扫描电镜的图像分析
- 格式:ppt
- 大小:11.27 MB
- 文档页数:48
实验五扫描电子显微镜的结构原理及图像衬度观察一、实验目的1.了解扫描电镜的基本结构和工作原理。
2.通过实际样品观察与分析,明确扫描电镜的用途。
二、基本结构与工作原理简介扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。
放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。
图5-1是扫描电镜主机构造示意图。
试验时将根据实际设备具体介绍。
这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。
三、扫描电镜图像衬度观察1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。
但在有些情况下需对样品进行必要的处理。
(1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。
(2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。
清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。
(3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。
扫描电镜图像分析仪在矿物鉴定中的应用郭 嘉(山东省第一地质矿产勘查院,山东 济南 250013)摘 要:在传统的矿物鉴定中,难以立体地描述矿石样本中的矿物类型及所在区域,因此将扫描电镜图像分析仪应用于矿物鉴定中。
论述扫描电镜图像分析技术原理,归纳总结电子束击打在矿石样本表面后形成的分散电子类型,并分别描述其性质,分析该技术的优势,包括分辨率高、具备三维立体结构等。
论述扫描电镜图像分析仪在矿物鉴定中的应用方法,通过矿石自身的导电性能,区分所需扫描电镜种类及参数,分析不同矿石中的元素组成含量,推断矿石具体成分,寻找页岩结构中的微小孔隙。
关键词:扫描电镜图像分析仪;矿物鉴定;岩石矿物鉴定;扫描电镜;电镜图像分析中图分类号:P575.4 文献标识码:A 文章编号:1002-5065(2021)17-0209-2Application of Scanning Electron Microscope Image Analyzer in Mineral IdentificationGUO Jia(Shandong First Geological and Mineral Exploration Institute, Ji’nan 250013,China)Abstract: In traditional mineral identification, it is difficult to three-dimensionally describe the types and areas of minerals in ore samples. Therefore, scanning electron microscope image analyzers are used in mineral identification. Discuss the principle of scanning electron microscope image analysis technology, summarize and summarize the types of scattered electrons formed after the electron beam hits the surface of the ore sample, and describe their properties respectively, and analyze the advantages of this technology, including high resolution and three-dimensional structure. Discuss the application method of scanning electron microscope image analyzer in mineral identification. Through the conductivity of the ore itself, distinguish the required scanning electron microscope types and parameters, analyze the element composition content of different ore, infer the specific composition of the ore, and look for the shale structure. Tiny pores.Keywords: scanning electron microscope image analyzer; mineral identification; rock mineral identification; scanning electron microscope; electron microscope image analysis我国的工业发展对矿石有极大的需求,因此合理并及时地大范围开采矿物资源是满足人们生产和生活的前提。
扫描电镜的结构原理及图像衬度观察.实验四扫描电镜的结构原理及图像衬度观察⼀实验⽬的1 结合扫描电镜实物,介绍其基本结构和⼯作原理,加深对扫描电镜结构及原理的了解。
2选⽤合适的样品,通过对表⾯形貌衬度和原⼦序数衬度的观察,了解扫描电镜图像衬度原理及其应⽤。
3 利⽤⼆次电⼦像对断⼝形貌进⾏观察。
⼆实验原理1 扫描电镜基本结构和⼯作原理扫描电⼦显微镜利⽤细聚电⼦束在样品表⾯逐点扫描,与样品相互作⽤产⽣各种物理信号.这些信号经检测器接收、放⼤并转换成调制信号.最后在荧光屏上显⽰反映样品表⾯各种特征的图像。
扫描电镜具有景深⼤、图像⼤体感强、放⼤倍数范围⼤连续可调、分辨率⾼、样品室空间⼤且样品制备简单等特点,是进⾏样品表⾯研究的有效分析⼯具。
图4-1为扫描电镜结构原理⽅框图。
扫描电镜所需的加速电压⽐透射电镜要低得多,⼀般约在1—30kV、实验时可根据被分析样品的性质适当地选择,最常⽤的加速电压约在20kV左右。
扫描电镜的图像放⼤倍数在⼀定范围内,(⼏⼗倍到⼏⼗万倍)可以实现连续调整,放⼤倍数等于荧光屏上显⽰的图像横向长度与电⼦束在样品上横向扫描的实际长度之⽐。
扫描电镜镜的光光学系统与透射电镜有所不同,其作⽤仅仅是为了提供扫描电⼦束.作为使样品产⽣各种物理信号的激发源。
扫描电镜最常使⽤的是⼆电⼦信号和背散射电⼦信号,前者⽤于显⽰表⾯形貌衬度,后者⽤于显⽰原⼦序数衬度。
图4-1 扫描电镜结构原理⽅框图扫描电镜的基本结构可分为六⼤部分,电⼦光学系统、扫描系统、信号检测放⼤系统、图像显⽰和记录系统、真空系统和电源及控制系统。
这⼀部分的实验内容可参照教材(材料分析⽅法),并结合实验室现有的扫描电镜进⾏,在此不作详细介绍。
主要介绍两种扫描电镜Quanta环境扫描电⼦显微镜和场发射扫描电镜。
2表⾯形貌衬度原理及应⽤⼆次电⼦信号主要⽤于分析样品的表⾯形貌。
⼆次电⼦只能从样品表⾯层5—10nm 深度范围内被⼊射电⼦束激发出来,⼤于10nm时,虽然⼊射电⼦也能使核外电⼦脱离原⼦⽽变成⾃由电⼦,但因其能量较低以及平均⾃由程较短,不能逸出样品表⾯,最终只能被样品吸收。
扫描电镜分析扫描电镜(Scanning Electron Microscope,SEM)是一种常用的高精度显微镜,能够以极高的放大倍数观察样品的微观结构和形貌。
通过利用电子束对样品进行扫描,SEM能够提供比光学显微镜更高的分辨率和放大倍数。
本文将介绍扫描电镜的工作原理、应用领域以及其在科研和工业中的重要性。
扫描电镜的工作原理是基于电子的性质和电磁场的作用。
它通过发射高能电子束,并将电子束聚焦到极小的尺寸,然后扫描在样品表面。
当电子束与样品的表面交互作用时,会产生许多信号,包括二次电子、背散射电子、特征X射线等。
这些信号接收后,经过电子学系统的处理和分析,最终形成样品的显微图像。
由于扫描电镜的电子束具有很小的波长,因此它能提供更高的分辨率和放大倍数,可以观察到更加详细的微观结构。
扫描电镜在许多领域都有广泛的应用。
在材料科学中,它可以用来研究材料的表面形貌和微观结构,对材料的组成和纳米尺寸的特征进行分析。
在生物学研究中,扫描电镜可以观察生物细胞、组织和器官的内部结构,对病毒、细菌等微生物进行观察和分析。
在纳米科技领域,扫描电镜可以研究纳米材料的制备和性质,包括纳米颗粒、纳米材料的形貌和尺寸分布等。
此外,扫描电镜在矿物学、工业品质检测、环境科学和考古学等领域也有广泛应用。
在矿物学中,扫描电镜可以对矿石和矿物进行分析,帮助确定它们的成分和结构。
在品质检测中,扫描电镜可以用于检查和验证产品的表面和微观结构,确保产品符合质量标准。
在环境科学中,扫描电镜可以用来研究大气颗粒物、水质中的微生物和化合物等。
在考古学研究中,扫描电镜可以协助鉴定古代人工制品的材质和表面特征,帮助研究人员了解古代文化和技术。
扫描电镜在科学研究和工业生产中具有重要的地位。
它能够提供高分辨率的显微观察,帮助科学家们深入了解材料的微观结构和形貌,从而促进科学研究的发展。
在工业领域,扫描电镜可以用于质量控制和产品改进,确保产品具有良好的性能和质量。
扫描电镜(SEM)超全知识汇总真空技术扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器,被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。
如图1所示,是扫描电子显微镜的外观图。
▲图1. 扫描电子显微镜特点制样简单、放大倍数可调范围宽、图像的分辨率高、景深大、保真度高、有真实的三维效应等,对于导电材料,可直接放入样品室进行分析,对于导电性差或绝缘的样品则需要喷镀导电层。
基本结构从结构上看,如图2所示,扫描电镜主要由七大系统组成,即电子光学系统、信号探测处理和显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。
电磁透镜:热发射电子需要电磁透镜来成束,所以在用热发射电子枪的扫描电镜上,电磁透镜必不可少。
通常会装配两组:汇聚透镜和物镜,汇聚透镜仅仅用于汇聚电子束,与成象会焦无关;物镜负责将电子束的焦点汇聚到样品表面。
扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。
样品室内除放置样品外,还安置信号探测器。
2、信号探测处理和显示系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生二次电子、背散射电子、俄歇电子以及X射线等一系列信号。
所以需要不同的探测器譬如二次电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。
虽然X射线信号不能用于成象,但习惯上,仍然将X射线分析系统划分到成象系统中。
有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用二次电子探测器代替,但需要设定一个偏压电场以筛除二次电子。
3、真空系统真空系统主要包括真空泵和真空柱两部分。
真空柱是一个密封的柱形容器。
真空泵用来在真空柱内产生真空。
有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨灯丝枪的扫描电镜的真空要求,但对于装置了场致发射枪或六硼化镧及六硼化铈枪的扫描电镜,则需要机械泵加涡轮分子泵的组合。
扫描电镜实验报告图像分析怎么写一、引言扫描电镜(Scanning Electron Microscope, SEM)是一种常用的高分辨率表面形貌分析仪器,广泛应用于材料科学、生物学、纳米科技等领域。
本实验旨在利用扫描电镜对样品进行观察和分析,掌握图像分析技巧,并结合实际图像进行详细分析,从而深入了解样品的表面形貌和微观结构。
二、实验方法1. 样品制备:选择需要观察的样品,根据不同的要求进行制备,如金属材料可以进行抛光、腐蚀处理,生物样品可以进行固定和超薄切片等。
2. 仪器操作:将制备好的样品放入扫描电镜的样品台上,调节加速电压和放大倍数等参数,开始观察和拍摄图像。
3. 图像获取:通过扫描电镜获取样品的图像,并保存在电脑上,以备后续的图像分析工作。
三、图像分析1. 图像质量评估:首先对所获得的图像进行质量评估。
评估图像的对比度、噪声、清晰度等指标,确保图像的质量符合要求。
可以通过测量像素密度、区域灰度分布等方法进行评估。
2. 图像预处理:针对图像中存在的噪声、伪影等问题,可以对图像进行预处理。
例如,可以利用图像处理软件进行滤波、增强对比度等操作,以提高图像清晰度和可视化效果。
3. 形貌分析:通过对图像进行形貌分析,可以获得样品的表面形貌特征。
可以使用图像处理软件中的测量工具来计算样品的颗粒大小、距离、角度等参数。
同时,可以根据图像中的拓扑结构特征,推测样品的形成过程和相互关系。
4. 结构分析:通过图像分析,可以对样品的微观结构进行分析。
可以从图像中观察并描述样品的晶体结构、纤维形态等。
同时,可以对样品中存在的裂纹、孔洞等缺陷进行分析,评估样品的完整性和质量。
5. 成分分析:在图像分析的基础上,可以借助图谱分析和能谱分析等技术手段,对样品的成分进行分析。
通过识别元素的峰位和峰强,可以得到样品的成分组成,进一步了解样品的化学特性。
四、实验结果与讨论本次扫描电镜实验中,我们选择了一块金属样品,并进行了抛光和腐蚀处理。
在中国材料显微镜网上看到一篇介绍扫描电镜图像及其衬度的文章,觉得非常的有用。
转过来跟大家共同学习一下,希望对大家有所帮助。
1 、扫描电镜像的衬度扫描电镜图象的衬度是信号衬度,它可定义为:根据形成的依据,扫描电镜的衬度可分为形貌衬度,原子序数衬度和电压衬度。
形貌衬度是由于试样表面形貌差异而形成的衬度。
利用对试样表面形貌变化敏感的物理信号如二次电子、背散射电子等作为显象管的调制信号,可以得到形貌衬度像。
其强度是试样表面倾角的函数。
而试样表面微区形貌差别实际上就是各微区表面相对于入射束的倾角不同,因此电子束在试样上扫描时任何二点的形貌差别,表现为信号强度的差别,从而在图像中形成显示形貌的衬度。
二次电子像的衬度是最典型的形貌衬度。
原子序数衬度是由于试样表面物质原子序数(或化学成分)差别而形成的衬度。
利用对试样表面原子序数(或化学成分)变化敏感的物理信号作为显像管的调制信号,可以得到原子序数衬度图像。
背散射电子像、吸收电子像的衬度,都包含有原子序数衬度,而特征X 射线像的衬度是原子序数衬度。
现以背散射电子为例,说明原子序数衬度形成原理。
对于表面光滑无形貌特征的厚试样,当试样由单一元素构成时,则电子束扫描到试样上各点时产生的信号强度是一致的。
得到的像中不存在衬度。
当试样由原子序数不同的元素构成时,则在不同的元素上方产生不同的信号强度,因此也就产生衬度。
电压衬度是由于试样表面电位差别而形成的衬度。
利用对试样表面电位状态敏感的信号,如二次电子,作为显像管的调制信号,可得到电压衬度像。
2 、背散射电子像背散射电子是由样品反射出来的初次电子,其主要特点是:能量很高,有相当部分接近入射电子能量E 0 ,在试样中产生的范围大,像的分辨率低。
背散射电子发射系数η =I B /I 0 随原子序数增大而增大。
作用体积随入射束能量增加而增大,但发射系数变化不大。
当试样表面倾角增大时,作用体积改变,且显著增加发射系数。
背散射电子在试样上方有一定的角分布。
影响扫描电镜图像质量的因素分析摘要:本文介绍影响的因素及其对图像质量的影响,别离从加速电压、扫描速度和信噪比、、、和等分析图像质量的转变原因,提出提高图像质量的方式。
关键词: 扫描电子显微镜 SEM 图像质量是(Scanning Electron Microscope,SEM)是起来的一种多功能的电子显微分析仪器。
SEM 以其简单、图像视野大、景深长、图像立体感强,且能接收和分析后产生的大部份信息,因此在科研和工业等各个领域取得普遍应用。
但是扫描电镜是非常精密的仪器,结构复杂,要想得到能充分反映物质形貌、层次清晰、立体感强和分辨率高的高质量图像仍然是一件非常艰难的事情,本文针对工作中出现的问题,分析影响图像质量的因素,讨论如何根据样品选择最佳观察条件。
1 加速电压扫描电镜的电子束是由灯丝通电发烧温度升高,当钨丝达到白热化,电子的动能增加到大于阳离子对它的吸引力( 逸出功) 时,电子就逃逸出去。
在紧靠灯丝处装上有孔的栅极( 也叫韦氏盖),灯丝尖处于栅孔中心。
栅极上100~1000V 的负电场,使灯丝的电子发射达到必然程度时,再也不能继续随温度增加而增加,即达到(这种提法是错误的)。
离开栅极必然距离有一个中心有孔的阳极,在阳极和阴极间加有一个很高的正电压称为[1],它使电子束加速而取得能量。
加速电压的范围在1~30kV,其值越大电子束能量越大,反之亦然。
加速电压的选用视样品的性质( 含导电性) 和倍率等来选定。
当样品导电性好且不易受电子束损伤时可选用高加速电压,这时(尤其是低原子序数的材料)使材料衬度减小图像分辨率高。
但加速电压过高会产生不利因素,电子束对样品的穿透能力增大,在样品中的扩散区也加大,会发射甚至二次电子也被散射,过多的散射电子存在信号里会出现叠加的虚影从而降低分辨率,目前我所用的扫描电子显微镜(TESCAN TS 5136MM) 的加速电压可在1~30kV 内任意调节,采用加速电压1~30 kV(见图1)。
抽真空(真空度为10~10-1Pa),经几小时或数天后,样品即达到干燥;5.装台镀膜先将冰冻干燥器的样品台加热至室温,然后将干燥器放气,取出样品迅速装台粘样,送入镀膜仪中镀膜。
1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。
2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。
清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。
3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm为宜。
四、表面形貌衬度实验与结论二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。
因此,二次电子像适合于显示表面形貌衬度。
二次电子像的分辨率较高,一般约在3~6nm。
其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。
扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。
在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。
下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。
利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。
图实5-1是比较常见的金属断口形貌二次电子像。
较典型的解理断口形貌如图实5-1a 所示,在解理断口上存在有许多台阶。
在解理裂纹扩展过程中,台阶相互汇合形成河流花样,这是解理断裂的重要特征。
准解理断口的形貌特征见图实5—1b,准解理断口与解理断口有所不同,其断口中有许多弯曲的撕裂棱,河流花样由点状裂纹源向四周放射。
扫描电镜照片参数解读及主要参数选择1、扫描电镜照片参数解读图1 扫描电镜图片展示,EHT=20.00kV即加速电压20kV;WD=8.2mm,即工作距离8.2mm;Mag=7.94KX即放大倍数7940倍;Signal A=SE2即用SE2探测器。
扫描电镜参数众多,皆可显示在图片下方工具栏中,但决定图像质量最直接、最关键因素是加速电压(EHT)、工作距离(WD)、放大倍数(Mag)和检测器种类,因此本台扫描电镜检测结果只选择显示这几个重要指标。
2、电镜参数解读2.1 加速电压一般,加速电压越高,图像分辨率越高,当样品导电性好且不易受电子束损伤时可选用高加速电压,这时电子束能量大,对样品穿透深,材料衬度减小,图像分辨率提高。
但加速电压过高,电子束对样品的穿透能力过大,样品表面信息缺失,样品看起来像玉一样,如图2D。
低加速电压时,入射电子能量较低,其与样品的作用深度较浅,更能反映样品最表层的信息,有利于样品表层形貌的观察(图2A,C);此外,低加速电压可以有效地减少荷电现象,更易观察不导电样品。
如图2B,样品在10kV加速电压下边缘过亮,说明此处电荷大量积累,而图2A用1kV加速电压拍摄的同一部位就没有明显的荷电现象。
因此,根据自己的要求灵活地选择加速电压,才能得到理想的电镜图像。
当需要观测样品的表面信息、样品的导电性较差、样品的热稳定性较差时,需要选择较低的,甚至是超低的加速电压。
当需要得到分辨率高的图像、样品表面存在有机污染或是样品内部的相组成信息时,需要选择较高的加速电压。
图2 不同加速电压条件下的二次电子像。
A,C为1KV加速电压条件下图像,图像表面细节清晰。
B为10KV加速电压条件下图像,图像边缘效应较强。
D为15KV加速电压条件下的图像,图像表面细节看不出。
2.2 工作距离工作距离(WD)是物镜下极靴到样品表面的距离。
工作距离增大时,样品上的束斑变大,分辨率下降,但孔径角减小,景深增加。