度(或初始TOC质量浓度),mg/L;C为剩余染料废水质量浓度(或剩余TOC质量浓度),mg/L.TOC用总有机碳测定仪(multi N/C 2100型)测定,并按式(1)计算TOC去除率.1.4 催化剂的制备1) 催化剂载体的预处理.将Al2O3用蒸馏水反复冲洗,以洗去杂质,然后将洗净的Al2O3置于烘箱中干燥8 h,最后放在马弗炉中于600 ℃条件下活化3 h,冷却备用.2) 配制某质量浓度(以硝酸锰的量计)硝酸锰溶液,将一定量已经活化的Al2O3浸入硝酸锰溶液中,并置于恒温摇床中振荡浸渍若干小时,期间超声30 min.3) 取出载体过滤,将负载后的载体置于培养皿中,室温下晾干后放入烘箱,在105 ℃下干燥24 h.4) 从烘箱中取出烘干的催化剂,放入马弗炉中,以5 ℃/min升温至所需温度,到达设定温度后保持若干小时,即制得成品催化剂.2 结果与讨论2.1 催化剂用量的影响设定活性艳红X-3B溶液质量浓度为500 mg/L,使用不同质量的催化剂,在微波功率为560 W时辐照3 min,根据不同指标的处理结果绘制出微波催化氧化工艺的催化剂用量与TOC去除率和脱色率的关系,试验结果如图1所示.图1 催化剂用量对处理效果的影响Fig.1 Effect of the amount of catalyst on the reaction结果表明:TOC去除率和脱色率都随着催化剂投加量的增加而提高,这一方面是催化剂吸附的贡献,另一方面是因为微波辐射使催化剂不均匀的表面产生许多“热点”,催化剂越多,产生的“热点”也就越多,从而氧化掉的活性艳红染料分子越多,TOC去除效果和脱色效果也就更好.当催化剂用量达150 g/L时,TOC去除率为64.14%,脱色率为87.18%.再增加催化剂的量,TOC去除率和脱色率的提高不是很明显,这可能是因为催化剂增多,导致催化剂之间互相重叠,减少了与污染物的接触面积.2.2 微波辐照时间的影响在现有的研究[12-14]中,大多数试验的微波时间比较长,都在5 min以上,这在一定程度上增加了处理成本.本试验在催化剂用量150 g/L,微波功率560 W的条件下,处理100 mL质量浓度为500 mg/L的活性艳红X-3B模拟染料废水,考察微波辐照时间对催化剂处理效果的影响,结果见图2.图2 微波辐照时间对处理效果的影响Fig.2 Effect of microwave irradiationtime on reaction从图2可以看出:随着微波辐照时间的延长,染料废水的脱色率和TOC去除率也跟着增加.微波催化氧化工艺处理染料废水时,脱色率受微波辐照时间的影响较大,当微波辐照1 min时,染料废水的脱色率就有了很大的提高,3 min之后,脱色率增加的趋势变得缓慢.而该工艺对染料废水的TOC去除率随微波辐照时间每增加2 min提高7%,但对实际工程来说不可能无限制的延长对所要处理样品的微波辐照时间,为此应该结合实际情况以及处理成本综合考虑微波催化氧化工艺的微波辐照时间.本实验选用微波辐照3 min.2.3 微波辐照功率的影响微波辐照功率是影响微波催化氧化反应的重要因素之一,从理论上讲,微波辐照功率越高,催化剂表面所能达到的最高温度也越高,处理效果也就越好.在催化剂用量为150 g/L,500 mg/L活性艳红X-3B溶液100 mL,微波辐照时间3 min的条件下,改变微波辐照功率,测定染料废水的脱色率以及TOC去除率,结果如图3所示.图3 微波辐照功率对处理效果的影响Fig.3 Effect of microwave power onreaction试验中发现:虽然微波辐照的时间相同,但随着微波功率的增加,催化氧化工艺对染料废水的脱色率和TOC去除率都在提高.当微波辐照功率从140 W增加到700 W时,微波催化氧化工艺对染料废水的TOC去除率从36.46%升到69.75%,提高了47.73%.出现这种现象可能是因为低功率的微波辐照使反应体系的温度上升较慢,辐照3 min反应体系仍处于低温状态,或是在3 min之内反应体系处于低温的时间较短,从而造成反应速度慢,降解效率低.而用较高的微波功率辐照时,反应体系的温度上升较快,相对于低功率的条件而言它在3 min之内,反应体系处于高温的时间就较长,反应速度相对较快.同时,较高功率的微波辐照不仅会使催化剂表面“热点”吸收微波的能量变多,还会增加“热点”的数量,从而增加分子的碰撞频率促使分子化合键的断裂,有利于活性艳红X-3B的去除.2.4 废水初始质量浓度的影响废水初始质量浓度对微波催化氧化工艺的处理效果影响较大,初始质量浓度过高,催化剂将无法正常发挥其功效;初始质量浓度过低,催化剂的催化性能得不到充分利用.在催化剂用量为150 g/L,微波功率为560 W,微波辐射时间为3 min的条件下,考察活性艳红X-3B的质量浓度对催化氧化处理效果的影响,结果如图4所示.图4 活性艳红X-3B初始质量浓度的影响Fig.4 Effect of the initial concentration of reactive brilliant red X-3B on reaction图4显示:废水初始质量浓度影响着微波催化氧化工艺的处理效果.当活性艳红X-3B的初始质量浓度从100 mg/L增加到400 mg/L时,染料废水的TOC去除率12.60%提高到74.75%,呈现出明显的上升趋势.这可能是因为在该质量浓度范围内,随着污染物质量浓度的增加,染料分子与自由基之间相互碰撞的机会相应增多,故而TOC去除率也就大大提高.当废水初始质量浓度增加到500 mg/L以后,TOC去除率则直线下降,可见,活性艳红X-3B质量浓度为400 mg/L的溶液环境能充分发挥催化剂的作用.尽管TOC去除率在活性艳红X-3B质量浓度达到500 mg/L后有所降低,但TOC降解量并没有因此而受到影响,它随着溶液质量浓度的增高而增大.这可能是因为反应物质量浓度增大,被降解的污染物也就增多.2.5 三种工艺的对比在微波功率为560 W,催化剂投加量为150 g/L的条件下比较微波催化氧化、MnO2/Al2O3吸附与单纯微波辐照三种方法对100 mL初始质量浓度为500mg/L的活性艳红X-3B染料废水的处理效果,结果如图5所示.图5 不同处理工艺的处理效果Fig.5 Treatment effect of the different processes结果表明:单纯的微波辐照并不能对废水进行任何有效地处理,即单纯的微波能并不能破坏废水中的任何有机成分.不管是从脱色率还是从TOC去除率来看,单纯微波的处理效果远远不如微波催化氧化的好.即使单纯微波7 min,其TOC去除率也只有5.22%,脱色率不到7%;而微波催化氧化1 min的TOC去除率就高达57.81%,脱色率达73.77%.用MnO2/Al2O3吸附处理活性艳红X-3B染料废水120 min,TOC去除率才能达到54.79%.这一结果从侧面证明了催化氧化工艺中催化剂表面”热点”的存在,验证了微波催化氧化工艺的优越性.2.6 微波催化氧化反应动力学以MnO2/Al2O3为催化剂,微波催化氧化处理100 mL初始质量浓度为500mg/L的活性艳红X-3B染料废水,考察其处理效果与处理时间之间的关系,建立表观反应动力学方程.反应条件:催化剂用量150 g/L,微波辐射功率560 W,结果如图6所示.图6 反应动力学研究Fig.6 Kinetic studies结果表明:微波催化氧化工艺处理活性艳红X-3B废水过程中lnC与t呈线性关系,这说明该过程符合表观一级反应动力学,其动力学方程为lnCt=-0.368 2t+5.296 0,反应速率常数k=0.368 2/min,反应的半衰期为.3 结论本试验所研制的催化剂用于微波催化氧化工艺处理活性艳红X-3B染料废水取得了很好的效果.其最佳反应条件:催化剂用量150 g/L,微波辐照时间3 min,微波功率560 W.在此工艺条件下,初始质量浓度为500 mg/L的染料废水脱色率达87.18%,TOC去除率达64.14%,处理效果较为理想.微波催化氧化处理活性艳红染料废水脱色表观反应动力学研究表明:该反应符合一级反应动力学,其动力学方程为lnCt=-0.368 2t+5.296 0,反应速率常数为0.368 2 /min,反应的半衰期为1.882 5 min.参考文献:[1] 中华人民共和国环境保护部.中国环境状况公报[R].北京:中华人民共和国环境保护部,2010.[2] 陈跃.染料废水处理技术及研究趋势[J].黄石理工学院学报,2011,27(1):8-14.[3] WOJNáROVITS L,TAKáCS E. Irradiation treatment of azo dye containing wastewater: an overview[J]. Radiation Physics and Chemistry,2008,77:225-244.[4] LIN R Y, CHEN Bang-shuo. Preparation of porous PMMA/Na+-montmorillonite cation-exchange membranes for cationic dye adsorption[J]. Journal of Membrane Science,2009,326:117-129.[5] 郭敏晓,孙振杰,胡小锐,等.混凝法处理印染生产废水的试验研究[J].中国资源综合利用,2009,27(12):17-19.[6] 冯凯,邱木清.生物法处理染料废水的研究与进展[J].工业水处理,2009,29(2):19-21.[7] 程沧沧,胡德文,周菊香.微电解—光催化氧化法处理印染废水[J].水处理技术,2005,31(7):46-47.[8] CONSTAPEL M, SCHELLENTRGER M. Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses[J].Water Research,2009,43:733-743.[9] STYLIDI M, KONDARIDES D I, VERYKIOS X E. Visible light-induced photocatalytic degradation of acid orange in aqueous TiO2suspensions[J].Applied Catalysis B:Environmental,2004,47(3):189-201.[10] 王哲明,王进明,臧传利,等.微波诱导催化氧化废水处理研究进展[J].水处理技术,2010,36(7):24-27.[11] 刘宗瑜,孙保平.微波辐射对染料废水处理的研究[J].工业水处理,2010,30(2):44-46.[12] 关晓彤,张金生,李丽华,等.微波诱导氧化处理直接蓝染料废水的研究[J].沈阳工业大学学报,2007,29(2):237-240.[13] 姜思朋,王鹏,张国宇,等.微波诱导氧化法处理BF—BR染料废水[J].中国给水排水,2004,20(4):237-240.[14] 洪光,王鹏,张国宇,等.改性凹土微波诱导氧化处理染料废水的实验研究[J].微波学报,2005,21(1):62-64.。
HUNAN UNIVERSITY题目:微波技术原理及其在化学化工领域的应用微波技术原理及其在化学化工领域的应用摘要:本文介绍了微波技术原理以及其发展背景,并针对微波技术在化学化工领域的应用概况进行了总结和介绍,也提出了应用中的问题以及展望。
关键词:微波技术,化学,化工1.引言微波是一种波长很短的电磁波,其频率介于300 MHz-300 GHz,波长介于1 mm-1 m之间。
因其波长介于远红外线和短波之间,故称之为微波。
微波具有的特点为高频性、波动性、热特性和非热特性[1]。
随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。
近年来,微波以其高效、均匀、节能、环保等诸多优点受到广泛关注,并逐渐成为一种新型能源得到越来越广泛的应用[2]。
2.微波技术的发展微波技术兴起于20世纪30年代,在电视、广播、通讯等相关技术领域中得到了广泛的应用。
经过长期发展后,美国于 1945 年率先发现了微波的又一特性,即热效应,并创新性的将其作为一种非通讯能源开始应用于工业、农业以及相关科学研究中。
微波技术的发展主要取决于微波器件的应用和发展。
早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。
但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,实验未能取得实质性的进展[3]。
1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实验条件。
美国电话电报公司的George C. Southworth.将波导用作宽带传输线并申请了专利,同时,美国麻省理工学院的M.L Barrow 完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[4]。
20世纪40年代,第二次世界大战期间,雷达的出现和使用引起了人们对微波理论和技术的高度重视,并研制了很多微波器件,在此期间,微波技术迅速发展并在实际应用中得到认可。
废水处理高级氧化及其催化剂技术随着工业发展,废水排放量急剧增加,高效水处理技术的开发与应用变得越来越重要。
相比生物处理为代表的常规技术,高级氧化技术可实现有机废水的高效处理,广泛应用于难降解有机废水的强化预处理和深度处理等过程,成为环境科学与技术领域的研究热点。
高级氧化过程与自由基密切相关,实现自由基的高效激发非常关键。
目前,高级氧化技术主要包括芬顿法、类芬顿法、过硫酸盐法、臭氧氧化法等,其反应过程多与催化技术密切相关。
高级氧化处理过程中,催化剂可有效促进自由基的快速生成和高效利用,提高反应速率,最终实现温和反应条件下的废水处理。
鉴于高级氧化法水处理技术的重要性,文中围绕高级氧化技术及其催化剂在难降解废水处理中的研究,对其进行了简要评述和展望。
1、高级氧化技术概况高级氧化技术是20世纪80年代兴起的新型、高效污染物控制技术,其通过高温、高压、电、声、光、催化剂等条件激发产生自由基,所产生的自由基的氧化能力接近或达到羟基自由基水平,这些自由基通过与有机污染物进行自由基链反应,最终实现污染物的降解与矿化。
经过几十年的发展,高级氧化技术得到多样化发展,主要包括芬顿氧化、类芬顿氧化、过硫酸盐氧化、臭氧氧化、湿式氧化、微波氧化和光催化氧化等。
由于反应条件和自由基产生原理的差异,不同高级氧化技术具有各自的技术特点和适用范围。
2、高级氧化技术及其催化剂2.1 芬顿氧化及其催化剂芬顿反应主要依靠Fe2+活化双氧水(H2O2)来产生羟基自由基,属于均相反应,具有催化效率高的特点。
研究表明,即使对于难降解的焦化废水,芬顿氧化仍具有较高的COD和挥发酚去除率,同时芬顿氧化还可提高废水的可生化性。
然而,芬顿氧化过程中大量使用Fe2+,存在因铁泥生成所引发的二次污染和处理成本问题。
为提高Fe2+的利用率,新型高效均相催化剂的开发及其催化氧化反应体系的建立非常关键。
HOU等基于羟胺的给电子作用,为芬顿催化氧化过程中Fe3+/Fe2+的原位循环提供了新策略,提高了反应体系中Fex+和H2O2的利用率。
《高级氧化技术在废水处理中的应用进展》篇一一、引言随着工业化的快速发展,废水排放量不断增加,给环境带来了巨大的压力。
废水处理技术的研究与开发显得尤为重要。
高级氧化技术(AOPs)作为一种高效、环保的废水处理方法,近年来受到了广泛关注。
本文将就高级氧化技术在废水处理中的应用进展进行详细阐述。
二、高级氧化技术的概述高级氧化技术是指利用强氧化剂(如羟基自由基等)产生的强氧化性,将废水中的有机污染物快速、高效地矿化成无害物质的技术。
该技术具有反应速度快、处理效率高、无二次污染等优点。
三、高级氧化技术在废水处理中的应用1. 光催化氧化技术光催化氧化技术是利用光激发催化剂产生电子和空穴,通过空穴与水或水中的氧发生反应,产生强氧化性的羟基自由基等中间体,从而达到降解有机物的目的。
近年来,该技术在废水中有机污染物的去除方面取得了显著的成果。
2. 湿式氧化技术湿式氧化技术是在高温高压条件下,利用强氧化剂(如氧气、过氧化氢等)与废水中的有机物进行反应,将有机物迅速转化为二氧化碳和水等无害物质。
该技术适用于处理高浓度、难降解的有机废水。
3. 电化学氧化技术电化学氧化技术是通过电化学反应产生强氧化剂,如羟基自由基等,对废水中的有机物进行降解。
该技术具有操作简便、设备紧凑等优点,适用于处理含有重金属离子和有机污染物的废水。
四、高级氧化技术的进展与挑战随着研究的深入,高级氧化技术在废水处理中的应用不断拓展。
近年来,研究者们针对不同类型废水的特点,开发了多种新型的高级氧化技术。
例如,结合光催化与电化学的复合技术,以及利用超声波、微波等物理手段辅助的高级氧化技术等。
这些技术的出现为废水处理提供了更多的选择。
然而,高级氧化技术在应用过程中仍面临一些挑战。
例如,催化剂的活性和稳定性问题、反应条件的优化以及处理成本的控制等。
此外,对于某些特定类型的废水,如何提高处理效率、降低能耗和减少二次污染等问题也是亟待解决的难题。
五、未来展望未来,随着环保要求的不断提高和科技的进步,高级氧化技术在废水处理中的应用将更加广泛。
微波诱导Na2S2O8处理DMP废水晏晓旭【摘要】采用微波诱导的高级氧化技术,活化Na2S2O8产生·SO4-,对含DMP废水的处理进行了研究.以DMP为目标污染物,考查了Na2S2O8投加量及反应时间等因素对DMP和COD去除率的影响.结果表明,微波诱导Na2S2O8产生·SO4-降解DMP废水的最佳反应条件为:微波功率800W,100℃,m(Na2S2O8):m(DMP)=0.6,加热140s,DMP和COD去除率最大,分别为72%和60%.【期刊名称】《化工管理》【年(卷),期】2019(000)001【总页数】3页(P98-99,106)【关键词】硫酸根自由基;高级氧化技术;过硫酸钠;微波;邻苯二甲酸二甲酯【作者】晏晓旭【作者单位】德州职业技术学院,山东德州 253000【正文语种】中文0 前言邻苯二甲酸酯又被称为酞酯酸,是人工合成的一类有机化合物,属于环境内分泌干扰物[1]。
工业生产及生活中常被用作增塑剂、食品包装、个人护理(如香皂、和洗发水和指甲油)、清洁剂和杀虫剂等等 [2]。
邻苯二甲酸酯室温下为粘稠无色液体,性质稳定,难溶于水,易溶于有机溶剂和酯类。
生产或使用邻苯二甲酸酯类(PAEs)物质工厂排放的废水是水体的主要污染源。
由于邻苯二甲酸酯类物质易溶于酯类和有机溶剂,所以极易在生物体内产生富集现象[3]。
人们通过饮水等途径进入体内的邻苯二甲酸酯类物质会产生类雌性激素,破坏体内血液激素平衡,干扰人体内分泌系统,长期饮用被邻苯二甲酸酯类物质污染的水会使人的神经系统、内分泌系统和免疫系统产生功能障碍,影响人体正常生长和发育[4]。
Tabacova等[5]对居住在塑料厂附近的孕妇进行调查,发现很多人都患有贫血、先兆子痫和毒血症等孕妇并发症,这些孕妇的尿液中邻苯二甲酸酯的平均浓度为2.17μg/mL尿,而正常孕妇仅为0.8μg/mL。
邻苯二甲酸酯类物质对水体的污染在我国也不容忽视。
浅谈水处理技术的应用和发展摘要:洁净水资源跟人们的生活息息相关。
本文主要介绍利用水处理技术实现水资源可持续发展。
文章列举了绿色氧化、绿色絮凝以及超声波、微波、等环保水处理技术,以及在国内外的研究应用现状,探讨了绿色水处理技术的发展趋势。
关键词:超声波水微波水光催化氧化水处理0 引言在当前的水处理技术中,处理效率低,能耗高且易带来二次污染,是水处理技术发展中的突出问题。
因此有必要采用高效、无毒、低能耗、无二次污染的绿色水处理技术,这也是实现水资源可持续发展、环境保护和生态安全的重要措施。
1 超声波、微波绿色水处理技术1.1 超声波水处理超声波水处理是一种新型绿色水处理技术,超声波是指频率在20kHz以上的声波。
用其辐射水溶液会产生许多物理化学变化,这种现象称为超声空化效应。
利用此效应,可以方便、快速地处理废水,尤其对含有毒有机污染物的废水,处理效果更显著。
目前,国内外对超声波水处理技术研究较为深入,研究方向也已从利用超声波单独处理转向超声波复合技术应用的研究。
目前主要有以下几个方面。
1.1.1 超声化学氧化目前的氧化物质有空气、、、以及Fenton试剂等,其中研究较早的是空气和。
超声波与臭氧氧化结合,产生超声臭氧氧化技术,处理效果明显。
此法在最近几年中研究较多,可降解的主要有机物包括酚类、染料、芳香化合物等。
超声臭氧氧化技术降解五氯酚,效果明显好于超声或臭氧单独使用时的效果。
在降解染料废水的过程中,超声波和臭氧氧化之间具有协同效应,产生协同效应的主要原因是超声波促进臭氧转化为自由基。
用臭氧对偶氮染料的脱色过程中增加超声辐射后,不仅可以在11min内达到90%的脱色率,而且臭氧投加量可节省48%。
超声波与结合处理难降解有机物的研究已有报道,其用于分解水中邻氯酚时,降解率可达99%,总有机碳的去除率为63%。
用超声强化氧化降解水中的4-氯苯酚,对水中4-氯苯酚的降解率和TOC去除率均比单独采用超声波效果好。