抗震结构设计(抗震验算)
- 格式:ppt
- 大小:1.48 MB
- 文档页数:34
十三抗震验算抗震计算的一般原则:(1)、《建筑抗震设计规范》规定:对于7度I、II类场地,柱高不超过10m且结构单元两端均有山墙的单跨及等高多跨厂房(锯齿形厂房除外),当按此规范的规定采取抗震构造措施时,可不进行横向及纵向的截面抗震验算。
本厂房所在地为7度II类场地,不过柱高超过10m,故应进行抗震验算。
(2)、厂房抗震计算时,采用单质点模型计算地震作用。
有吊车的厂房,当按平面框(排)架进行抗震计算时,对设置一层吊车的厂房,在每跨取两台吊车。
(3)、轻质墙板或与柱柔性连接的预制钢筋混凝土墙板,应计入墙体的全部自重,但不应计入刚度。
与柱贴砌且与柱拉结的砌体围护墙,应计入全部自重,在平行于墙体方向计算时可计入等效刚度,其等效刚度系数可根据柱列侧移的大小取0.2~0.6(详见后)。
(4)、一般单层厂房需要进行水平地震作用下的横向和纵向抗侧力构件的抗震强度验算。
沿厂房横向的主要抗侧力构件是由柱、屋架(屋面梁)组成的排架和刚性横墙;沿厂房纵向的主要抗侧力构件是由柱、柱间支撑、吊车梁、连系梁组成的柱列和刚性纵墙。
(5)、在8度和9度地震区,对跨度大于24m的屋架,尚需考虑竖向地震作用。
8度III、IV类场地和9度时,对高大的单层钢筋混凝土柱厂房的横向排架应进行弹塑性变形验算。
本工程为7度II类场地,故不需要进行弹塑性变形验算,只需进行横向抗震验算。
13.1 横向抗震验算13.1.1 柱顶横向水平地震作用的计算取一个柱距的单榀平面排架为计算单元,质量集中在柱顶标高处的单质点系,用原结构体系的最大动能和质量集中到柱顶质点的折算体系的最大动能相等的原则求的等效重力荷载代表值。
单层排架厂房墙、柱、吊车梁等质量集中于屋架下弦处时的质量集中系数汇见下表:集中到柱顶的各部分结构重力等效集中系数周期内力位于柱顶以上部位的结构及屋面重力荷载(屋盖、雪、檐墙等)1.0 1.0单跨厂房柱 0.25 0.5 与柱等高的纵墙0.25 0.5 吊车梁 0.5 0.75 吊车桥架0 0.5计算自振周期时的质量集中:吊车梁纵墙柱雪载屋盖G G G G G 5.025.025.0)5.0(0.1G ++++= 计算地震作用时的质量集中:吊车桥架吊车梁纵墙柱雪载屋盖G G G G G G 5.075.05.05.0)5.0(0.1G +++++=注:上面各式中,G 屋盖等均为重力荷载代表值(屋盖的重力荷载代表值包括作用于屋盖处的活荷载和檐墙的重力荷载代表值)。
结构抗震验算范文结构抗震验算是指对建筑结构进行抗震性能评估,以确认其在地震作用下的安全性能。
在进行结构抗震验算时,首先需要根据地震动参数进行地震响应分析,然后采用合适的验算方法和准则进行结构安全性能评估。
下面将详细介绍结构抗震验算的步骤和相关内容。
结构抗震验算的步骤包括地震动参数确定、地震响应分析、结构参数确定、结构强度验算和位移验算等。
地震动参数的确定是结构抗震验算的基础,包括地震烈度、地震作用的时间—空间特性、地震作用的频率特性等。
地震响应分析是通过数值计算方法,对结构在地震作用下的动力响应进行模拟,以得到结构各个构件的最大应力、位移等参数。
结构参数的确定是指确定结构的抗震设计参数,包括结构的刚度、材料强度、惯性阻尼等。
结构强度验算是根据结构的抗震设计规范,对结构的受力构件进行强度验算,确保结构在地震作用下不会发生破坏。
位移验算是对结构的变形进行验算,特别是属于非结构构件的位移限值,以确保结构在地震作用下不会产生过大的位移。
在进行结构抗震验算时,首先需要明确结构的抗震设计目标,根据不同的场地条件和建筑物用途,确定结构的抗震设防烈度、使用年限、准用地震烈度等。
然后,根据《建筑抗震设计规范》等相关规范,确定结构的抗震设计参数,包括水平抗震刚度、水平抗震强度等。
接下来,进行结构的抗震形式和参数计算,根据地震动参数和结构参数,采用数值计算方法进行地震响应分析,确定结构响应的最大值及其分布规律。
最后,根据结构的受力构件进行结构强度验算和位移验算,评估结构的抗震安全性能。
在结构抗震验算中需要考虑的因素包括地震动参数、结构的几何形状和材料特性、结构构件的受力机制、结构的抗震设计参数等。
另外,还需考虑地震动的时间-频率特性、结构的动态特性等。
为了评估结构的抗震性能,通常采用强度设计方法、强度准则、弹性时程分析、非线性分析等。
总之,结构抗震验算是建筑领域重要的技术手段之一,为建筑物在地震作用下的安全运行提供了理论依据和技术支持。
5 地震作用和结构抗震验算5.1 一般规定5.1.1各类建筑结构的地震作用,应符合下列规定:1一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担。
2有斜交抗侧力构件的结构,当相交角度大于15°时,应分别计算各抗侧力构件方向的水平地震作用。
3质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响;其它情况,应允许采用调整地震作用效应的方法计入扭转影响。
48、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用5平面投影尺度很大的空间结构,应视结构形式和支承条件,分别按单点一致、多点、多向或多向多点输入计算地震作用。
注:8、9度时采用隔震设计的建筑结构,应按有关规定计算竖向地震作用。
【说明】本次修订,拟明确大跨空间结构地震作用的计算要求。
1、平面投影尺度很大的空间结构指,跨度大于120m、或长度大于300m、或悬臂大于40m的结构。
2、关于结构形式和支承条件(1)周边支承空间结构,如:网架、单、双层网壳、索穹顶、弦支穹顶屋盖和下部圈梁-框架结构,当下部支承结构为一个整体、且与上部空间结构侧向刚度比大于等于2时,应允许采用三向(水平两向加竖向)单点一致输入计算地震作用;当下部支承结构由结构缝分开、且每个独立的支承结构单元与上部空间结构侧向刚度比小于2时,应采用三向多点输入计算地震作用;(2)两线边支承空间结构,如:拱,拱桁架;门式刚架,门式桁架;圆柱面网壳等结构,当支承于独立基础时,应采用三向多点输入计算地震作用。
(3)长悬臂空间结构,应视其支承结构特点,采用多向单点一致输入、或多向多点输入计算地震作用。
3、关于单点一致输入仅对基础底部输入一致的加速度反应谱或加速度时程进行结构计算。
4、关于多向输入沿空间结构基础底部,三向同时输入,其地震动参数(加速度峰值或反应谱峰值)比例取:水平主向:水平次向:竖向= 1.00:0.85:0.65。
第3章 工程结构地震反应分析与抗震验算1、地震作用的计算方法:底部剪力法(不超过40m 的规则结构)、振型分解反应谱法、时程分析法(特别不规则、甲类和超过规定范围的高层建筑)、静力弹塑性方法。
一般的规则结构:两个主轴的振型分解反应谱法;质量和刚度分布明显不对称结构:考虑扭转或双向地震作用的振型分解反应谱法;8、9度时的大跨、长悬臂结构和9度的高层建筑:考虑竖向地震作用。
2、结构抗震理论的发展:静力法、定函数理论、反应谱法、时程分析法、非线性静力分析方法。
3、单自由度体系的运动方程:g xm kx x c x m -=++或m t F x x x e /)(22=++ωξω 。
杜哈美积分x(t)= ⎰----tt t e xd )(g dd )(sin )(1ττωτωτξω , ωξωm cm k 2,2== 单自由度体系自由振动:)sin cos ()(d d000t x xt x e t x d t ωωξωωξω++=- 。
4、最大反应之间的关系:d v a S S S 2ωω==5、地震反应谱:单自由度体系在给定的地震作用下某个最大反应与体系自振周期的关系曲线。
特点:⑴阻尼比对反应谱影响很大;⑵对于加速度反应谱,当结构周期小于某个值时幅值随周期急剧增大,大于某个值时,快速下降;⑶对于速度反应谱,当结构周期小于某个值时幅值随周期增大,随后趋于常数;⑷对于位移反应谱,幅值随周期增大。
地震反应谱是现阶段计算地震作用的基础,通过它把随时程变化的地震作用转化为最大等效侧向力。
6、单自由度体系的水平地震作用:F G k G gt x t xS mgg g a αβ===maxmax)()(β为动力系数,k 为地震系数,α=k β为水平地震影响系数。
7、抗震设计反应谱αmax 地震影响系数最大值,查表;T 为结构周期;T g 为特征周期,查表;例:单层单跨框架。
屋盖刚度为无穷大,质量集中于屋盖处。
地震作用和结构抗震验算5.1 一般规定5.1.1 各类厂站构筑物的地震作用,应按下列规定确定:1 一般情况下,应对构筑物结构的两个主轴方向分别计算水平向地震作用,并进行结构抗震验算;各方向的水平地震作用,应由该方向的抗侧力构件全部承担。
2 设有斜交抗侧力构件的结构,应分别考虑各抗侧力构件方向的水平地震作用。
3 设防烈度为9度时,水塔、污泥消化池等盛水构筑物、球形贮气罐、水槽式螺旋轨贮气罐、卧式圆筒形贮气罐应计算竖向地震作用。
5.1.2 各类构筑物的结构抗震计算,应采用下列方法:1 湿式螺旋轨贮气罐以及近似于单质点体系的结构,可采用底部剪力法计算;2 除第1款规定外的构筑物,宜采用振型分解反应谱法计算。
5.1.3 管道结构的抗震计算,应符合下列规定:1 埋地管道应计算地震时剪切波作用下产生的变位或应变;2 架空管道可对支承结构作为单质点体系进行抗震计算。
5.1.4 计算地震作用时,构筑物(含架空管道)的重力荷载代表值应取结构构件、防水层、防腐层、保温层(含上覆土层)、固定设备自重标准值和其他永久荷载标准值(侧土压力、内水压力)、可变荷载标准值(地表水或地下水压力等)之和。
可变荷载标准值中的雪荷载、面部和操作平台上的等效均布荷载,应取50%计算。
5.1.5 一般构筑物的阻尼比(ζ)可取0.05,其水平地震影响系数应根据烈度、场地类别、设计地震分组及结构自振周期按图5.1.5采用,其形状参数应符合下列规定:1 周期小于0.1s的区段,应为直线上升段。
2 自0.1s至特征周期区段,应为水平段,相应阻尼凋整系数为1.0,地震影响系数为最大值αmax,应按本规范5.1.7条规定采用。
3 自特征周期Tg至5倍特征周期区段,应为曲线下降段,其衰减指数(γ)应采用0.9。
4 自5倍特征周期至6s区段,应为直线下降段,其下降斜率调整系数(ηi)应取0.02。
5 特征周期应根据本规范附录A列出的设计地震分组按表5.1.5的规定采用。
基础抗震验算抗震验算是指对建筑结构进行抗震性能评估和验证的过程,其目的是确保建筑结构在地震作用下具备足够的抗震能力,保障人员财产的安全。
在进行基础抗震验算时,需要考虑建筑结构的抗震设计参数、地震作用、结构受力性能等因素。
在进行基础抗震验算时,需要确定建筑结构的抗震设计参数。
这包括设计地震烈度、设计基本周期、设计水平地震力等参数的确定。
设计地震烈度是根据建筑所处地区的地震活动性确定的,其数值代表了地震的强度。
设计基本周期反映了建筑结构的刚度和柔软度,对结构的抗震性能有着重要的影响。
设计水平地震力是根据建筑结构的质量、刚度、地震烈度等参数计算得出的,用于评估结构在地震作用下的受力情况。
在进行基础抗震验算时,需要考虑地震作用对建筑结构的影响。
地震作用是指地震波对建筑结构产生的力和位移作用。
地震波的特点是具有较大的峰值加速度和较短的持续时间,对建筑结构的破坏性较大。
在进行基础抗震验算时,需要根据地震波的特征,确定地震作用的参数,如加速度、速度、位移等。
这些参数将用于计算结构的受力情况,进而评估结构的抗震性能。
在进行基础抗震验算时,需要考虑建筑结构的受力性能。
结构的受力性能是指结构在地震作用下的变形和破坏情况。
在进行基础抗震验算时,需要对结构的受力性能进行评估,包括刚度、强度、稳定性等指标的计算和分析。
这些指标将用于判断结构的抗震性能是否满足设计要求,进而决定是否需要进行加固措施。
在进行基础抗震验算时,需要根据验算结果对建筑结构进行评估和优化。
根据抗震验算的结果,可以评估结构的抗震能力是否满足设计要求,如果不满足,则需要对结构进行加固措施。
加固措施可以包括提高结构的刚度、强度或稳定性,以提高结构的抗震能力。
通过对结构的评估和优化,可以确保建筑结构在地震作用下具备足够的抗震能力,保障人员财产的安全。
基础抗震验算是确保建筑结构在地震作用下具备足够抗震能力的重要过程。
在进行基础抗震验算时,需要考虑抗震设计参数、地震作用、结构受力性能等因素,并根据验算结果对建筑结构进行评估和优化。