火焰原子吸收法测锌元素含量的范围
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
化学与环境学院分析化学实验报告火焰原子吸收法测定毛发中锌含量理综二班陈文友 20120004020【摘要】锌在人体新陈代谢中起到很大作用,能参加许多酶的合成,促进人体发育。
使用原子吸收火焰光度法检测人发中锌含量,材料易得到,方法具有简便、快捷、稳定、灵敏度高等特点,最低检出限0.01mg/kg,RSD为1.38%。
【关键词】原子吸收光谱法;头(毛)发;锌【引言】微量元素是维持人体生命活动不可缺少的物质。
机体缺乏它们将引起许多疾病,其中以铜、锌、铁、钙、镁、锰与人体关系最为密切。
头发是微量元素锌的排泄器官之一,它不仅能反映人体中微量元素较长时间的积累状况,而且还能反映过去一段时间的营养和环境影响状况。
因此,近年来利用头发分析作为某些疾病的诊断手段越来越受到人们的重视。
而锌是生物体必需的微量元素,大部分分布在骨骼、肌肉、血浆和头发中。
测量人体中锌的方法,近年来有很多相关研究和报道,一般方法是抽取血液标本测定微量元素的方法,但容易引起病患者的痛苦,所以,我们开展了火焰原子吸收法测定人发中锌含量的研究,与其他方法比较,该方法具有抗干扰、快速、经济、易掌握、分析准确等优点。
根据原子吸收光谱法的原理,在使用锐线光源条件下,基态原子蒸气对共振线的吸收符合朗伯-比尔定律:A=KLN在试样原子化时,火焰原子温度低于3000k时,对大多数元素来说,原子蒸气中基态原子的数目实际上接近原子总数。
在固定的试验条件下,待测元素的原子总数与该元素在试样中的浓度成正比,因此上式可表示为:A=K,C人或动物的毛发,用湿消化法处理成溶液后,溶液对213.9nm波长的光(Zn 元素的特征谱线)的吸光度与毛发中Zn的含量呈线性关系,故可直接用标准曲线法测定毛发中Zn的含量。
【仪器与试剂】(1)仪器:TAS-986火焰型原子吸收光谱仪;乙炔钢瓶、无油空气压缩机或者空气钢瓶;电热板;烧杯(100mL、500mL);容量瓶(50mL 8只,100mL1只);10mL量筒2个;吸量管(5mL)1支;吸量管(1mL)1支;不锈钢剪刀1把;分析天平1台;玻璃棒1根;普通玻璃漏斗2个;三角瓶2个。
锌离子的鉴定国标标准原吸原子吸收光谱法中锌的测定方法1主题内容与适用范围本标准规定了工业循环冷却水中锌的测定方法。
本标准适用于工业循环冷却水中锌含量为0.1~20.0mg/L的测定,也适用于各种工业用水、原水及生活用水中锌含量的测定。
2引用标准GB/T4470 火焰发射、原子吸收和原子荧光光谱分析法术语GB6682分析实验室用水规格和试验方法GB6819溶解乙炔3术语本标准中涉及到火焰原子吸收光谱术语见GB/T4470。
4方法原理工业循环冷却水样品,经雾化喷入火焰,锌离子被热解为基态原子,以锌共振线213.9nm为分析线,以空气-乙炔火焰测定锌原子的吸光度。
水中各种共存元素和加入的水处理药剂对锌的测定均应无干扰。
5试剂和材料本试验所用水应符合GB6682中二级或三级水的规格。
所用试剂在没有注明其他要求时均指分析纯试剂。
试验中所用乙炔气应符合GB6819之规定。
5.1硝酸(GB626);5.2硝酸(GB626)溶液:1+1;5.3硝酸(GB626)溶液:1+499;5.4锌标准溶液:5.4.1锌标准溶液Ⅰ:称取锌粒1.000g,精确至0.0002g。
放置于100mL烧杯中,加入10mL水和20mL硝酸溶液(5.2),在电炉上慢慢加热溶解,冷却后转移至1000mL容量瓶中,用水稀释至刻度,摇匀,此标准溶液1.00mL含锌1.00mg。
5.4.2锌标准溶液Ⅱ国家技术监督局1993-08-06批准1994-07-01实施移取锌标准溶液Ⅰ(5.4.1)5.0mL,放入100mL 容量瓶中,用水稀释至刻度,摇匀,此标准溶液1.00mL含锌0.050mg。
5.4.3锌标准溶液Ⅲ:移取锌标准溶液Ⅱ(5.4.2)5.0mL,放入50mL 容量瓶中,用水稀释至刻度,摇匀,此标准溶液1.00mL含锌0.0050mg (需当天配制)。
6仪器原子吸收光谱仪和一般实验室用仪器。
6.1原子吸收光谱仪,WNA-1型金属套玻璃高效雾化器,应配有锌空心阴极灯,空气-乙炔预混合燃烧器,背景扣除校正器(本标准推荐使用连续光谱氘灯扣除背景)、打印机或记录仪等。
火焰原子吸收法测定黄金搭档中钙、铁、锌的含量莫国莉1,刘 超1,郭亚娟2(1.内蒙古化工职业学院,内蒙古呼和浩特 010021;2.河北北方学院,河北张家口 075000) 摘 要:使用火焰原子吸收法测定黄金搭档组合维生素片中钙、铁、锌的含量。
钙、铁、锌在给定范围内呈现良好的线性关系,钙回收率在98.9%~104.0%,铁回收率在100.2%~100.8%,锌回收率在103.0%~103.7%。
实验方法简便、快速、结果可靠。
灵敏度与精密度符合分析要求。
关键词:火焰原子吸收法;黄金搭档;钙;铁;锌 中图分类号:R965 文献标识码:A 文章编号:1006—7981(2019)01—0018—02 黄金搭档组合维生素片是由VA、VB1、VB2、VB6、VC、VD、VE、叶酸和矿物质钙、铁、锌、硒组成,具有补充中国人普遍缺乏的维生素和矿物质的保健功能。
已先后报道了VD[1]、VA、VE[2]、VB1、VB2、VB6[3]、叶酸[4]的测定,本文研究了此片剂中钙、铁、锌的含量测定。
钙、铁、锌是人体必需的微量元素,钙元素在骨骼的形成与维持及血液凝固和肌肉收缩中都起着重要作用。
铁元素构成过氧化物酶,过氧化物酶等清除人体内过多的自由基,铁缺乏会影响血红蛋白的合成而导致贫血。
锌元素参与多种酶的合成,缺锌会引起食欲减退、生长迟缓、痴呆、皮炎、免疫功能低下。
本文用火焰原子吸收法测定黄金搭档中钙、铁、锌的含量,获得了满意的结果。
1 实验部分1.1 主要仪器和试剂AA7003型原子吸收光谱仪(北京市东西电子技术研究所);钙、铁、锌空心阴极灯。
钙标准储备溶液:1mg/mL,称取2.4970g光谱纯碳酸钙(于110℃烘干2h,冷却至室温后称量)溶于少量1:4硝酸中,用水定容至1L。
工作溶液的浓度为100μg/mL。
铁标准储备溶液:1mg/mL,将1.000g铁丝(99.99%)溶于20mL1:1盐酸中用水稀释至1L。
工作溶液浓度为50μg/mL。
火焰原子吸收分光光度法测定土壤中的铜、锌、铅、镍、铬摘要:采用微波消解法消解待测土壤,用火焰原子吸收分光光度法测定消解液中的铜、锌、铅、镍、铬5种重金属,测定结果的相对偏差分别为0.59%,0.94%,0.53%,0.30%,1.7%,标准样品的相对误差在0-8.6%之间,均在标准值可接受范围内。
关键字:火焰原子吸收分光光度法、土壤铜、锌、铅、镍、铬随着社会工业的高速发展,土壤污染问题越来越严重,土壤污染物主要分为无机污染物和有机污染物两大类。
无机污染物主要包括Cu、Hg、Zn、Pb、Ni、Cr等重金属污染,这些重金属在土壤中不易被微生物分解,易与有机质发生螯合作用而稳定存在于土壤中,难于清除[1]。
根据《土壤环境质量农用地土壤污染风险管控标准》,土壤中的Cu、Hg、Zn、Pb、Ni、Cr等重金属元素的含量应符合污染物的控制标准值。
本文探讨了火焰原子吸收分光光度法测定土壤中Cu、Zn、Pb、Ni、Cr等元素。
采用微波消解法消解土壤,与电热板消解法相比,该方法具有操作简便,用酸量少,空白值低等优点,且测定结果准确,可靠[2]。
1 实验部分1.1主要仪器与试剂(1)火焰原子吸收光谱仪:iCE 3300,赛默飞世尔科技有限公司;(2)密闭微波消解仪:WX-8000,上海屹尧仪器科技发展有限公司;(3)万分之一电子天平:GL224-1SCN,赛多利斯科学仪器(北京)有限公司;(4)乙炔:纯度99.9%,广西瑞达化工科技有限公司。
(5)标准溶液:坛墨质检科技股份有限公司,浓度100mg/L。
(6)土壤标准样品:GBW07407:中国地质科学院地球物理地球化学勘查研究所;GBW07407a:中国地质科学院地球物理地球化学勘查研究所;RMU037:东莞龙昌智能技术研究院;ERM-S-510203:生态环境部标准样品研究所;ERM-S-510204:生态环境部标准样品研究所。
(8)试剂:硝酸、盐酸、氢氟酸:优级纯,国药集团化学试剂有限公司。
火焰原子吸收法测定水中铁、锰、铜、锌的专题报告一、基本原理原子吸收法是基于以光源中辐射出待测元素的特征光波通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可求出样品中待测元素的含量。
二、铁、锰、铜、锌标准系列配制的浓度范围铁0.3-0.ml/L,锰0.1-0.3mg/L,铜0.2-5.0mg/L,锌0.05-1.0mg/L。
三、水样的预处理(1)澄清的水样可直接测定;(2)悬浮物较多的水样,分析前酸化并消化有机物,分析溶液的金属,应在采样时将水样通过0.45um滤膜过滤,然后每升水样加1.5ml浓硝酸酸化,使PH小于2.(3)当水样的浓度较低时,可采取萃取法,共沉淀法和硫基棉富集法进行预处理。
①萃取法水样加入酒石酸和溴酚蓝指示剂,用硝酸或氢氯化钠调节PH 为 2.2-2.8(由蓝变黄),然后加入吡咯烷二硫代氨基甲酸铵,与金属离子形成配合物,用甲基异丁基甲酮萃取,标准系列也按此操作,取萃取液测定。
②共沉淀法于水样中加入氧化镁,边搅拌加滴加氢氧化钠溶液,水样中铁、锰、铜、锌等金属离子被沉淀捕集、静置水样使其沉淀,吸取上清液并弃去,加入少量硝酸溶解,经定容并进行分析测定。
③巯基棉富集法用硝酸保存的水样用氨水调节PH为6.0-7.5,移入分液漏斗中,以5ml/min的流速使水样通过巯基棉,然后用80℃的热盐酸淋洗巯基棉洗脱待测组分,收集洗脱液并定容,供进样分析。
四、原子吸收光谱法具有灵敏度高,干扰少操作简便,速度快,结果准确可靠。
1)基线的稳定性;光谱带宽0.2nm标尺扩展10信,时间常数0.25s,点火基线测量15min,零点飘移0.0056A,瞬时燥声0.0011A。
2)火焰法测铜的检出限,测量重复性和线性误差。
原子吸收法测定样品中的锌和铜()摘要:本实验采用了原子吸收光谱法测定发样中的锌和铜的含量,方法简单、快速、准确、灵敏度高。
此实验用了火焰原子吸收法以及石墨炉原子吸收法对锌喝铜的含量作了检测。
实验表明,锌所测得的含量为232.4442 ug/g;铜所测得的含量为10.0127 ug/g。
铜所测得的线型数据比锌的较好。
关键词:锌;铜;发样;原子吸收光谱法前言随着原子吸收技术的发展,推动了原子吸收仪器[1]的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。
近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。
微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。
联用技术[2](色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。
色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。
原子吸收光度法是一种灵敏度极高的测定方法,广泛地用来进行超微量的元素分析。
在这种情况下,试剂、溶剂、实验容器甚至实验室环境中的污染物都会严重地影响测得的结果。
实际上,由于人们注意了这个问题,文献中所报道的多种元素在各种试样中的含量曾做过数量级的修正,这正是因为早期的实验中人们把测定中污染物造成的影响也算到试样中的含量中去所造成的。
因此在原子吸收光度测定中取样要特别注意代表性,特别要防止主要来自水、容器、试剂和大气的污染;同时要避免被测元素的损失。
在火焰原子吸收法中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用的仪器有关外,在很大程度上取决于实验条件。
因此最佳实验条件的选择是个重要问题,仪器工作条件,实验内容与操作步骤等方面进行了选择,先将其它因素固定在一水平上逐一改变所研究因素的条件,然后测定某一标准溶液的吸光度,选取吸光度大且稳定性好的条件作该因素的最佳工作条件。
142化学化工C hemical Engineering原子吸收分光光度计火焰吸收法测定矿样中锌的含量罗凌云(江西有色地质矿产勘查开发院,江西 南昌 330000)摘 要:在地质工作中,对矿样元素含量检测是非常重要的工作。
其中,针对矿样锌元素检测也是极为重要的工作环节。
当前,能够对矿样锌元素测量的方式有很多,通过使用原子吸收分光光度计火焰吸收法测定结果精确性高,整个操作过程非常简单,但是在具体使用过程中也会产生测定结果不准确的情况。
基于这种情况下,应当对原子吸收分光光度计火焰吸收法测定锌元素含量的不稳定因素进行研究分析,将锌液体浓度按照梯度进行设置,在确保反应程度保持相关的基础上,从而避免锌自吸情况。
通过对标准曲线进行观察,为确保检测矿样原子吸收分光光度计火焰吸收法的吸光度在测定区间范围内,需要结合待检测溶液浓度的实际情况,将已经稀释的待检测矿样溶液倍数进行提升,操作过程需要关注仪器使用情况,及时对标准溶液进行更换,有效提升测定效果。
经过实验分析后,测定结果和矿样品位和实际测定矿样保持一致,金属成分保持稳定,有效解决了测定过程产生波动的问题,以此提升了测定结果的精确性。
关键词:原子吸收分光光度计;火焰吸收法;矿石分析;锌元素测定中图分类号:P575 文献标识码:A 文章编号:1002-5065(2023)15-0142-3Determination of zinc content in ore sample by flame absorption spectrophotometerLUO Ling-yun(Jiangxi Nonferrous Geological and Mineral Exploration and Development Institute,Nanchang 330000,China)Abstract: In geological work, the detection of mineral sample element content is very important work. Among them, zinc element detection is also an extremely important work link. At present, there are many ways to measure zinc elements in mineral samples. The accuracy of the results is high through the use of atomic absorption spectrophotometer flame absorption method. The whole operation process is very simple, but it will also produce inaccurate results in the specific use process. Based on this situation, it is necessary to study and analyze the unstable factors in the determination of zinc content by flame absorption method of atomic absorption spectrophotometer, and set the concentration of zinc liquid according to the gradient, so as to avoid the situation of zinc self-imbibition on the basis of ensuring that the reaction degree remains relevant. By observing the standard curve, in order to ensure that the absorbance of the flame absorption method of the atomic absorption spectrophotometer is within the measurement range, it is necessary to increase the multiple of the diluted mineral sample solution to be detected based on the actual situation of the concentration of the solution to be detected. In the operation process, it is necessary to pay attention to the use of the instrument and replace the standard solution in time to effectively improve the measurement effect. After the experimental analysis, the determination result is consistent with the ore sample and the actual determination sample, and the metal composition remains stable, which effectively solves the problem of fluctuation in the determination process, so as to improve the accuracy of the determination result.Keywords: atomic absorption spectrophotometer; Flame absorption method; Ore analysis; Zinc determination收稿日期:2023-05作者简介:罗凌云,女,生于1988年,本科,研究方向:地质实验测试。
FHZDZHS0015 海水锌的测定火焰原子吸收光谱法F-HZ-DZ-HS-0015海水—锌的测定—火焰原子吸收光谱法1 范围本方法适用于海水中痕量锌的测定。
检出限:3.1μg/L。
2 原理在弱酸性(pH3.5~4.0)条件下,锌与吡咯烷二硫代甲酸铵(APDC)及二乙氨基二硫代甲酸钠(DDTC-Na)形成螯合物,经甲基异丁酮(MIBK)萃取富集分离后,有机相中的锌在乙炔—空气火焰中被原子化。
在其特征吸收波长处测定原子吸收。
3 试剂除非另有说明,本方法中所用试剂均为分析纯,所用水均为二次去离子无锌水或等效纯水。
3.1 甲基异丁基酮(MIBK),CH3COCH2CH(CH3)2。
3.2 盐酸,1+99:用1份体积盐酸(ρ1.19g/mL,超级纯)与99份体积水混匀。
3.3 硝酸,6mol/L:取75mL硝酸(ρ1.42g/mL,优级纯)与125mL水混合。
3.4 氢氧化铵溶液,约6 mol/L。
氢氧化铵(ρ0.90g/mL)经等温扩散法提纯。
3.5 乙酸铵溶液:57mL冰乙酸(CH3COOH)溶于200mL水中,加3滴二甲基黄指示剂(0.5g/L),用氢氧化铵溶液(约6 mol/L)调节溶液恰呈橙黄色(pH4),加水稀释至1L。
3.6 络合剂混合溶液:分别称取吡咯烷基二硫代甲酸铵(APDC,C5H12N2S2)和二乙氨基二硫代甲酸钠(DDTC,C5H10NS2Na)各0.25g,溶于50mL水中,用定量滤纸过滤后与50mL乙酸铵溶液混合,用甲基异丁基酮提纯两次,每次10mL。
水相盛于试剂瓶中。
当日配制。
3.7 锌标准溶液3.7.1 称取0.2000g光谱纯金属锌(99.99%)用5mL硝酸(6mol/L)溶解后,移入200mL容量瓶中,用水稀释至刻度,摇匀。
此溶液1.00mL含1.00mg锌。
3.7.2 量取10.0mL锌标准溶液(1.00mg/mL)于100mL容量瓶中,用盐酸(1+99)稀释至刻度,摇匀。
原子吸收光谱法测锡中铅、铜、锌的测定1范围本方法适用于锡中铅、铜、锌的测定。
测定范围:铅0.015~0.800%;铜0.0005~0.12%;锌0.001~0.004。
2原理试料用盐酸、过氧化氢溶解,在盐酸介质中,溶液喷入空气-乙炔火焰中,于原子吸收光谱仪上283.3nm、324.8nm、213.9nm处分别测量铅、铜、锌的μμ吸光度。
3试剂3.1 盐酸(ρ1.19g/mL),优级纯。
3.2 盐酸(1+1)。
3.3 盐酸(1+9)。
3.4 硝酸(ρ1.42),优级纯。
3.5 硝酸(1+1)。
3.6过氧化氢(30%),优级纯。
3.7氢溴酸(ρ1.48),优级纯。
3.8 盐酸-氢溴酸:用盐酸(3.1)与氢溴酸(3.7)等体积混合配制。
3.9 铅标准溶液:3.9.1 称取0.5000g纯铅,置于200mL烧杯中,加入20mL硝酸(3.6),微热至溶解完全,移入500mL容量瓶中,用水稀释至刻度,混匀。
此溶液1mL含1000μg铅。
3.9.2 移取20.00mL铅标准溶液( 3.9.1)于200mL容量瓶中,用水稀释至刻度,混匀。
此溶液1mL含100μg铅。
3.10 铜标准溶液:3.10.1 称取0.5000g纯铜,置于200mL烧杯中,加入20mL硝酸(3.6),微热至溶解完全,冷却,移入500mL容量瓶中,用水稀释至刻度,混匀。
此溶液1mL含1000μg铜。
3.10.2 移取10.00mL铜标准溶液(3.10.1)于200mL容量瓶中,用水稀释至刻度,混匀。
此溶液1mL含50μg铜。
3.11 锌标准溶液:3.11.1 称取0.1000g纯锌,置于200mL烧杯中,加入20mL盐酸(3.2)使其溶解完全,移入1000mL 容量瓶中,用水稀释至刻度,混匀,再移入塑料瓶中贮存。
此溶液1mL含100μg锌。
3.11.2 移取20.00mL锌标准溶液(3.11.1)于200mL容量瓶中,用水稀释至刻度,混匀,移入塑料瓶中贮存。
火焰原子吸收法测锌元素含量的范围
摘要:实验表明:在原子吸收测试岩矿样品中锌元素含量时,待测锌元素试样(含量在0.10%~10.00%之间)溶解完全用5%硝酸介质定容至100毫升后,严格控制原子吸收仪的工作条件以及试液稀释倍数,在含量1.00%~10.00%之间与EDTA容量法相比无明显误差。
在原子吸收测试过程中,燃烧头高度控制在6mm,空气流量控制在6L/min,乙炔流量控制在1L/min,试液稀释倍数不超过20倍的条件下,所测结果准确有效。
关键词:锌元素原子吸收测试EDTA容量法
锌(Zinc)是一种化学元素,化学符号是Zn,原子序数是30,是一种浅灰色的过渡元素。
锌(Zinc)是第四”常见”的金属,仅次于铁、铝及铜,外观呈现银白色,在现代工业中对于电池制造上有不可磨灭的地位,为一相当重要的金属。
目前,国家标准规定含量在0.10%~1.00%之间使用原子吸收法[1,2]检测,含量在1.00%~13.00%之间使用EDTA容量法[3,4]检测。
本实验中,在严格保证原子吸收仪处在测试锌元素最佳工作条件的前提下,插入不同含量范围的国家标准物质,平行比对,再与不同含量范围的使用EDTA容量法检测的样品数据进行比对,得出含量在0.10%~10.00%之间的锌元素样品均可使用原子吸收法进行测定,误差值在国家标准规定的范围之内。
一、实验部分
1.仪器与试剂
盐酸;硝酸:浓、1+1。
锌标准贮存溶液:准确称取0.2500g金属锌(99.99%)置于200 ml烧杯中,加入10ml硝酸(1+1),盖上表面皿,置于电热板上低温加热至完全溶解,煮沸驱除氮化物,冷至室温。
移入500ml容量瓶中,加10ml硝酸(1+1),以水稀释至刻度,混匀。
此溶液1 ml含500 ug锌。
低温保存,使用时用5%硝酸溶液稀释至所需浓度。
锌标准系列溶液:分别移取0.4 ml、1 ml、2ml锌标准贮存溶液于100ml容量瓶中,用5%硝酸溶液稀释至刻度,混匀。
此组溶液每ml分别含锌2 ug、5 ug、10 ug。
WYX—9003A型原子吸收仪;Zn 空心阴极灯;
所用试剂均为分析纯,实验用水为蒸馏水。
2.仪器工作条件
锌空心阴极灯,测定波长为213.9nm,灯电流为6mA,光谱通带宽度为0.2nm,燃烧器高度为6mm,乙炔流量为1.0L/min,空气流量为6.0 L/min。
3.试验方法
称取试样(国家标准物质GBW07170、GBW07237、GBW07173、GBW07171)0.2000g于250 ml烧杯中,用少量水润湿,加入10 ml盐酸,盖上表皿,低温加热数分钟,取下稍冷。
加入10 ml硝酸(如析出单质硫,加入0.5 ml溴;如试样含碳量高,加入2~3 ml高氯酸),加热使试样完全分解,继续加热蒸至近干,取下稍冷。
加入10 ml硝酸(1+1),加热微沸,用少量水吹洗表皿及杯壁,冷至室温。
移入100ml容量瓶中,用水稀至刻度,混匀,于原子吸收光谱仪波长213.9nm 处,以空气—乙炔火焰,用水调零,与标准系列同时测定其吸光度。
工作曲线的绘制:用水调零,以含锌2 ug/ml、5 ug/ml、10 ug/ml为标准系列,采用高次方程法,测量吸光度。
以吸光度为纵坐标,以锌浓度为横坐标绘制工作曲线。
二、结果与讨论
1.原子吸收仪测锌最佳工作条件
用水调零,以10 ug/ml锌标液为标准,在空气流量6L/min不变的情况下,调节乙炔气流量和燃烧头高度,寻找吸光度最大值,即确定最佳工作条件,得出最佳工作条件为燃烧头高度控制在6mm,空气流量控制在6L/min,乙炔流量控制在1L/min。
2.平行试验
插入国家标准物质GBW07170 Zn1.21%、GBW07237 Zn2.75%、GBW07173 Zn6.06%、GBW07171 Zn8.71%,每种物质平行三次,进行平行试验,测试结果见表1。
结果表明:所测值与国家标准物质值的相对差均符合国家规范的要求。
3.方法对比试验
按实验方法测定矿样中锌,并与EDTA容量法测定结果进行对照,测定结果见表2。
表1 平行试验结果
表2 样品分析结果对比
结果表明:本法测定结果与EDTA容量法测定结果相吻合。
本方法操作简便,分析速率快,其分析结果与EDTA容量法相比重现性较好,精密度较高,锌元素品位在1.00%~10.00%之间可采用本法进行测定。
参考文献
[1] GB/T 3884.6-2000 铜精矿化学分析方法铅、锌、镉、镍量的测定[S].
[2] 铜陵有色金属公司设计研究院.分析规程[M].1992:20-21.
[3] GB/T 3884.8-2000 铜精矿化学分析方法锌量的测定[S].
[4] 铜陵有色金属公司设计研究院.分析规程[M].1992:21-23.。