时间序列相似性度量
- 格式:doc
- 大小:112.00 KB
- 文档页数:3
第1篇一、引言随着金融市场的快速发展,数据已成为金融行业的重要资产。
时序数据分析作为金融数据分析的核心方法之一,通过对金融时间序列数据的分析,可以帮助我们理解市场趋势、预测未来走势,从而为投资决策提供科学依据。
本报告旨在通过对某金融时间序列数据的分析,揭示市场规律,为投资者提供参考。
二、数据来源与处理1. 数据来源本报告所使用的数据来源于某金融交易所,包括股票、债券、期货等金融产品的历史价格、成交量、市场指数等数据。
数据时间跨度为过去五年,数据频率为每日。
2. 数据处理(1)数据清洗:对数据进行初步清洗,剔除异常值和缺失值。
(2)数据转换:将原始数据转换为适合时序分析的形式,如对数变换、标准化等。
(3)数据分割:将数据分为训练集和测试集,用于模型训练和验证。
三、时序分析方法本报告主要采用以下时序分析方法:1. 时间序列描述性分析通过对时间序列数据进行描述性统计分析,如均值、标准差、自相关系数等,了解数据的整体特征。
2. 时间序列平稳性检验使用ADF(Augmented Dickey-Fuller)检验等方法,判断时间序列是否平稳,为后续建模提供基础。
3. 时间序列建模(1)ARIMA模型:根据时间序列的自相关性,构建ARIMA模型,对数据进行拟合和预测。
(2)SARIMA模型:在ARIMA模型的基础上,考虑季节性因素,构建SARIMA模型。
(3)LSTM模型:利用深度学习技术,构建LSTM模型,对时间序列数据进行预测。
四、结果与分析1. 时间序列描述性分析通过对股票价格、成交量等数据的描述性分析,我们发现:(1)股票价格波动较大,存在明显的周期性波动。
(2)成交量与价格波动存在正相关关系。
(3)市场指数波动相对平稳。
2. 时间序列平稳性检验通过ADF检验,我们发现股票价格、成交量等时间序列均为非平稳时间序列,需要进行差分处理。
3. 时间序列建模(1)ARIMA模型:根据自相关图和偏自相关图,确定ARIMA模型参数,对数据进行拟合和预测。
基于离散余弦变换的时间序列相似性检索
刘端阳;张瑞强
【期刊名称】《计算机系统应用》
【年(卷),期】2012(000)009
【摘要】在时间序列相似性研究领域已经发展了多种方法用于时间序列的表示,以达到降低序列维度的目的。
作为一种经典的时域-频域转换方法,离散余弦变换目前已经在图形图像处理等领域得到了广泛的应用。
将此方法应用于时间序列的表示上,在变换后的数据上进行相似性查询等操作。
实验表明,相对以前的方法,这种方法具有明显的性能提升。
【总页数】4页(P196-198,187)
【作者】刘端阳;张瑞强
【作者单位】浙江工业大学计算机科学与技术学院, 杭州 310023;浙江工业大学计算机科学与技术学院, 杭州 310023
【正文语种】中文
【相关文献】
1.基于小波变换和离散余弦变换的图像分级检索 [J], 毋小省;孙君顶
2.水文时间序列相似性查询的分析与研究——以漯河站、何口站汛期降雨量相似性查询为例 [J], 李薇;孙洪林
3.基于中心Copula函数相似性度量的时间序列聚类方法 [J], 甄远婷;冶继民;李国荣
4.基于新的鲁棒相似性度量的时间序列聚类 [J], 李国荣;冶继民;甄远婷
5.基于优化DTW算法的水文要素时间序列数据相似性分析 [J], 陈春华;李薇;陈雅莉
因版权原因,仅展示原文概要,查看原文内容请购买。
Matlab中的时间序列分类和聚类分析技术时间序列分析是一种用于处理以时间为基准的数据的统计学方法。
通过对时间序列数据进行分类和聚类分析,可以帮助我们发现数据之间的模式、趋势和关联,从而提供对未来趋势的预测和决策支持。
在Matlab中,我们可以利用丰富的时间序列分析工具包来进行这些分析,如金融时间序列分析、信号处理、天气预测等。
一、时间序列分类分析时间序列分类分析是将时间序列数据按照一定的规则分类到不同的类别中。
这可以帮助我们识别不同时间序列之间的差异和相似性,进而在分类、预测和决策等应用中发挥作用。
1. 特征提取在进行时间序列分类之前,首先需要从原始数据中提取出一些有意义的特征。
常用的特征提取方法包括傅里叶变换、小波变换、自回归模型参数等。
在Matlab 中,我们可以使用fft函数进行傅里叶变换,cwt函数进行连续小波变换,arima函数进行自回归模型估计等。
提取出的特征可以用来表征时间序列的统计性质、频谱信息以及自相关性等。
2. 数据预处理在进行时间序列分类之前,通常需要对数据进行预处理,以消除噪声、缺失值和异常值等对分类结果的影响。
这可以通过平滑、插值、滤波等方法实现。
在Matlab中,我们可以使用smooth函数进行平滑处理,interp1函数进行插值处理,filter函数进行滤波处理等。
3. 分类模型建立在特征提取和数据预处理之后,我们可以利用已有的分类算法或建立自己的分类模型来进行时间序列分类。
常用的分类算法包括支持向量机、最近邻、决策树等。
在Matlab中,我们可以使用fitcsvm函数进行支持向量机分类,fitcknn函数进行最近邻分类,fitctree函数进行决策树分类等。
二、时间序列聚类分析时间序列聚类分析是将时间序列数据按照相似度进行分组。
不同于分类分析,聚类分析不需要提前指定类别,而是根据数据的相似性自动进行分组。
1. 相似度度量在时间序列聚类分析中,选择合适的相似度度量方法对数据进行比较是非常重要的。
数据库中的时序数据聚类与分类时序数据是指按照时间顺序排列的数据集合,这类数据常见于时间序列分析、金融数据、传感器数据等领域。
对于大规模的时序数据集,进行聚类与分类可以帮助我们发现数据的模式和规律,进而提供有效的决策依据。
数据库中的时序数据聚类与分类是一项重要的任务,本文将从理论基础、算法选择和应用示例等方面进行探讨。
一、理论基础1.1 时序数据聚类的意义和挑战时序数据聚类的主要目的是将相似的时间序列数据分为不同的簇,以便于进一步的数据分析和模式识别。
然而,由于时序数据的特殊性,导致了以下主要挑战:首先,时序数据具有高维度和实时性的特点,传统的数据聚类方法难以有效处理。
因此,需要采用适用于时序数据的专门算法。
其次,时序数据的相似性度量是聚类的关键。
传统的欧氏距离度量在时序数据中不一定适用,需要考虑到数据的时间顺序性和周期性。
最后,时序数据中可能存在噪音、缺失值和异常值等问题,这些都会对聚类结果产生影响,需要进行预处理和异常检测。
1.2 时序数据分类的概念和方法时序数据分类是通过将时序数据分为预定义的类别,实现对不同类别数据的判别和分类。
其主要包括以下几种方法:基于规则的分类:根据数据的特征和域知识定义一组规则,通过匹配规则进行分类。
基于相似性的分类:计算数据之间的相似性度量,将相似的数据归于同一类别。
基于统计模型的分类:通过建立和训练模型,将时序数据预测为某一类别。
基于机器学习的分类:使用机器学习算法对时序数据进行训练和分类,如决策树、支持向量机等算法。
二、算法选择与优化2.1 时序数据聚类算法选择针对时序数据聚类,我们可以选择以下几种常见的算法进行实现和优化:K-means算法:K-means算法是一种基于距离度量的聚类算法,在时序数据中可以使用动态时间规整(DTW)等方法进行距离度量,进而实现时序数据的聚类。
层次聚类算法:层次聚类是一种基于距离度量的层次化聚类方法,可以通过树状图表示聚类结果。
时间序列聚类方法引言:时间序列数据是指按照一定时间间隔采集到的数据,具有时序关系的数据集合。
时间序列数据广泛应用于金融、气象、交通、医疗等领域。
对时间序列数据进行聚类分析,可以帮助我们发现数据中的模式和规律,揭示隐藏在数据背后的信息,从而对未来的趋势进行预测和决策提供依据。
本文将介绍几种常见的时间序列聚类方法,包括基于距离的方法、基于模型的方法和基于特征的方法。
一、基于距离的时间序列聚类方法基于距离的时间序列聚类方法是一种常见且广泛使用的方法。
其基本思想是通过计算时间序列数据之间的距离来度量它们的相似性,从而将相似的时间序列归为一类。
1. K-means聚类算法K-means算法是一种经典的聚类算法,也适用于时间序列数据的聚类。
它通过迭代更新聚类中心的方式,将数据划分为K个簇。
在时间序列数据中,可以使用欧氏距离或动态时间规整(DTW)距离来计算数据之间的距离。
2. DBSCAN聚类算法DBSCAN算法是一种基于密度的聚类算法,它将数据划分为高密度区域和低密度区域。
在时间序列数据中,可以使用动态时间规整(DTW)距离来度量数据之间的距离,从而找到高密度的时间序列。
二、基于模型的时间序列聚类方法基于模型的时间序列聚类方法是一种通过拟合时间序列数据的模型来进行聚类的方法。
1. ARIMA模型ARIMA模型是一种常用的时间序列预测模型,也可以用于时间序列聚类。
ARIMA模型通过拟合数据的自回归部分和移动平均部分,来描述和预测时间序列数据的变化趋势。
2. 隐马尔可夫模型(HMM)隐马尔可夫模型是一种常用的时间序列建模方法,可以用于时间序列的聚类分析。
HMM模型假设时间序列数据的生成过程是一个马尔可夫链,通过观测序列和状态序列之间的关系来描述时间序列数据的特征。
三、基于特征的时间序列聚类方法基于特征的时间序列聚类方法是一种将时间序列数据转化为特征向量,然后使用传统聚类算法进行聚类分析的方法。
1. 傅里叶变换傅里叶变换是一种将时间序列数据转化为频域特征的方法。
聚类分析中的相似性度量及其应用研究一、本文概述聚类分析是一种无监督的机器学习方法,旨在将相似的对象归为一类,不同的对象归为不同的类。
这种分析方法在多个领域中都得到了广泛的应用,包括数据挖掘、模式识别、图像处理、市场研究等。
聚类分析的核心在于相似性度量,即如何定义和计算对象之间的相似性。
本文将对聚类分析中的相似性度量进行深入探讨,并研究其在不同领域的应用。
本文将介绍聚类分析的基本概念、原理和方法,包括常见的聚类算法如K-means、层次聚类、DBSCAN等。
然后,重点讨论相似性度量的定义、分类和计算方法,包括距离度量、相似系数等。
我们将分析各种相似性度量方法的优缺点,并探讨它们在不同聚类算法中的应用。
接下来,本文将通过案例研究的方式,探讨相似性度量在各个领域中的应用。
我们将选择几个具有代表性的领域,如数据挖掘、模式识别、图像处理等,分析相似性度量在这些领域中的具体应用,以及取得的成果和存在的问题。
本文将对相似性度量在聚类分析中的未来发展进行展望,探讨可能的研究方向和应用领域。
我们希望通过本文的研究,能够为聚类分析中的相似性度量提供更加深入的理解和应用指导,推动聚类分析在各个领域的广泛应用和发展。
二、相似性度量方法及其优缺点聚类分析是一种无监督的机器学习方法,用于将数据集中的样本按照其相似性进行分组。
相似性度量是聚类分析中的关键步骤,它决定了样本之间的相似程度,进而影响了聚类的结果。
在聚类分析中,常用的相似性度量方法主要包括距离度量、相似系数和核函数等。
距离度量是最常用的相似性度量方法之一。
常见的距离度量有欧氏距离、曼哈顿距离、切比雪夫距离等。
欧氏距离是最直观和最常用的距离度量,它衡量了样本在多维空间中的直线距离。
然而,欧氏距离对数据的尺度敏感,因此在处理不同尺度的数据时需要进行标准化处理。
曼哈顿距离和切比雪夫距离则对数据的尺度变化不太敏感,适用于处理不同尺度的数据。
相似系数是另一种常用的相似性度量方法,它衡量了样本之间的相似程度。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
计算机工程与设计ComputerEngineeringandDesign2010,31(3)577・人工智能・基于时问序列相似性聚类的应用研究综述陈湘涛L2,李明亮1,陈玉娟1(1.湖南大学计算机与通信学院,湖南长沙410082;2.中南大学信息科学与工程学院,湖南长沙410083)摘要:在综合分析近年来时间序列数据挖掘相关文献的基础上从时间序列分割、相似性度量、时间序列聚类等方面对时间序列数据挖掘进行了综述,简要分析了基于时间序列相似性聚类的研究现状,对比较流行的算法进行了比较分析,对当前一些未解决的问题进行了简要介绍,并在此基础上对未来的发展趋势进行了展望,为研究者了解最新的基于时间序列相似性聚类研究动态、新技术及发展趋势提供了参考.关键词:线性分割;滑动窗口;时间窗;小波变换;子序列聚类;全序列聚类中图法分类号:TP31l文献标识码:A文章编号:1000.7024(2010)03-0577.05SummalyofapplicationresearchbasedonclusteringoftimeseriessimilarityCHENXiang—taoL2,LIMing—lian91,CHENYu-juanl(1.SchoolofComputerandCommunication,HunanUniversity,Changsha410082,China;2.SchoolofInformationScienceandEngineering,CentralSouthUniversity,Changsha410083,China)Abstract:Onthebasisofacomprehensiveanalysisoftherecentyearsrelevantliteratureoftimeseriesdatamining,time-seriesdataminingsuchasthedivisionoftimeseries,similaritymeasure,clusteringarereviewed.Thecurrentstateofresearchofclusterbasedontimeseriessimilarityareanalyzedbrieflyabriefanalysis.Currentresearchtopicsalebrieflydescribed.Thepopularalgorithmshavebeenacomparativeanalysis.Basedonabriefintroductionofsomeunresolvedissues,thefuturedevelopmenttrendisoutlook.Theaimistoputforwardreferenceforscholarswhoresearchdevelopment,newtechniquesandtrendsoftimeseriesdatamining.Keywords:linearpartition;slidingwindow;windowoftime;wavelettransform;subsequenceclustering;sequenceclustering0引言1时间序列分割时间序列作为数据库中的一种数据形式,它广泛存在于各种大型的商业、医学、工程和社会科学等数据库中,形成规模庞大的时间序列数据库。
专利分析基本方法的介绍与应用分析方法是进行专利信息分析的基础,是实现信息分析工作的目标和手段。
当前,数学方法的引入为各种分析方法的完善提供了有力的理论基础,同时也为实现各种方法的综合应用铺平了道路。
定量分析的基本方法定量分析作为信息分析的重要手段,已经被越来越多地应用在实际分析中。
主要围绕“定量”这一重要概念,对在专利信息分析中较常用到的时间序列法、回归法和聚类法,进行简单的阐述。
1. 时间序列分析所谓时间序列分析(time - series analysis),实际上就是通过对历史数据变化的分析,尽可能准确找出事物发展的轨迹,然后利用数学模型来描述这一事物发展的规律,以期达到对事物现状进行评价和对未来发展进行预测的目的。
它主要用来对技术发展的全过程进行描述,另外还可以对各种繁杂数据进行整理和修匀,以便为后续工作提供可靠的数据基础。
1)移动平均法。
移动平均(moving averages)法主要是用来处理一组在一定X围内无规则的波动的数据。
2)指数平滑法。
指数平滑(exponential smooth)法是对移动平均法的一种改进,最早是由美国经济学家罗伯特·G.布朗于20世纪50年代末首先提出的一种重要方法。
该方法修正了移动平均法在数据权重方面的缺陷,对不同时刻的数据给予了不同的权重。
3)生长曲线模型。
生长模型是基于对事物发展过程的认识而发展起来的一类曲线模型,它通过一条近似形如" S ”的曲线,可以很好地拟合事物的发生、发展和成熟的全过程。
2.回归分析回归(regression)分析是研究对象间相关关系的一种数学方法,以期找到一种科学的数学模型来描述这种关系,从而为后续的工作提供科学的理论依据。
与时间序列法相比,回归分析主要着眼于自变量与因变量间的相关性。
1)一元线性回归分析2)多元线性回归分析3)可线性化的非线性回归模型。
3.聚类分析聚类分析(cluster analysis),又称数值分类学分析。
讨论一般时间序列相似的度量方式
1、概念:
时间序列的相似性度量是衡量两个时间序列的相似程度的方法。
它是时间序列分类、聚类、异常发现等诸多数据挖掘问题的基础;也是时间序列挖掘的核心问题之一。
2、意义:
时间序列式进行序列查询、分类、预测的基本工作,寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。
3、影响因素:
两个序列是否相似,主要看它们的变化趋势是否一致。
由于时间序列数据的复杂性特点,实际中不可能存在两条完全相同的时间序列,即使相似的时间序列往往也会呈现出各种各样的变化。
所以,任何两个序列之间都存在着某种差异,影响这种差异的主要因素有:
(1)噪声:现实的大多数时间序列数据都存在噪声,体现在图形上式指数据的曲线不光滑,即存在“毛刺”。
(2)振幅平移:即两条形态相似的时间序列分别绕高低不同的均值波动。
(3)振幅伸缩:即两条时间序列的变化趋势相同,但其中一条时间序列在纵轴上似乎被拉伸或者压缩过一样,即两个序列的振幅不同。
(4)时间轴伸缩:是指两条时间序列的波形相似,但其中一条时间序列在时间轴上按比例伸缩。
(5)线性漂移:是指两条时间序列的波动节奏相似,但其中一条时间序列呈现线性递增或递减趋势。
(6)不连续性:是指两条时间序列整体的波动趋势相同,只是在别的时间点或段出现间断。
然而,在实际应用中情况要复杂得多,往往是以上多种因素交织在一起。
时间序列的相似性并没有一个客观的定义,具有一定的个人偏好性,也就是说,不同的人或不同的应用场合对各种差异影响的重视程度是不一样的。
给定两条时间序列 {}12,,....,n X x x x =和{}12=,,....m Y y y y ,相似性度量的问题就是在各种各样差异因素的影响下,寻求一个合适的相似性度量函数(),Sim X Y ,使得该函数能很好地反映时间序列数据的特点。
4、方法:目前时间序列相似性度量,最常用的有Minkowski 距离和动态时间弯曲。
一、Minkowski 距离
给定两条时间序列{}{}1
212....=....n n X x x x Y y y y =和 它们之间的Minkowski 距离如下:
()11,n p p i i i d X Y x y =⎛⎫=- ⎪⎝⎭∑
Minkowski 距离是一种距离度量,因为它满足距离的三个条件:
(1) 非负性:()(),0,,,0d X Y X Y d X Y ≥==当且仅当;
(2) 对称性:()(),,;d X Y d Y X =
(3) 三角不等式:()()(),,,d Y Z d X Y d X Z ≤+
大多简单的相似性度量是Minkowski 距离及其它的变种,Minkowski 距离的优点是简单、直观且计算复杂度不高,与时间序列的长度成线性关系即序列长度的增加不会造成计算复杂程度的迅速提高。
所以当训练集比较大时,Minkowski 距离比其他更有效。
但是Minkowski 距离不支持时间序列的线性漂移和时间弯曲,且无法处理不等长的时间序列。
参考文献
[]1王达;荣刚;时间序列的模式距离;浙江大学学报(工学版)2004;39(7);795-799
[]2方开泰;潘恩培;聚类分析;北京地质出版社;1992;44-51
[]3范明;孟晓峰.;数据挖掘概念与技术;北京机械工业出版社;2001 []4林珣;李志蜀周勇;时间序列模式的相似性研究;计算机科学;2011。