大方县二中学2018-2019学年高二上学期二次月考试卷数学
- 格式:doc
- 大小:853.00 KB
- 文档页数:16
大方县实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则φ的值为()A.﹣B.﹣C.D.2.连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,﹣2),则⊥的概率是()A.B.C.D.3.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.b<a<c B.a<c<b C.a<b<c D.b<c<a4.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=5.函数y=a x+2(a>0且a≠1)图象一定过点()A.(0,1)B.(0,3)C.(1,0)D.(3,0)6.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定7.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)8.已知函数f(x)=sin2(ωx)﹣(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()A.πB.C.D.9. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图 10.已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直11.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .12.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)二、填空题13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .14.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.15.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .16.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .17.若tan θ+=4,则sin2θ= .18.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .三、解答题19.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.20.已知△ABC的顶点A(3,1),B(﹣1,3)C(2,﹣1)求:(1)AB边上的中线所在的直线方程;(2)AC边上的高BH所在的直线方程.21.已知cos(+θ)=﹣,<θ<,求的值.22.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.23.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.24.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.大方县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.2.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.3.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.4.【答案】D【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.5.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.6.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.7.【答案】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.8.【答案】D【解析】解:由函数f(x)=sin2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f(x)=﹣cos2x.若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.9.【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D.【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.10.【答案】A【解析】解:由题意可得直线l1的斜率k1==1,又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,显然满足k1•k2=﹣1,∴l1与l2垂直故选A11.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.12.【答案】B【解析】解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.二、填空题13.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.14.【答案】【解析】解析:圆x2+y2-2x+4y-4=0的标准方程为(x-1)2+(y+2)2=9.圆心C(1,-2),半径为3,连接PC,∴四边形P ACB的周长为2(P A+AC)=2PC2-AC2+2AC=2PC2-9+6.当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,∴S △ABC =12AC ·BC =12×3×3=92.即△ABC 的面积为92.答案:9215.【答案】 [4,16] .【解析】解:直线l :(t 为参数),化为普通方程是=,即y=tan α•x+1;圆C 的参数方程(θ为参数),化为普通方程是(x ﹣2)2+(y ﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.16.【答案】23 【解析】试题分析:因为ABC ∆中,23,2,60AB BC C ===︒,由正弦定理得232sin 3A=,1sin 2A =,又BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1232ABCS AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R等等.17.【答案】 .【解析】解:若tan θ+=4,则sin2θ=2sin θcos θ=====,故答案为.【点评】本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于中档题.18.【答案】63【解析】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根, 所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.三、解答题19.【答案】【解析】解:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).20.【答案】【解析】解:(1)∵A(3,1),B(﹣1,3),C(2,﹣1),∴AB的中点M(1,2),∴直线CM的方程为=∴AB边上的中线所在的直线方程为3x+y﹣5=0;(2)∵直线AC的斜率为=2,∴直线BH的斜率为:﹣,∴AC边上的高BH所在的直线方程为y﹣3=﹣(x+1),化为一般式可得x+2y﹣5=021.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos (+θ)=﹣,∴sin (+θ)=﹣=﹣,∴sin (+θ)=sin θcos+cos θsin=(cos θ+sin θ)=﹣,∴sin θ+cos θ=﹣,①cos (+θ)=coscos θ﹣sin sin θ=(cos θ﹣cos β)=﹣,∴cos θ﹣sin θ=﹣,②联立①②,得cos θ=﹣,sin θ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.22.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分. 平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5, 即估计选择理科的学生的平均分为79.5分. 23.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.24.【答案】【解析】解:(1)由已知,切点为(2,0),故有f(2)=0,即4b+c+3=0.①f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.得8b+c+7=0.②联立①、②,解得c=1,b=﹣1,于是函数解析式为f(x)=x3﹣2x2+x﹣2.(2)g(x)=x3﹣2x2+x﹣2+mx,g′(x)=3x2﹣4x+1+,令g′(x)=0.当函数有极值时,△≥0,方程3x2﹣4x+1+=0有实根,由△=4(1﹣m)≥0,得m≤1.①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值.②当m<1时,g′(x)=0有两个实根,x1=(2﹣),x2=(2+),x g′x g x极大值当x=(2﹣)时g(x)有极大值;当x=(2+)时g(x)有极小值.【点评】本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.。
大方县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 2. 某程序框图如图所示,则输出的S 的值为( )A .11B .19C .26D .573. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .314. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件5. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .106. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91527. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .68. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差9. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=10.已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)=( )A .B .C .D .11.三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( ) A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .15.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.16.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)17.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .18.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ). (Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.20.已知数列{}n a 的前项和公式为2230n S n n =-.(1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.21.已知椭圆C1:+x2=1(a>1)与抛物线C:x2=4y有相同焦点F1.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知直线l1过椭圆C1的另一焦点F2,且与抛物线C2相切于第一象限的点A,设平行l1的直线l交椭圆C1于B,C两点,当△OBC面积最大时,求直线l的方程.22.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.23.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1; (II )求证:EF ∥平面B 1BCC 1; (III )求四棱锥B ﹣A 1ACC 1的体积.24.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==. (1)求证:平面AGH ⊥平面EFG ;(2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.大方县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D111]【解析】考点:相等函数的概念.2.【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k>3,k=3,S=11不满足条件k>3,k=4,S=26满足条件k>3,退出循环,输出S的值为26.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.3.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.4.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y ﹣1=0,4x+3=0,此时两条直线相互垂直;当m ≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的充分不必要条件.故选:B .【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.5. 【答案】【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y 2=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.6. 【答案】C【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x, 结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .7. 【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥, 所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.8. 【答案】D【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错.平均数86,88不相等,B 错. 中位数分别为86,88,不相等,C 错A 样本方差S 2= [(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B 样本方差S 2= [(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D 正确故选D .【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.9. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 10.【答案】A【解析】解:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23) 且3+log 23>4∴f (2+log 23)=f (3+log 23)=故选A .11.【答案】B【解析】解:设此等比数列的公比为q , ∵a+b+c=6,∴=6,∴b=.当q >0时, =2,当且仅当q=1时取等号,此时b ∈(0,2];当q <0时,b =﹣6,当且仅当q=﹣1时取等号,此时b ∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.12.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.二、填空题13.【答案】【解析】因为,所以,所以,所以答案:14.【答案】16.【解析】解:∵等比数列{a n}的前n项积为Πn,∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.故答案为:16.【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.15.【答案】48【解析】16.【答案】24【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.17.【答案】1.【解析】解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.±.18.【答案】22【解析】分析题意得,问题等价于264++≤只有一解,x ax++≤只有一解,即220x ax∴28022a a∆=-=⇒=±,故填:22±.三、解答题19.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),.…(1分)由x∈(0,+∞),令f′(x)=0,得.xf′(x)﹣0 +f(x)↘极小值↗故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g (x )在(0,1)内有唯一的零点x 1,满足x 0+x 1>1.…(14分) 解法二:(Ⅰ)同解法一;…(4分) (Ⅱ),令f ′(x )=0,由2ax 2+2x ﹣1=0,得.…(5分)设,则m ∈(1,+∞),,…(6分)问题转化为直线y=a 与函数的图象在(1,+∞)恰有一个交点问题.又当m ∈(1,+∞)时,h (m )单调递增,…(7分) 故直线y=a 与函数h (m )的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t →0时,p (t )→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1试题解析:(1)∵2230n S n n =-,∴当1n =时,1128a S ==-.当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-.∴432n a n =-,n N +∈. (2)∵432n a n =-, ∴1270a a a <<<,80a =,当9n ≥时,0n a >.∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用. 21.【答案】【解析】解:(Ⅰ)∵抛物线x 2=4y 的焦点为F 1(0,1),∴c=1,又b 2=1,∴∴椭圆方程为:+x2=1.…(Ⅱ)F2(0,﹣1),由已知可知直线l1的斜率必存在,设直线l1:y=kx﹣1由消去y并化简得x2﹣4kx+4=0∵直线l1与抛物线C2相切于点A.∴△=(﹣4k)2﹣4×4=0,得k=±1.…∵切点A在第一象限.∴k=1…∵l∥l1∴设直线l的方程为y=x+m由,消去y整理得3x2+2mx+m2﹣2=0,…△=(2m)2﹣12(m2﹣2)>0,解得.设B(x1,y1),C(x2,y2),则,.…又直线l交y轴于D(0,m)∴…=当,即时,.…所以,所求直线l的方程为.…【点评】本题主要考查椭圆、抛物线的有关计算、性质,考查直线与圆锥曲线的位置关系,考查运算求解能力及数形结合和化归与转化思想.22.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…23.【答案】【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,所以,BB1⊥BC.又因为AB⊥BC且AB∩BB1=B,所以,BC⊥平面A1ABB1.因为BC⊂平面BCE,所以,平面BCE⊥平面A1ABB1.(II)证明:取BC的中点D,连接C1D,FD.因为E,F分别是A1C1,AB的中点,所以,FD∥AC且.因为AC∥A1C1且AC=A1C1,所以,FD∥EC1且FD=EC1.所以,四边形FDC 1E 是平行四边形. 所以,EF ∥C 1D .又因为C 1D ⊂平面B 1BCC 1,EF ⊄平面B 1BCC 1,所以,EF ∥平面B 1BCC 1.(III )解:因为,AB ⊥BC所以,.过点B 作BG ⊥AC 于点G ,则.因为,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面ABC ,AA 1⊂平面A 1ACC 1所以,平面A 1ACC 1⊥底面ABC . 所以,BG ⊥平面A 1ACC 1.所以,四棱锥B ﹣A 1ACC 1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.24.【答案】【解析】(1)连接FH ,由题意,知CD BC ⊥,CD CF ⊥,∴CD ⊥平面BCFG . 又∵GH⊂平面BCFG ,∴CD ⊥GH .又∵EF CD ,∴EF GH ⊥……………………………2分由题意,得14BH a =,34CH a =,12BG a =,∴2222516GH BG BH a =+=, 22225()4FG CF BG BC a =-+=,22222516FH CF CH a =+=,则222FH FG GH =+,∴GH FG ⊥.……………………………4分 又∵EF FG F =,GH ⊥平面EFG .……………………………5分∵GH ⊂平面AGH ,∴平面AGH ⊥平面EFG .……………………………6分。
大方县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2) B.(2,3) C.(1,)D.(e,+∞)2.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A.﹣1 B.2 C.﹣5 D.﹣33.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2015)=()A.2 B.﹣2 C.8 D.﹣84.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)5.已知a>b>0,那么下列不等式成立的是()A.﹣a>﹣b B.a+c<b+c C.(﹣a)2>(﹣b)2D.6.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i的最大值为()A .3B .4C .5D .68. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.9. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )A .0°B .45°C .60°D .90°10.若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1C .a <﹣1D .a >﹣111.若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]12.sin3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin3cos8.5<< B .cos8.5sin3sin1.5<< C.sin1.5cos8.5sin3<<D .cos8.5sin1.5sin3<<二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .14.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 15.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0).正确命题的个数是 .16.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.17.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19..(1)求证:(2),若.20.等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且S n≤S4。
大方县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A.[0,+∞)B.[0,3] C.(﹣3,0] D.(﹣3,+∞)2.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()A.6B.9C.12D.183.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为()A.B.C.D.4. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>5. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .36. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个7. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i8. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .29. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的1610.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种11.点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .12.已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( ) A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭ B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭ C 、16t t ⎧⎫>-⎨⎬⎩⎭ D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭二、填空题13.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 .14.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .15.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 16.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .17.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.18.某种产品的加工需要A,B,C,D,E五道工艺,其中A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种.(用数字作答)三、解答题19.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.20.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.21.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.22.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.23.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.大方县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D .2. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54, a =2 016,b =54,r =18, a =54,b =18,r =0. ∴输出a =18,故选D. 3. 【答案】 B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x值为∴=,其中k ∈Z取k=1,得φ=因此,f (x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.4. 【答案】 C【解析】22212'()x f x x x x-=-+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-2217()24x x-+=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e e e =+->,2222()20g e e e =+-<,所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x xh x x x x==+,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()f x k x<,()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草图可看出(0,2)的时候递减的更快,所以124x x +>5. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .6. 【答案】B【解析】解:a ※b=12,a 、b ∈N *,若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,所以满足条件的个数为4+11=15个. 故选B7. 【答案】A【解析】解:复数===,故选:A .【点评】本题考查了复数的运算法则,属于基础题.8. 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P (3,0)到平面区域的最短距离d min =,∴(x ﹣3)2+y 2的最小值是:.故选:A .【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.9. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 10.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A .【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.11.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.12.【答案】A【解析】考点:函数的性质。
大方县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 不等式≤0的解集是()A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]3. α是第四象限角,,则sin α=()A .B .C .D .4. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( )A .¬pB .¬p ∨qC .p ∧qD .p ∨q5. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行6. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .67. “x ≠0”是“x >0”是的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8. 为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象()A .向左平移3π个单位B .向左平移6π个单位C.向右平移3π个单位D .向右平移23π个单位9. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于()A .B .C .D .10.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .11.直线2x+y+7=0的倾斜角为( )A .锐角B .直角C .钝角D .不存在12.设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M二、填空题13.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .14.如图,已知,是异面直线,点,,且;点,,且.若,分m n A B m ∈6AB =C D n ∈4CD =M N别是,的中点,与所成角的余弦值是______________.AC BD MN =m n【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.15.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称;③y=()﹣x 是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0. 16.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.17.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .18.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-三、解答题19.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x (单位:千克)清洗该蔬菜1千克后,蔬菜上残存的农药y (单位:微克)的统计表:x i 12345y i 5753403010(1)在下面的坐标系中,描出散点图,并判断变量x 与y 的相关性;(2)若用解析式y =cx 2+d 作为蔬菜农药残量与用水量的回归方程,求其解析式;(c ,a 精确到0.01);附:设ωi =x ,有下列数据处理信息:=11,=38,2i ωy(ωi -)(y i -)=-811, (ωi -)2=374,ωy ω对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线方程y =bx +a 的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)20.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .(1)当k =时,求cos B ;54(2)若△ABC 面积为,B =60°,求k 的值.321.(本题满分15分)如图,已知长方形中,,,为的中点,将沿折起,使得平面ABCD 2AB =1AD =M DC ADM ∆AM 平面.⊥ADM ABCM (1)求证:;BM AD ⊥(2)若,当二面角大小为时,求的值.)10(<<=λλDB DE D AM E --3πλ【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.22.已知函数f (x )=(a >0)的导函数y=f ′(x )的两个零点为0和3.(1)求函数f (x )的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.23.等差数列{a n}的前n项和为S n.a3=2,S8=22.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.24.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)大方县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B2.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.3.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.4.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p ∨q 是真命题,故选:D 5. 【答案】D【解析】解:当α内有无穷多条直线与β平行时,a 与β可能平行,也可能相交,故不选A .当直线a ∥α,a ∥β时,a 与β可能平行,也可能相交,故不选 B .当直线a ⊂α,直线b ⊂β,且a ∥β 时,直线a 和直线 b 可能平行,也可能是异面直线,故不选 C . 当α内的任何直线都与β 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D .【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况. 6. 【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥,所以﹣3=2m ,解得m=﹣.故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查. 7. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立.当x >0时,一定有x ≠0成立,∴“x ≠0”是“x >0”是的必要不充分条件.故选:B . 8. 【答案】C 【解析】试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,故选C .考点:图象的平移.9. 【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.10.【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x,再向右平移个单位得到y=cos[(x)],由(x)=kπ,得x=2kπ,即+2kπ,k∈Z,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.11.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.12.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B二、填空题13.【答案】 (±,0) y=±2x .【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.14.【答案】5 12【解析】15.【答案】 ②④ 【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档. 16.【答案】98【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,可以看成是有序的,如与不同;有),(y x ()1,2()2,1时也可以看成是无序的,如相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比)1,2)(2,1(较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好.)(1)(A P A P -=17.【答案】 平行 .【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D 故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法. 18.【答案】()0,1【解析】三、解答题19.【答案】【解析】解:(1)根据散点图可知,x 与y 是负相关.(2)根据提供的数据,先求数据(ω1,y 1),(ω2,y 2),(ω3,y 3),(ω4,y 4),(ω5,y 5)的回归直线方程,y =cω+d ,=≈-2.17,-811374=y -ω=38-(-2.17)×11=61.87.a ^ c ^∴数据(ωi ,y i )(i =1,2,3,4,5)的回归直线方程为y =-2.17ω+61.87,又ωi =x ,2i ∴y 关于x 的回归方程为y =-2.17x 2+61.87.(3)当y =0时,x ==≈5.3.估计最多用5.3千克水.61.872.17618721720.【答案】【解析】解:(1)∵sin B =sin A +sin C ,由正弦定理得b =a +c ,5454又a =4c ,∴b =5c ,即b =4c ,54由余弦定理得cos B ===.a 2+c 2-b 22ac (4c )2+c 2-(4c )22×4c ·c18(2)∵S △ABC =,B =60°.3∴ac sin B =.即ac =4.123又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×=13.12∴b =,13∵k sin B =sin A +sin C ,由正弦定理得k ===,a +cb 51351313即k 的值为.5131321.【答案】(1)详见解析;(2).3λ=【解析】(1)由于,,则,2AB =AM BM ==AM BM ⊥又∵平面平面,平面平面=,平面,⊥ADM ABCM ADM ABCM AM ⊂BM ABCM ∴平面,…………3分⊥BM ADM 又∵平面,∴有;……………6分⊂AD ADM BM AD ⊥22.【答案】【解析】解:f′(x)=令g(x)=﹣ax2+(2a﹣b)x+b﹣c函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3则解得:b=c=﹣a,令f′(x)>0得0<x<3所以函数的f(x)的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+∞)单调递减,∴,∴a=2,∴;,∴函数f(x)在区间[0,4]上的最小值为﹣2.23.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a3=2,S8=22.∴,解得,∴{a n}的通项公式为a n=1+(n﹣1)=.(2)∵b n===﹣,∴T n=2+…+=2=.24.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人.(Ⅱ)设“至少有1人体育成绩在”为事件,记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,.而事件的结果有7种,它们是:,,,,,,,因此事件的概率.(Ⅲ)a,b,c的值分别是为,,.。
大方县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图框内的输出结果是( )A .2401B .2500C .2601D .2704 2. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥3. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .44. 若A (3,﹣6),B (﹣5,2),C (6,y )三点共线,则y=( )A .13B .﹣13C .9D .﹣95. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )6. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞7. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .68.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)9.若函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,则有()A.a>1且b<1 B.a>1且b>0 C.0<a<1且b>0 D.0<a<1且b<010.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,其中正确命题是()A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)11.如图,该程序运行后输出的结果为()A.7 B.15 C.31 D.6312.设集合,,则( )ABCD二、填空题13.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为.14.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n=,则循环小数0.的分数形式是 .15.求函数在区间[]上的最大值 .16.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.17.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.18.(x﹣)6的展开式的常数项是 (应用数字作答).三、解答题19.已知数列{a n }的前n 项和为S n ,a 1=3,且2S n =a n+1+2n . (1)求a 2;(2)求数列{a n }的通项公式a n ;(3)令b n =(2n ﹣1)(a n ﹣1),求数列{b n }的前n 项和T n .1818 0792 4544 1716 5809 7983 8619 6206 7650 0310 5523 6405 0526 623820.某小组共有A 、B 、C 、D 、E 五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++22.已知函数.(1)求f (x )的周期和及其图象的对称中心;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,满足(2a ﹣c )cosB=bcosC ,求函数f (A )的取值范围.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.24.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系; (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值.大方县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500, 故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.2. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 3. 【答案】D【解析】解:∵(x ﹣2)3+2x+sin (x ﹣2)=2, ∴(x ﹣2)3+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,∵(y ﹣2)3+2y+sin (y ﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D .【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质.4. 【答案】D【解析】解:由题意, =(﹣8,8),=(3,y+6).∵∥,∴﹣8(y+6)﹣24=0,∴y=﹣9,故选D .【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键.5. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.6. 【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
贵阳市高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知条件p:x2+x﹣2>0,条件q:x>a,若q是p的充分不必要条件,则a的取值范围可以是()A.a≥1 B.a≤1 C.a≥﹣1 D.a≤﹣32.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为()A.1 B.C.2 D.43.在△ABC中,若A=2B,则a等于()A.2bsinA B.2bcosA C.2bsinB D.2bcosB4.下列4个命题:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”;②若“¬p或q”是假命题,则“p且¬q”是真命题;③若p:x(x﹣2)≤0,q:log2x≤1,则p是q的充要条件;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2;其中正确命题的个数是()A.1个B.2个C.3个D.4个5.将函数f(x)=3sin(2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值不可能是()A.B.πC.D.6.在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限7.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.若f(x)=sin(2x+θ),则“f(x)的图象关于x=对称”是“θ=﹣”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞) D.(0,)∪(2,+∞)11.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为()A.720 B.270 C.390 D.30012.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n 的值是()A.10B.11C.12D.13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题13.数列{a n}是等差数列,a4=7,S7=.14.不等式的解为.15.如图,在正方体ABCD﹣A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是.16.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=.17.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.18.如图是函数y=f(x)的导函数y=f′(x)的图象,对此图象,有如下结论:①在区间(﹣2,1)内f(x)是增函数;②在区间(1,3)内f(x)是减函数;③在x=2时,f(x)取得极大值;④在x=3时,f(x)取得极小值.其中正确的是.三、解答题19.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.20.(本小题满分12分)求下列函数的定义域:(1)()f x=;(2)()f x=.21.已知函数f(x)=,求不等式f(x)<4的解集.22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.23.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为.(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.24.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值.贵阳市高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵条件p:x2+x﹣2>0,∴条件q:x<﹣2或x>1∵q是p的充分不必要条件∴a≥1故选A.2.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.3.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D4.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.5.【答案】C【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档6.【答案】A【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.7.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.8.【答案】A【解析】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.9.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.10.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.11.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390.故选:C . 12.【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .二、填空题13.【答案】49【解析】解:==7a 4 =49. 故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.14.【答案】 {x|x >1或x <0} .【解析】解:即即x (x ﹣1)>0 解得x >1或x <0故答案为{x|x >1或x <0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出15.【答案】①④.【解析】解:由所给的正方体知,△PAC在该正方体上下面上的射影是①,△PAC在该正方体左右面上的射影是④,△PAC在该正方体前后面上的射影是④故答案为:①④16.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.17.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.18.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.三、解答题19.【答案】【解析】解:由p:⇒﹣1≤x<2,方程x2﹣(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|>1,则q:1<x<a2,此时应满足a2≤2,解得1<|a|≤,当|a|=1,q:x∈∅,满足条件,当|a|<1,则q :a 2<x <1,此时应满足|a|<1,综上﹣.【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键.20.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.【解析】考点:函数的定义域. 1【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 21.【答案】【解析】解:函数f (x )=,不等式f (x )<4,当x ≥﹣1时,2x+4<4,解得﹣1≤x <0; 当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1. 综上x ∈(﹣3,0).不等式的解集为:(﹣3,0).22.【答案】【解析】解:(I )∵CF=FG ∴∠CGF=∠FCG ∴AB 圆O 的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE ⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.23.【答案】【解析】解:(1)∵椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为,∴=,解得,∴椭圆C的方程为.…(2)①当l1,l2的斜率存在时,设l1:y=kx+m,l2:y=kx+n(m≠n),△=0,m2=1+2k2,同理n2=1+2k2m2=n2,m=﹣n,设存在,又m2=1+2k2,则|k2(2﹣t2)+1|=1+k2,k2(1﹣t2)=0或k2(t2﹣3)=2(不恒成立,舍去)∴t2﹣1=0,t=±1,点B(±1,0),②当l1,l2的斜率不存在时,点B(±1,0)到l1,l2的距离之积为1.综上,存在B(1,0)或(﹣1,0).…24.【答案】【解析】解:(1)求导f′(x)=+2x+b,由题意得:f′(1)=4,f(1)=﹣8,则,解得,所以f(x)=12lnx+x2﹣10x+1;(2)f(x)定义域为(0,+∞),f′(x)=,令f′(x)>0,解得:x<2或x>3,所以f(x)在(0,2)递增,在(2,3)递减,在(3,+∞)递增,故f(x)极大值=f(2)=12ln2﹣15,f(x)极小值=f(3)=12ln3﹣20.。
2019届高二上学期第二次月考数学(文科)试卷一.选择题(本大题共12小题,每小题5分,共60分. 每小题只有一项符合题目要求)1. 命题“若a >b ,则a -1>b -1”的逆否命题是( )A.若a -1≤b -1,则a ≤bB.若a <b ,则a -1<b -1C.若a -1>b -1,则a >bD.若a ≤b ,则a -1≤b -1 2.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则的值为( ) A . B . C . D .3.下列说法中不正确...的是( ) A. 圆柱的侧面展开图是一个矩形B. 直角三角形绕它的一条边所在直线旋转一周形成的曲面围成的几何体是圆锥C. 圆锥中过轴的截面是一个等腰三角形D. 圆台中平行于底面的截面是圆面4.方程12sin 3sin 222=-++θθy x 所表示的曲线为( ) A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线5.抛物线顶点在原点,焦点在轴上,其上一点(,1)P m 到焦点的距离为5,则抛物线方程为( )A .y x 82=B .y x 82-=C .y x 162=D .y x 162-=6.在四面体ABCD 中,E ,F 分别是AC 与BD 的中点,若CD =2AB =4,EF ⊥BA ,则EF 与 CD 所成的角为( )A .90°B .45°C .60°D .30° 7.从直线3y =上一点向圆2220x y x +-=作切线,则切线长的最小值是( )A.B.8.已知抛物线方程为24y x =,直线的方程为40x y -+=,在抛物线上有一动点 P 到y 轴的距离为,P 到直线的距离为,则12d d +的最小值为( )A2+B1+C2-D1- 9.已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最 后经直线OB 反射后又回到P 点,则光线所经过的路程是( )( )A .210B .6C .33D .2 510.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .111. 已知双曲线22221(0)x y a b a b-=>,的左右焦点分别,,21F F 两点轴的直线交双曲线于且垂直于过B A x F ,2,是锐角三角形若1ABF ∆,则双曲线的离心率的取值范围是( )A .),12(+∞+B .)12,1(+C .)3,1(D .),3(+∞12,右焦点为()0,c F ,方程022=++c bx ax 的两个实数根分别是21,x x ,则点()21,x x P 到原点的距离为( )A .2B .C 二.填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.),共渐进线,且过点(与双曲线23-4191622=-y x 的双曲线标准方程为. 14.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数的取值范围是.15.已知直三棱柱111ABC A B C -的各顶点都在同一球面上,若30BAC ∠=︒,11BC AA ==,则该球的表面积等于.16.下列四个命题:①“3x ≠”是“3x ≠”成立的充分条件;②抛物线2(0)x ay a =≠的准线方程是 ③若命题“p ”与命题“p 或 q ”都是真命题,则命题q 一定是真命题;(第10题)④若命题“x R ∃∈,2(2)10x m x +-+<”是假命题,则实数的取值范围是04m <<. 其中正确命题的序号是.(把所有正确命题的序号都填上).三.解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17. (本题满分10分) 已知三角形ABC 的顶点坐标为A (1,5)、B (-2,-1)、C (4,3)。
大方县高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.=()A.﹣i B.i C.1+i D.1﹣i2.一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是()A.6 B.3 C.1 D.23.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.4.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,则f(2)+g(2)=()A.16 B.﹣16 C.8 D.﹣85.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值6. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B.C.D .﹣17. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]8. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 9. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y= C .y=3x D .y=3x 310.已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++=成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力. 11.把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)12.在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .二、填空题13.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .14.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.15.当时,4x<log a x ,则a 的取值范围 .16.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .17.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)18.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .三、解答题19.已知双曲线C :与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.21.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.22.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.23.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24.(1)直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ).若l 在两坐标轴上的截距相等,求a 的值; (2)已知A (﹣2,4),B (4,0),且AB 是圆C 的直径,求圆C 的标准方程.大方县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.2.【答案】A【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.考点:几何体的结构特征.3.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.4.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.5.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面直线AE 、BF 所成的角不是定值,故D 错误; 故选D .6. 【答案】A【解析】解:y'=2ax , 于是切线的斜率k=y'|x=1=2a ,∵切线与直线2x ﹣y ﹣6=0平行∴有2a=2 ∴a=1 故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.7. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 8. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)9. 【答案】 C【解析】解:模拟程序框图的运行过程,得; 该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C .【点评】本题考查了程序框图的应用问题,是基础题目.10.【答案】B【解析】11.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故答案选D .12.【答案】C【解析】解:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1,故平面AA 1O 1⊥面AB 1D 1,交线为AO 1,在面AA 1O 1内过B 1作B 1H ⊥AO 1于H , 则易知A1H 的长即是点A 1到截面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=,AO 1=3,由A 1O 1•A 1A=h •AO 1,可得A 1H=,故选:C .【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.二、填空题13.【答案】 (﹣3,21) .【解析】解:∵数列{a n }是等差数列,∴S 9=9a 1+36d=x (a 1+2d )+y (a 1+5d )=(x+y )a 1+(2x+5y )d , 由待定系数法可得,解得x=3,y=6.∵﹣3<3a 3<3,0<6a 6<18, ∴两式相加即得﹣3<S 9<21. ∴S 9的取值范围是(﹣3,21). 故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.14.【答案】或 【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.15.【答案】.【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1)16.【答案】{1,﹣1}.【解析】解:合M={x||x|≤2,x∈R}={x|﹣2≤x≤2},N={x∈R|(x﹣3)lnx2=0}={3,﹣1,1},则M∩N={1,﹣1},故答案为:{1,﹣1},【点评】本题主要考查集合的基本运算,比较基础.17.【答案】, 无.【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350.由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。
大方县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°2. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.3. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π4. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C.D 5. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .13 6. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±967. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D29. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件10.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .411.若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-12.下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥二、填空题13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)14.设幂函数()=的图象经过点()f x kxα4,2,则kα+= ▲.15.已知函数f(x)=有3个零点,则实数a的取值范围是.16.设是空间中给定的个不同的点,则使成立的点的个数有_________个.17.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.18.曲线y=x+e x在点A(0,1)处的切线方程是.三、解答题19.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM•MB=DF•DA.20.设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.21.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.24.已知数列{a n }满足a 1=,a n+1=a n+(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1.大方县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.2.【答案】C3.【答案】A【解析】考点:三角函数的图象性质.4.【答案】B【解析】考点:正弦定理的应用.5.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.6.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.7.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.8.【答案】C【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.9.【答案】A【解析】解:由“|x ﹣2|<1”得1<x <3,由x 2+x ﹣2>0得x >1或x <﹣2,即“|x ﹣2|<1”是“x 2+x ﹣2>0”的充分不必要条件,故选:A .10.【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c , 由椭圆和双曲线的定义可知, 设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e 2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.11.【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 12.【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.二、填空题13.【答案】 ①③⑤【解析】解:建立直角坐标系如图:则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,1).∵集合M={x|x=且i ,j ∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i ,j ∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i ,j )有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i ,j )有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i ,j )有4种不同取值;当x=﹣1时,(i ,j )有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2; 当i=2,j=4,或i=4,j=2时,x=0, ∴M 中的元素之和为0,故⑤正确. 综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.14.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义15.【答案】 (,1) .【解析】解:∵函数f (x )=有3个零点,∴a >0 且 y=ax 2+2x+1在(﹣2,0)上有2个零点,∴,解得<a <1,故答案为:(,1).16.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。
大方县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.2.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b ﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.3.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6 B.6 C.3 D.﹣34.已知函数f(x)=2x﹣2,则函数y=|f(x)|的图象可能是()A.B.C.D.5.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题6.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内7.设函数F(x)=是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<f(x)对于x∈R恒成立,则()A.f(2)>e2f(0),f B.f(2)<e2f(0),fC.f(2)>e2f(0),f D.f(2)<e2f(0),f8.已知一三棱锥的三视图如图所示,那么它的体积为()A.13B.23C.1D.29.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)10.设集合()A.B. C.D.11.设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D1012.设a,b,c,∈R+,则“abc=1”是“”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充分必要条件 D.既不充分也不必要的条件二、填空题13.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是.14.曲线y=x2与直线y=x所围成图形的面积为.15.等比数列{a n}的公比q=﹣,a6=1,则S6=.16.设α为锐角,若sin(α﹣)=,则cos2α=.17.已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程.18.运行如图所示的程序框图后,输出的结果是三、解答题19.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.20.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?21.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC 的面积为,求角C .22.已知z 是复数,若z+2i 为实数(i 为虚数单位),且z ﹣4为纯虚数. (1)求复数z ;(2)若复数(z+mi )2在复平面上对应的点在第四象限,求实数m 的取值范围.23.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.24.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.大方县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.2.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.3.【答案】B【解析】解:∵=(2+3)(k﹣4)=2k+(3k﹣8)﹣12=0,又∵=0.∴2k﹣12=0,k=6.故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.5.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.6.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.7.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B8. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 9. 【答案】C【解析】解:令f (x )=x 2﹣mx+3, 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.10.【答案】B【解析】解:集合A 中的不等式,当x >0时,解得:x >;当x <0时,解得:x <,集合B 中的解集为x >,则A ∩B=(,+∞). 故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.11.【答案】B【解析】本题考查了对数的计算、列举思想a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时b =0,b =1符合; a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时b =-1,b =1符合;共6个 12.【答案】A【解析】解:因为abc=1,所以,则==≤a+b+c .当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a,b,c,∈R+,则“abc=1”是“”的充分条件但不是必要条件.故选A.二、填空题13.【答案】存在x∈R,x3﹣x2+1>0.【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.14.【答案】.【解析】解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x与曲线y=x2所围图形的面积S=∫01(x﹣x2)dx而∫01(x﹣x2)dx=(﹣)|01=﹣=∴曲边梯形的面积是故答案为:.15.【答案】﹣21.【解析】解:∵等比数列{a n}的公比q=﹣,a6=1,∴a1(﹣)5=1,解得a1=﹣32,∴S6==﹣21故答案为:﹣2116.【答案】﹣.【解析】解:∵α为锐角,若sin(α﹣)=,∴cos(α﹣)=,∴sin=[sin(α﹣)+cos(α﹣)]=,∴cos2α=1﹣2sin2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.17.【答案】+=1.【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.18.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.三、解答题19.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.20.【答案】【解析】解:(1)…=…定义域是(0,7]…(2)∵,…当且仅当即x=6时取=…∴y≥80×12+1800=2760…答:当侧面长度x=6时,总造价最低为2760元.…21.【答案】【解析】解:(Ⅰ)由题意知,tanA=,则=,即有sinA ﹣sinAcosC=cosAsinC ,所以sinA=sinAcosC+cosAsinC=sin (A+C )=sinB ,由正弦定理,a=b ,则=1;…(Ⅱ)因为三角形△ABC 的面积为,a=b 、c=,所以S=absinC=a 2sinC=,则,①由余弦定理得, =,②由①②得,cosC+sinC=1,则2sin (C+)=1,sin (C+)=,又0<C <π,则C+<,即C+=,解得C=….【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.22.【答案】【解析】解:(1)设z=x+yi (x ,y ∈R ). 由z+2i=x+(y+2)i 为实数,得y+2=0,即y=﹣2.由z ﹣4=(x ﹣4)+yi 为纯虚数,得x=4.∴z=4﹣2i .(2)∵(z+mi )2=(﹣m 2+4m+12)+8(m ﹣2)i ,根据条件,可知解得﹣2<m <2,∴实数m 的取值范围是(﹣2,2).【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题.23.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。