第五章 机械能守恒定律
- 格式:docx
- 大小:193.64 KB
- 文档页数:6
第7章 机械能守恒定律复习学案考点一 功的分析与计算1.功的正负(1)0≤α<90°,力对物体做正功.(2)90°<α≤180°,力对物体做负功,或者说物体克服这个力做了功.(3)α=90°,力对物体不做功.2.功的计算:W =Fl cos_α(1)α是力与位移方向之间的夹角,l 为物体对地的位移.(2)该公式只适用于恒力做功.(3)功是标(填“标”或“矢”)量.1. [正、负功的判断 ]如图2所示,质量为m 的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a 沿水平方向向左做匀加速运动,运动中物体m 与斜面体相对静止.则关于斜面对m 的支持力和摩擦力的下列说法中错误的是( )A .支持力一定做正功B .摩擦力一定做正功C .摩擦力可能不做功D .摩擦力可能做负功2. [变力功、合力的功的计算]如图3所示,长为L 的木板水平放置,在木板的A 端放置一个质量为m 的小物块,现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中,下列说法不正确的是( )A .木板对小物块做功为12m v 2 B .B .摩擦力对小物块做功为mgL sin αC .支持力对小物块做功为mgL sin αD .滑动摩擦力对小物块做功为12m v 2-mgL sin α考点二 功率的计算1.公式P =W t和P =F v 的区别 P =W t是功率的定义式,P =F v 是功率的计算式. 2.平均功率的计算方法(1)利用P =W t. (2)利用P =F ·v cos α,其中v 为物体运动的平均速度. 3.瞬时功率的计算方法(1)利用公式P =F v cos α,其中v 为t 时刻的瞬时速度.(2)P =F ·v F ,其中v F 为物体的速度v 在力F 方向上的分速度.(3)P =F v ·v ,其中F v 为物体受到的外力F 在速度v 方向上的分力.3. [对瞬时功率和平均功率的理解]把A 、B 两小球在离地面同一高度处以相同大小的初速度v 0分别沿水平方向和竖直方向抛出,不计空气阻力,如图5所示,则下列说法正确的是( )A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从开始运动至落地,重力对两小球做的功相同D .从开始运动至落地,重力对两小球做功的平均功率相同4. [P =Fv 公式的应用]水平面上静止放置一质量为m =0.2 kg 的物块,固定在同一水平面上的小型电动机通过水平细线牵引物块,使物块由静止开始做匀加速直线运动,2秒末达到额定功率,其v -t 图线如图6所示,物块与水平面间的动摩擦因数为μ=0.1,g =10 m/s 2,电动机与物块间的距离足够长.求:(1)物块做匀加速直线运动时受到的牵引力大小;(2)电动机的额定功率;(3)物块在电动机牵引下,最终能达到的最大速度.考点三 动能定理及其应用1.表达式:W =12m v 22-12m v 21=E k2-E k1. 2.理解:动能定理公式中等号表明了合外力做功与物体动能的变化具有等量代换关系.合外力做功是引起物体动能变化的原因.3.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.4.应用技巧:若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.5. [对动能定理的理解]如图8所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增加到v 2时,上升高度为H ,则在这个过程中,下列说法或表达式正确的是( )A .对物体,动能定理的表达式为WF N =12m v 22,其中W F N 为支持力的功 B .对物体,动能定理的表达式为W 合=0,其中W 合为合力的功C .对物体,动能定理的表达式为W F N -mgH =12m v 22-12m v 21D .对电梯,其所受合力做功为12M v 22-12M v 21 6.[动能定理的应用]如图9甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,求:(g =10 m/s 2)(1)A 与B 间的距离;(2)水平力F 在前5 s 内对物块做的功.考点四 机械能守恒的判断1.内容 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,但机械能的总量保持不变.2.条件只有重力或弹力做功.3.判断方法(1)用定义判断:若物体动能、势能均不变,则机械能不变.若一个物体动能不变、重力势能变化,或重力势能不变、动能变化或动能和重力势能同时增加(减少),其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其他力,但其他力不做功,机械能守恒.(3)用能量转化来判断:若物体或系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.(4)对多个物体组成的系统,除考虑外力是否只有重力做功外,还要考虑系统内力做功,如有滑动摩擦力做功时,因摩擦生热,系统机械能将有损失.7.[守恒条件的应用]一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关8. [机械能守恒定律的应用]如图2所示,劲度系数为k 的轻质弹簧,一端系在竖直放置的半径为R 的圆环顶点P ,另一端系一质量为m 的小球,小球穿在圆环上做无摩擦的运动.设开始时小球置于A 点,弹簧处于自然状态,当小球运动到最低点时速率为v ,对圆环恰好没有压力.下列分析正确的是( )A .小球过B 点时,弹簧的弹力为mg -m v 2RB .小球过B 点时,弹簧的弹力为mg +m v 22RC .从A 到B 的过程中,小球的机械能守恒D .从A 到B 的过程中,小球的机械能减少考点五 机械能守恒定律的应用机械能守恒的三种表达式1.守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2.转化观点(1)表达式:ΔE k=-ΔE p.(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.3.转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B 部分机械能的减少量.9.[机械能守恒定律的简单应用]如图4所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落,B沿斜面下滑,则从剪断轻绳到两物块着地,两物块()A.速率的变化量不同B.机械能的变化量不同C.重力势能的变化量相同D.重力做功的平均功率相同10.[综合问题的分析]如图5所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB平齐,静止放在倾角为53°的光滑斜面上.一长为L=9 cm的轻质细绳一端固定在O 点,另一端系一质量为m=1 kg的小球,将细绳拉直水平,使小球在位置C由静止释放,小球到达最低点D时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm.(g=10 m/s2,sin 53°=0.8,cos 53°=0.6)求:(1)轻质细绳受到的拉力最大值;(2)D点到水平线AB的高度h;(3)轻质弹簧所获得的最大弹性势能E p.考点六 多物体机械能守恒问题11. [绳连接的系统机械能守恒]如图7,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上、半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )A .2R B.5R 3 C.4R 3 D.2R 312.[轻杆连接的系统机械能守恒]质量分别为m 和2m 的两个小球P 和Q ,中间用轻质杆固定连接,杆长为L ,在离P 球L 3处有一个光滑固定轴O ,如图8所示.现在把杆置于水平位置后自由释放,在Q 球顺时针摆动到最低位置时,求:(1)小球P 的速度大小;(2)在此过程中小球P 机械能的变化量.考点七 能量守恒定律及应用1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.4.求解相对滑动物体的能量问题的方法(1)正确分析物体的运动过程,做好受力分析.(2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系.(3)公式Q=F f·x相对中x相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x相对为总的相对路程.13.如图4所示,在光滑水平地面上放置质量M=2 kg的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m=1 kg的小滑块自A点沿弧面由静止滑下,A点距离长木板上表面高度h=0.6 m.滑块在木板上滑行t=1 s后,和木板一起以速度v=1 m/s做匀速运动,取g=10 m/s2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块相对木板滑行的距离.第7章 机械能守恒定律复习学案答案1.答案 B解析 支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 是错误的.2. 答案 B解析 在抬高A 端的过程中,小物块受到的摩擦力为静摩擦力,其方向和小物块的运动方向时刻垂直,故在抬高阶段,摩擦力并不做功,这样在抬高小物块的过程中,由动能定理得:W F N +W G =0,即W F N -mgL sin α=0,所以W F N =mgL sin α.在小物块下滑的过程中,支持力不做功,滑动摩擦力和重力做功,由动能定理得:W G +W f =12m v 2,即W f =12m v 2-mgL sin α,B 错,C 、D 正确.在整个过程中,设木板对小物块做的功为W ,对小物块在整个过程由动能定理得W =12m v 2,A 正确. 3.答案 C4.答案 (1)0.28 N (2)0.224 W (3)1.12 m/s解析 (1)由题图知物块在匀加速阶段加速度大小a =Δv =0.4 m/s 2 物块受到的摩擦力大小F f =μmg设牵引力大小为F ,则有:F -F f =ma得F =0.28 N(2)当v =0.8 m/s 时,电动机达到额定功率,则P =F v =0.224 W(3)物块达到最大速度v m 时,此时物块所受的牵引力大小等于摩擦力大小,有F f =μmg ,P =F f v m解得v m =1.12 m/s.5.解析 电梯上升的过程中,对物体做功的有重力mg 、支持力F N ,这两个力的总功才等于物体动能的增量ΔE k =12m v 22-12m v 21,故A 、B 均错误,C 正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,故D 正确.6. 答案 (1)4 m (2)24 J解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B 点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数据得a =2 m/s 2,所以A 与B 间的距离为x =12at 2=4 m. (2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物块回到A 点时速度为v ,则v 2=2ax ,由动能定理知W -2μmgx =12m v 2,所以W =2μmgx +max =24 J. 7.答案 ABC解析 运动员到达最低点过程中,重力始终做正功,所以重力势能始终减少,A 项正确.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加,B 项正确.蹦极过程中,运动员、地球和蹦极绳所组成的系统,只有重力和弹力做功,所以机械能守恒,C 项正确.重力势能的改变与重力势能零点的选取无关,D 项错误.8. 答案 D解析 从A 到B 的过程中,小球和弹簧组成的系统机械能守恒,弹簧的弹性势能增大,小球的机械能减小;由于小球运动到最低点时速率为v ,对圆环恰好没有压力,根据牛顿第二定律,F 弹-mg =m v 2R ,即F 弹=mg +m v 2R,故只有选项D 正确. 9.答案 D解析 A 、B 开始时处于静止状态,对A :m A g =F T ①对B :F T =m B g sin θ②由①②得m A g =m B g sin θ即m A =m B sin θ③由机械能守恒知,mgh =12m v 2,所以v =2gh ,落地速率相同,故速率的变化量相同,A 项错误;剪断轻绳后,A 、B 均遵守机械能守恒定律,机械能没有变化,故B 项错误;由ΔE p =mgh ,因m不同,故ΔE p 不同,C 项错误;重力做功的功率P A =m A g v =m A g v 2=m A g 2gh 2,P B =m B g v sin θ=m B g 2gh 2sin θ,由③式m A =m B sin θ,得P A =P B ,D 项正确. 10.答案 (1)30 N (2)16 cm (3)2.9 J解析 (1)小球由C 运动到D ,由机械能守恒定律得: mgL =12m v 21解得v 1=2gL ① 在D 点,由牛顿第二定律得F T -mg =m v 21L② 由①②解得F T =30 N 由牛顿第三定律知细绳所能承受的最大拉力为30 N.(2)由D 到A ,小球做平抛运动v 2y =2gh ③ tan 53°=v y v 1④ 联立③④解得h =16 cm. (3)小球从C 点到将弹簧压缩至最短的过程中,小球与弹簧组成的系统机械能守恒,即E p =mg (L +h +x sin 53°),代入数据得:E p =2.9 J.11.答案 C解析 设A 球刚落地时两球速度大小为v ,根据机械能守恒定律得,2mgR -mgR =12(2m +m )v 2,解得v 2=23gR ,B 球继续上升的高度h =v 22g =R 3,B 球上升的最大高度为h +R =43R . 12.答案 (1)2gL 3 (2)增加49mgL 解析 (1)两球和杆组成的系统机械能守恒,设小球Q 摆到最低位置时P 球的速度为v ,由于P 、Q 两球的角速度相等,Q 球运动半径是P 球运动半径的两倍,故Q 球的速度为2v .由机械能守恒定律得2mg ·23L -mg ·13L =12m v 2+12·2m ·(2v )2,解得v =2gL 3. (2)小球P 机械能增加量ΔE =mg ·13L +12m v 2=49mgL 13.解析 (1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N.(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0由公式v -v 0=a 2t 解得v 0=3 m/s滑块沿弧面下滑的过程,由动能定理得mgh -W f =12m v 20 W f =mgh -12m v 20=1.5 J. (3)t =1 s 内木板的位移x 1=12a 1t 2 此过程中滑块的位移 x 2=v 0t +12a 2t 2 故滑块相对木板滑行距离 L =x 2-x 1=1.5 m.答案 (1)2 N (2)1.5 J (3)1.5 m。
第3讲机械能守恒定律【课程标准】1.理解重力势能,知道重力势能的变化与重力做功的关系。
定性了解弹性势能。
2.通过实验验证机械能守恒定律。
理解机械能守恒定律,体会守恒观念对认识物理规律的重要性。
3.能用机械能守恒定律分析生产生活中的有关问题。
【素养目标】物理观念:理解重力势能和弹力势能的概念,知道机械能守恒定律的内容。
科学思维:会分析机械能守恒的条件,能从机械能守恒的角度分析动力学问题。
一、重力势能与弹性势能重力势能弹性势能定义物体由于被举高而具有的能量发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能大小E p=mgh,h是相对于参考平面的高度与弹簧的形变量x、劲度系数k有关,x、k越大,弹性势能就越大特点系统性:物体与地球所共有相对性:大小与参考平面的选取有关标矢性:标量,正、负表示大小—力做功的特点重力做功与路径无关,只与始末位置的高度差有关—力做功与势能变化的关系1.重力(弹力)对物体做正功,重力(弹性)势能减小;反之则增加;2.重力(弹力)对物体做的功等于重力(弹性)势能的减少量,即W=E p1-E p2=-ΔE p3.重力势能的变化量是绝对的,与参考平面的选取无关。
命题·生活情境蹦极是近些年来新兴的一项非常刺激的户外休闲活动。
跳跃者站在约40米以上(相当于10层楼)高度的桥梁、塔顶、高楼、吊车甚至热气球上,把一端固定的一根长长的橡皮绳绑在踝关节处,然后两臂伸开,双腿并拢,头朝下跳下去。
(1)跳跃者从开始跳下至第一次到最低点,经历哪些运动过程?(忽略空气阻力)提示:自由落体运动、加速度减小的加速运动、加速度增大的减速运动。
(2)在上述过程中哪些力做功?对应的能量怎么变化呢?提示:整个过程中重力做正功,跳跃者的重力势能减小;橡皮绳伸直后弹力做负功,弹性势能增大。
二、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。
机械守恒定律详解机械能守恒定律一、机械能守恒定律的内容1. 定义- 在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
- 这里的势能包括重力势能和弹性势能。
2. 表达式- 常见的表达式有:E_{k1}+E_{p1}=E_{k2}+E_{p2}。
- 其中E_{k1}、E_{p1}分别表示系统初状态的动能和势能,E_{k2}、E_{p2}分别表示系统末状态的动能和势能。
- 还可以表示为Δ E_{k}=-Δ E_{p},即动能的增加量等于势能的减少量(或者动能的减少量等于势能的增加量)。
二、机械能守恒定律的条件1. 从做功角度理解- 系统内只有重力或弹力做功。
- 例如,一个物体自由下落,只受重力作用,重力做功,机械能守恒;一个弹簧振子在光滑水平面上振动,只有弹簧弹力做功,机械能守恒。
- 如果除重力和弹力外还有其他力做功,机械能就不守恒。
物体在粗糙斜面上下滑,摩擦力做功,机械能不守恒。
2. 从能量转化角度理解- 系统内没有其他形式的能量与机械能之间的转化。
- 如在没有空气阻力的情况下,单摆摆动过程中,动能和重力势能相互转化,没有其他能量的参与,机械能守恒。
但如果有空气阻力,一部分机械能会转化为内能,机械能就不守恒了。
三、机械能守恒定律的应用1. 单个物体的机械能守恒问题- 步骤- 确定研究对象,一般是单个物体。
- 分析物体的受力情况,判断是否满足机械能守恒定律的条件。
- 选取合适的参考平面(零势能面),确定物体在初、末状态的动能和势能。
- 根据机械能守恒定律E_{k1}+E_{p1}=E_{k2}+E_{p2}列方程求解。
- 例1:- 一个质量为m的小球,从离地面高度为h处由静止开始自由下落,求小球落地时的速度大小。
- 解:- 研究对象为小球。
- 小球只受重力作用,满足机械能守恒定律的条件。
- 选取地面为零势能面,初状态:E_{k1} = 0,E_{p1}=mgh;末状态:E_{k2}=(1)/(2)mv^2,E_{p2} = 0。
第2课时机械能守恒定律
考点一机械能守恒的判断
例1如图1所示,下列关于机械能是否守恒的判断正确的是()
图1
A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒
B.乙图中,A置于光滑水平面上,物体B沿光滑斜面下滑,物体B机械能守恒
C.丙图中,不计任何阻力和定滑轮质量时A加速下落,B加速上升过程中,A、B系统机械能守恒
D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒
递进题组
1.[守恒条件的应用]一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是() A.运动员到达最低点前重力势能始终减小
B.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加
C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D.蹦极过程中,重力势能的改变与重力势能零点的选取有关
2. [机械能守恒定律的应用]如图2所示,劲度系数为k的轻质弹簧,一端系在竖直放置的半径为R的圆环顶点P,另一端系一质量为m的小球,小球穿在圆环上做无摩擦的运动.设开始时小球置于A点,弹簧处于自然状态,当小球运动到最低点时速率为v,对圆环恰好没有压力.下列分析正确的是()
图2
A .小球过
B 点时,弹簧的弹力为mg -m v
2
R
B .小球过B 点时,弹簧的弹力为mg +m v 2
2R
C .从A 到B 的过程中,小球的机械能守恒
D .从A 到B 的过程中,小球的机械能减少
考点二 机械能守恒定律的应用
例2 如图甲所示,竖直平面内的光滑轨道由倾斜直轨道AB 和圆轨道BCD 组成,AB 和BCD 相切于B 点,CD 连线是圆轨道竖直方向的直径(C 、D 为圆轨道的最低点和最高点),已知∠BOC =30°.可视为质点的小滑块从轨道AB 上高H 处的某点由静止滑下,用力传感器测出小滑块经过圆轨道最高点D 时对轨道的压力为F ,并得到如图乙所示的压力F 与高度H 的关系图象,取g =10 m/s 2.求: (1)小滑块的质量和圆轨道的半径;
(2)是否存在某个H 值,使得小滑块经过最高点D 后能直接落到直轨道AB 上与圆心等高的点.若存在,请求出H 值;若不存在,请说明理由.
递进题组
1.[机械能守恒定律的简单应用]如图4所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落,B沿斜面下滑,则从剪断轻绳到两物块着地,两物块()
图4
A.速率的变化量不同
B.机械能的变化量不同
C.重力势能的变化量相同
D.重力做功的平均功率相同
2. [综合问题的分析]如图5所示,在同一竖直平面内,一轻质弹簧一端固定,另一自由端恰好与水平线AB平齐,静止放在倾角为53°的光滑斜面上.一长为L=9 cm的轻质细绳一端固定在O点,另一端系一质量为m=1 kg的小球,将细绳拉直水平,使小球在位置C由静止释放,小球到达最低点D时,细绳刚好被拉断.之后小球在运动过程中恰好沿斜面方向将弹簧压缩,最大压缩量为x=5 cm.(g=10 m/s2,sin 53°=0.8,cos 53°=0.6)求:
图5
(1)轻质细绳受到的拉力最大值;
(2)D点到水平线AB的高度h;
(3)轻质弹簧所获得的最大弹性势能E p.
考点三多物体机械能守恒问题
例3 如图6所示,物体A 的质量为M ,圆环B 的质量为m ,通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,长度l =4 m ,现从静止释放圆环.不计定滑轮和空气的阻力,取g =10 m/s 2,求:
图6
(1)若圆环恰能下降h =3 m ,A 和B 的质量应满足什么关系?
(2)若圆环下降h =3 m 时的速度v B =5 m/s ,则A 和B 的质量有何关系? (3)不管A 和B 的质量为多大,圆环下降h =3 m 时的速度不可能超过多大?
递进题组
3. [绳连接的系统机械能守恒]如图7,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上、半径为R 的光滑圆柱,A 的质量为B 的两倍.当B 位于地面时,A 恰与圆柱轴心等高.将A 由静止释放,B 上升的最大高度是( )
图7
A .2R B.5R 3 C.4R 3 D.2R 3
4.[轻杆连接的系统机械能守恒]质量分别为m 和2m 的两个小球P 和Q ,中间用轻质杆固
定连接,杆长为L ,在离P 球L
3处有一个光滑固定轴O ,如图8所示.现在把杆置于
水平位置后自由释放,在Q 球顺时针摆动到最低位置时,求:
图8
(1)小球P 的速度大小;
(2)在此过程中小球P 机械能的变化量.
5.如图9所示,光滑斜面的下端与半径为R 的圆轨道平滑连接.现在使小球从斜面上端距地面高度为2R 的A 点由静止滑下,进入圆轨道后沿圆轨道运动,轨道摩擦不计.试求:
图9
(1)小球到达圆轨道最低点B 时的速度大小; (2)小球在最低点B 时对轨道的压力大小; (3)小球在某高处脱离圆轨道后能到达的最大高度.
6.如图10所示,左侧为一个半径为R 的半球形的碗固定在水平桌面上,碗口水平,O 点
为球心,碗的内表面及碗口光滑.右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°.一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,绳的两端分别系有可视为质点的小球m 1和m 2,且m 1>m 2.开始时m 1恰在碗口右端水平直径A 处,m 2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直.当m 1由静止释放运动到圆心O 的正下方B 点时细绳突然断开,不计细绳断开瞬间的能量损失.
图10
(1)求小球m 2沿斜面上升的最大距离s ;
(2)若已知细绳断开后小球m 1沿碗的内侧上升的最大高度为R 2,求m 1m 2.。