微积分思想的产生与发展历史
- 格式:pdf
- 大小:331.69 KB
- 文档页数:8
微积分建立的时代背景和历史意义微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分的产生和发展被誉为“近代技术文明产生的关键事件之一”.微积分的建立,无论是对数学还是对其他科学以至于技术的发展都产生了巨大的影响,充分显示了人类的数学知识对于人的认识发展和改造世界的能力的巨大促进作用. 积分的思想产生得很早,公元前200多年,希腊科学泰斗阿基米德(Archimedes ,约公元前287~前212)就用积分的观点求得球体积公式34π3V r =他用球体“薄片”的叠加与球的外切圆柱及相关圆锥“薄片”的叠加,并用杠杆原理得到球体积公式.公元5世纪,中国数学家祖冲之、祖日恒 父子提出了“缘幂势既同,则积不容异”,也是积分概念的雏形.微分观念的发生比积分大概迟了2000年.公元16世纪,伽利略发现了自由落体的运动规律212S gt =,落体的瞬时速度近似于()()S t t S t gt t +∆-≈∆. 当t ∆很小时,这个比值接近于时刻t 的瞬时速度,这是导数的启蒙.同时,在探求曲线的切线的时候,人们发现,切线是割线的近似,割线的斜率是()()y f x x f x x x ∆+∆-=∆∆,当x ∆很小时,y x∆∆应该是切线斜率的近似,求瞬时速度及切线斜率,是产生导数观念的直接动因.17世纪,法国数学家笛卡儿(Descartes ,1596~1650)建立了坐标系,使几何图形能够用函数来表示,从而为研究函数及其变化率提供了有力的工具. 在17世纪后半叶,牛顿和莱布尼茨总结了诸多数学家的工作之后,分别独立建立了微积分学.牛顿和莱布尼茨对微积分学最突出的贡献是建立了微积分基本定理()()()ba F x dx Fb F a '=-⎰,它把原以为不相干的两个事物紧密联系在一起,揭示了微分和积分的逆运算关系.所不同的是,牛顿(Newton ,1642~1727)创立的微积分有深刻的力学背景,他更多的是从运动变化的观点考虑问题,把力学问题归结为数学问题,而莱布尼茨(Leibniz ,1646~1716)主要是从几何学的角度考虑,他创建的微积分的符号以及微积分的基本法则,对以后微积分的发展有极大的影响.19世纪,法国数学家柯西(Cauchy ,1789~1857)和德国数学家魏尔斯特拉斯(Weierstrass ,1815~1897)为微积分学奠定了坚实的基础,使微积分学成为一套完整的、严谨的理论体系.微积分的建立充分说明,数学来源于实践,又反过来作用于实践.数学的内容、思想、方法和语言已成为现代文化的重要组成部分.。
微积分的发展微积分的产生是数学上的伟大创造。
它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。
如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
1605 年 5 月20 日,在牛顿手写的一面文件中开始有“流数术”的记载,微积分的诞生不妨以这一天为标志。
微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。
本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。
微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。
这些研究需要数学工具来分析变化过程,于是微积分学应运而生。
微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。
牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。
他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。
这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。
莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。
他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。
莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。
笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。
该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。
欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。
该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。
现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。
例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。
随着科学技术的发展,微积分学的应用前景将更加广阔。
微积分概念发展史微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。
着眼于微积分的整个发展历史,在此分为四个时期:1.早期萌芽时期。
2.建立成型时期。
3.成熟完善时期。
4.现代发展时期。
早期萌芽时期:1、古西方萌芽时期:公元前七世纪,泰勒斯对图形的面积、体积与的长度的研究就含有早期微积分的思想,尽管不是很明显。
公元前三世纪,伟大的全能科学家阿基米德利用穷竭法推算出了抛物线弓形、螺线、圆的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的公式,其穷竭法就类似于现在的微积分中的求极限。
此外,他还计算出Π的近似值,阿基米德对于微积分的发展起到了一定的引导作用。
2、古中国萌芽时期:三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。
“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。
另外在南朝时期杰出的祖氏父子更将圆周率计算到小数点后七位数,他们的精神值得我们学习。
此外祖暅之提出了祖暅原理:“幂势即同,则积不容异”,即界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等,比欧洲的卡瓦列利原理早十个世纪。
祖暅之利用牟合方盖(牟合方盖与其内切球的体积比为4:Π)计算出了球的体积,纠正了刘徽的《九章算术注》中的错误的球体积公式。
建立成型时期:1.十七世纪上半叶:这一时期,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。
天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。
意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理(一个平面图形绕某一轴旋转所得立体图形体积等于该平面图形的重心所形成的圆的周长与平面图形面积的乘积。
微积分论文:简述微积分发展史[摘要]本文介绍了微积分学产生的背景、建立过程以及其产生重大的历史意义。
此外,在文章中也对微积分学的理论知识、基本内容进行了介绍和与说明。
[关键词]微积分微分积分发展史一、微积分学的创立微积分作为一门学科,是在十七世纪产生的。
它的主要内容包括两部分:微分学和积分学。
然而早在古代微分和积分的思想就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。
如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
这些都是朴素的极限概念。
到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。
十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。
在创立微积分方面,莱布尼茨与牛顿功绩相当。
这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。
两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。
有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
可以说微积分学的诞生是数学发展的一个里程碑式的事件。
二、微积分诞生的重要意义微积分诞生之前,人类基本上还处在农耕文明时期。
微积分学是继解析几何产生后的又一个伟大的数学创造。
第7讲微积分发展史微积分是近代自然科学和工程技术中广泛应用的一种基本数学工具,它创立于17世纪后半叶的西欧,是适应当时社会生产发展和理论科学的需要而产生的,同时又深刻地影响着生产技术和自然科学的发展。
微积分堪称是人类智慧最伟大的成就之一。
一、微积分产生的背景微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊数学家、力学家阿基米德的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲面的体积等问题中就隐含着近代积分的思想。
极限理论作为微积分的基础,也早在我国的古代就有非常详尽的论述,但当时人们习惯于研究常量和有限的对象,遇到无穷时往往束手无策。
生产力和科学技术的不断发展,为微积分的诞生创造了条件。
1492年哥伦布发现了新大陆,由此证实了大地是球形;1543年,哥白尼发表的《天体运行论》确立了“日心说”;开普勒在1609年提出了有关行星绕日运动的第一、第二定律,1618年他又提出了第三定律;1609年,伽利略用自制的望远镜观察了月亮、金星、木星等星球,把人们的视野引向遥远的地方。
这些科学家拓展了人们对世界的认识,引起了人类思想上的巨变。
16世纪,西欧出现资本主义的萌芽,产生了新的生产关系,社会生产力有了很大的发展。
从17世纪开始,随着社会的进步和生产力的发展,在航海、天文、矿山建设、军事技术等方面有许多课题需要解决,数学也开始进入了“变量数学”时代。
通过这些向数学提出了如下4个问题:(1)由距离和时间的关系求瞬时速度和瞬时加速度;反之,由速度求距离,由加速度求速度。
(2)确定物体运动方向(切线方向)或光学中曲线的切线问题。
(3)求最大、最小值问题。
(4)一般的求积(面积、体积)问题,曲线长问题,以及物体的质量、重心等问题。
在17世纪30年代创立的解析几何学里,可以用字母表示流动坐标,用代数方程刻画一般平面曲线,用代数演算代替对几何量的逻辑推导,从而把对几何图形性质的研究转化为对解析式的研究,使数与形紧密地结合起来。
微积分发展简史范文微积分是数学的一个分支,用于研究变化与积分问题。
微积分的发展历史可以追溯到古代希腊和印度,但真正的微积分体系是在17世纪由牛顿和莱布尼茨等数学家建立起来的。
以下将介绍微积分的发展简史。
在古代希腊,数学家们已经研究了一些与微积分相关的概念,例如阿基米德的测量问题和亚历山大的一些近似方法。
然而,直到公元前3世纪的希帕索斯才开始研究曲线的面积和体积问题。
然而,微积分的真正发展是在17世纪。
1642年,法国数学家费马提出了求极值问题的方法,为微积分的发展奠定了基础。
在此之后,其他数学家纷纷加入到微积分的研究中来。
牛顿和莱布尼茨是微积分的两位重要创始人。
1665年,牛顿发明了微积分的基本原理,并在《自然哲学的数学原理》中介绍了微积分的概念和方法。
与此同时,莱布尼茨也在独立地研究微积分,并提出了微积分的符号表示法。
牛顿和莱布尼茨的发现被认为是微积分的巅峰之作。
微积分的发展在18世纪得到了进一步的推动。
欧拉是18世纪微积分发展的中坚人物之一,他提出了欧拉计算法则和欧拉公式,这些在微积分和复变函数等数学领域都有重要应用。
19世纪是微积分发展的丰富时期。
拉格朗日和拉普拉斯等数学家对微积分的推广和发展做出了重要贡献。
拉格朗日提出了拉格朗日乘子法,并建立了微积分的拉格朗日法则。
拉普拉斯则将微积分应用于概率论,并提出了拉普拉斯变换的概念。
20世纪是微积分发展的一个新阶段,微积分开始向更高维度的空间扩展。
韦尔斯特拉斯提出了极限的严格定义,使微积分的基础更加牢固。
在此期间,泛函分析和变分法等新的数学工具也被引入微积分中。
近年来,微积分在科学和工程领域的应用越来越广泛。
微积分被应用于物理学、经济学、生物学、计算机科学等领域的模型建立和问题求解中。
微积分的发展也不断推动着数学理论的深入研究和应用创新。
总结起来,微积分的发展可以追溯到古代希腊和印度,但真正的微积分体系是在17世纪由牛顿和莱布尼茨等数学家建立起来的。
微积分在实际中的应用一、微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。
微积分是微分学和积分学的总称。
它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。
微分学包括求导的运算,是一套关于变化的理论。
它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。
前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。
从17 世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学时代,即微积分不断完善成为一门学科。
整个17 世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。
二、微积分的思想从微积分成为一门学科来说,是在17 世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3 世纪,古希腊的数学家、力学家阿基米德(公元前287~ 前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。
作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,与此同时,战国时期庄子在《庄子•天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。
公元3 世纪,刘徽在《九章算术》中提及割圆术“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣”用正多边形来逼近圆周。
这是极限论思想的成功运用。
他的极限思想和无穷小方法,也是世界古代极限思想的深刻体现。
虽然最后是欧洲人真正的研究和完成了微积分的创立工作,但中国古代数学对于微积分的出色工作也是不可忽视的。