sem扫描电镜
- 格式:ppt
- 大小:1.28 MB
- 文档页数:27
扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。
扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。
目前的扫描电镜都配有X 射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。
电子束与固体样品的相互作用扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。
通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。
具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。
电子束和固体样品表面作用时的物理现象一、背射电子背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。
弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。
非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。
非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。
从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。
背反射电子的产生范围在100nm-1mm深度,如下图所示。
电子束在试样中的散射示意图背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。
背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。
二、二次电子二次电子是指背入射电子轰击出来的核外电子。
扫描电镜工作原理扫描电镜(Scanning Electron Microscope,SEM)是一种高分辨率的显微镜,利用电子束而非光线来观察样品表面的微观结构。
它能够提供比传统光学显微镜更高的分辨率和更大的深度信息,因此被广泛应用于材料科学、生物学、纳米技术等领域。
扫描电镜的工作原理可以分为以下几个步骤:1. 电子源产生电子束:扫描电镜中的电子源通常采用热阴极发射电子的方式,如热丝或者热发射阴极。
当电子源受到加热时,电子会从阴极表面发射出来,形成电子束。
2. 加速和聚焦电子束:电子束经过加速电场,使其获得足够的能量。
然后,通过电磁透镜系统对电子束进行聚焦,以获得较小的束斑尺寸。
3. 样品表面的相互作用:将要观察的样品放置在扫描电镜的样品台上,并调整样品的位置和倾斜角度。
当电子束照射到样品表面时,它与样品中的原子和份子相互作用,产生多种信号。
4. 信号的检测和处理:样品与电子束相互作用后,会产生多种信号,包括二次电子、反射电子、散射电子、透射电子等。
这些信号被探测器捕捉,并转化为电信号。
5. 影像的生成和显示:电信号经过放大、转换和处理后,通过计算机系统生成样品的影像。
这些影像可以以黑白或者彩色的形式显示在显示器上,供操作者观察和分析。
扫描电镜相较于传统光学显微镜具有以下优势:1. 高分辨率:扫描电镜的分辨率通常可以达到纳米级别,远远高于传统光学显微镜的分辨率。
2. 大深度信息:扫描电镜可以提供样品表面的三维形貌信息,使观察者能够更全面地了解样品的结构。
3. 高放大倍数:扫描电镜可以实现高倍数的放大,使细微结构和纳米级粒子能够清晰可见。
4. 可观察多种样品:扫描电镜适合于观察各种不同性质的样品,包括金属、陶瓷、生物组织、纤维材料等。
5. 光学显微镜无法观察的细节:扫描电镜能够观察到光学显微镜无法分辨的细节,如纳米级的表面形貌、弱小的缺陷和晶体结构等。
然而,扫描电镜也存在一些限制和挑战:1. 样品制备要求高:扫描电镜对样品的制备要求较高,需要进行表面处理、金属涂覆或者冷冻等步骤,以确保样品的导电性和稳定性。
扫描电子显微镜实验目的1.掌握扫描电镜的工作原理和基本结构2.了解和掌握扫描电镜的样品前处理及数据后处理过程3.了解扫描电镜的操作方法实验原理扫描电镜是利用电子束代替可见光作为探针,利用电磁透镜代替光学透镜聚集和控制电子束,聚集电子束在样品上扫描,激发某种物理信号来调制一个同步扫描的显像管在相应位置的亮度而成像。
SEM的电子枪发出的电子束经过栅极静电聚焦成点光源,然后在加速电压的作用下经过光学电子系统汇聚成直径几纳米的电子束聚焦到样品的表面,在末级透镜上扫描线圈的作用下,电子束在样品的表面扫描。
由于高能电子束与试样物质发生相互作用产生各种信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等,经接收器、放大器输送到显像管的栅极上调制显像管的亮度。
由于样品表面的形貌及元素组成不同,在电子束的轰击下能发出强度不等的信号,通过解析便能得到样品表面的形貌不同元素的分布情况。
扫描电镜的分辨率大概在几纳米,拥有较大的景深。
扫描电镜主要由电子光学系统、信号收集及显示系统、真空系统及电源系统组成。
电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室等。
电子枪主要是提供高质量的电子源,一般有钨灯丝、六硼化镧灯丝和场发射电子枪几类。
电磁透镜主要是把电子枪的束斑缩小,由几十微米缩小成数纳米。
扫描线圈主要用来提供入射电子束在样品表面上以及阴极射线管内的电子束在荧光屏上的同步扫描信号。
样品台要能三维移动和一定角度的倾斜和旋转。
整个电子光学系统都要保持在起高真空条件下。
信号收集及显示系统主要是检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号,大致可分为:电子检测器、阴极荧光检测器和X射线检测器三类。
在扫描电镜中主要利用二次电子的信息观察样品的表面形貌,检测的深度为表面以下5〜10nm。
二次电子像的衬度主要有形貌衬度、成分衬度、电压衬度等。
这是样品的不同区域的形貌、成分等信息不一样,使得发射出来的二次电子的数目不一样导致的。
扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
扫描电镜工作原理扫描电镜(Scanning Electron Microscope,简称SEM)是一种高分辨率的显微镜,利用电子束和样品之间的相互作用来获取样品表面的详细信息。
它在材料科学、生物学、纳米技术等领域具有广泛的应用。
一、工作原理概述扫描电镜的工作原理可以分为以下几个步骤:电子源产生电子束,电子束经过聚焦系统聚焦后,通过扫描线圈控制电子束的位置,然后电子束与样品表面发生相互作用,样品表面发射出的信号被探测器采集并转换成图象。
二、电子源扫描电镜使用的电子源通常是热阴极。
热阴极是由钨丝或者其他材料制成的,通过加热使其发射电子。
电子源的温度和电流可以调节,以控制电子束的强度和稳定性。
三、聚焦系统聚焦系统主要由透镜组成,用于聚焦电子束。
透镜可以是磁透镜或者电透镜,通过调节透镜的电流或者磁场来控制电子束的聚焦效果。
聚焦系统的作用是使电子束尽可能地细致和聚焦,以提高分辨率。
四、扫描线圈和扫描控制扫描线圈用于控制电子束的位置,使其按照一定的模式在样品表面挪移。
扫描控制系统可以根据需要调整扫描速度和扫描范围。
通过控制扫描线圈,可以在样品表面获取不同位置的信号,从而形成图象。
五、相互作用和信号检测电子束与样品表面发生相互作用时,会产生多种信号,包括二次电子、反射电子、散射电子、辐射等。
这些信号可以提供关于样品表面形貌、成份和结构的信息。
扫描电镜通常使用多种探测器来采集这些信号,并将其转换为图象。
六、图象处理和显示采集到的信号经过放大、滤波、增益等处理后,可以转换为数字信号,并通过计算机处理和显示。
图象处理软件可以对图象进行增强、测量和分析,以获取更多的样品信息。
七、应用领域扫描电镜在材料科学、生物学、纳米技术等领域具有广泛的应用。
在材料科学中,扫描电镜可以观察材料的表面形貌、颗粒分布、晶体结构等;在生物学中,扫描电镜可以研究细胞形态、细胞组织结构等;在纳米技术中,扫描电镜可以观察纳米材料的形貌和结构。
总结:扫描电镜通过利用电子束和样品之间的相互作用来获取样品表面的详细信息。
sem扫描电镜的原理SEM扫描电镜的原理SEM(Scanning Electron Microscope)是一种利用电子束扫描样品表面来获取图像的高分辨率显微镜。
与光学显微镜相比,SEM具有更高的分辨率和更大的深度视野,能够观察到更细微的结构和更大范围的样品表面。
SEM的原理主要包括电子源、电子透镜、扫描线圈、检测器和图像显示系统。
SEM的工作原理是通过电子源产生高能电子束,然后通过电子透镜将电子束聚焦到极小的尺寸,形成一个非常细小的电子束。
这个电子束被扫描线圈控制,沿着样品表面进行扫描。
当电子束与样品表面相互作用时,产生的多种信号被检测器捕捉并转换成电信号,最终通过图像显示系统呈现出来。
SEM的电子源通常采用热阴极电子枪,通过加热金属丝使其发射电子。
这些电子经过加速电压加速后,进入电子透镜系统。
电子透镜系统主要由准直透镜和聚焦透镜组成,它们可以控制电子束的发射角度和聚焦程度,使电子束具有足够小的直径和高的聚焦度。
扫描线圈是SEM中的关键元件之一,它通过改变电流的大小和方向,控制电子束在样品表面的扫描轨迹。
扫描线圈产生的扫描磁场使得电子束在样品表面上运动,从而实现对样品的全面扫描。
与扫描过程同时进行的是信号的检测。
当电子束与样品表面相互作用时,会产生多种信号,包括次级电子、反射电子、散射电子、荧光X射线等。
这些信号被检测器捕捉,并转换成电信号。
常用的检测器包括二次电子检测器和反射电子检测器,它们可以提供不同的信号信息,用于构建样品表面的图像。
通过图像显示系统将捕捉到的信号转化为图像进行显示。
图像显示系统通常采用荧光屏或者数字化相机,将信号转化为可视的图像。
这样,我们就可以通过SEM观察到样品表面的微观结构和形貌。
SEM扫描电镜的原理简单来说就是利用电子束扫描样品表面,并通过信号的检测和图像处理来获得样品表面的图像。
SEM具有高分辨率、大深度视野和高放大倍数的特点,广泛应用于材料科学、生物学、地质学等领域的研究和分析。
扫描电镜的成像原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束成像的显微镜。
与传统光学显微镜不同,SEM使用电子束取代了光束,使其能够获得更高的分辨率和更大的放大倍数。
SEM的成像原理主要包括以下几个步骤:电子发射、电子束聚焦、电子束转换、排序和检测。
首先,SEM通过一个热丝发射电子。
这种方法通常通过加热丝使其发出电子,这些电子受到引力吸引到下方的电子透镜。
电子束通过发射针和折射电镜来聚集。
通常,SEM使用热阴极(发射丝)作为电子源。
其次,电子束从热阴极放射出来然后经过几个电子透镜进行聚焦。
这些透镜包括减速电场、主透镜和聚束透镜。
通过调整这些透镜的电场,可以调节电子束的方向和聚焦度,以便在样品表面形成一个尖锐且高度聚焦的电子束。
接下来,电子束扫描在样品上以产生显微图像。
电子束沿着样品表面扫描采集散射电子的信息。
扫描可以沿着两个轴进行:水平和垂直。
扫描过程以重复的方式在样品表面上移动,通过在每个扫描点测量所产生的散射电子数来生成显微图像。
扫描速度较快,可以在短时间内生成高分辨率的显微图像。
最后,检测获得的信号并转换为图像。
通过采集散射电子的数量来计算RGB值,经过数字化后形成图像。
接收到的散射电子信号被电子透镜转换为电压信号,然后经过放大和处理,形成图像。
SEM通常采取反应图像的形式,其中样品被扫描的电子束激发并产生信号。
图像可以通过监视器进行实时观察,也可以以数字形式存储和处理。
总而言之,扫描电子显微镜通过使用电子束而不是光束来观察样品表面的微观结构。
它通过电子的发射、聚焦、能量转换、扫描和检测来实现成像。
这使得SEM能够提供比传统光学显微镜更高的分辨率和更大的放大倍数,是一种非常强大的显微镜工具。
sem扫描电镜原理
SEM(扫描电子显微镜)原理是利用高能电子束与样品相互
作用来获取样品的表面形貌和成分信息。
SEM与光学显微镜
相比,具有更高的分辨率和深度的焦点。
SEM的基本工作原理是将电子源发射的电子加速至高能态,
并通过聚焦系统将其聚焦到极细的电子束。
这个电子束会与样品表面相互作用,并产生多种信号。
最常用的信号是二次电子(SE)和反射电子(BSE),它们
是通过样品表面上被电子束激发的次级电子和逆向散射的电子。
这些信号会被探测器捕捉并转换成电信号。
SEM中的探测器通常是一个二次电子探测器和一个反射电子
探测器。
二次电子探测器能够检测到与样品表面形貌有关的细节信息,如表面轮廓和纹理。
反射电子探测器可以提供关于样品的元素组成和晶体结构等信息。
收集到的电信号经过放大、处理和转换后,可以通过计算机系统将其转化为图像。
这样,我们就可以观察到样品表面的微观形貌和成分分布情况。
总之,SEM利用电子束与样品的相互作用来获取样品表面形
貌和成分信息,通过探测器将产生的次级电子和反射电子信号转化为图像,从而实现对样品的高分辨率观测和分析。
sem扫描电镜工作原理
SEM(扫描电子显微镜)是一种利用聚焦电子束扫描样品表
面并获取图像的仪器。
它的工作原理基于电子的波粒二象性。
在SEM中,电子源产生一个高能电子束,经过一系列的聚焦
和偏转系统,最后聚焦到样品表面上。
当电子束照射到样品时,它们与样品中的原子和分子相互作用。
这些相互作用可以分为不同的模式,包括散射、透射、反射和吸收等。
SEM中的主要信号是次级电子信号(SE)和背散射电子信号(BSE)。
在电子束与样品的相互作用过程中,部分电子从样
品表面散射出来,这些散射电子被收集并转化为图像形式。
次级电子主要与样品的表面形貌相关,而背散射电子则主要与样品的元素成分和密度相关。
SEM图像的形成是通过扫描电子束在样品表面移动并测量每
个像素点的散射电子强度来完成的。
通过控制电子束的移动,可以逐渐扫描整个样品表面,从而获取到样品的表面形貌以及元素成分信息。
SEM具有高分辨率、大深度焦点和大视场等优点,可以应用
于各种领域,如材料科学、生物学、纳米技术等。
它在研究样品的微观形貌和结构、表面粗糙度、元素成分和晶体结构等方面具有广泛的应用前景。
扫描电镜工作原理扫描电镜(Scanning Electron Microscope,简称SEM)是一种重要的高分辨率显微镜,通过扫描电子束与样品表面相互作用,获取样品的表面形貌和成份信息。
下面将详细介绍扫描电镜的工作原理。
一、电子源扫描电镜中的电子源通常采用热阴极电子枪,利用热电子发射的原理产生电子束。
电子束的发射通过加热阴极,使其达到足够高的温度,从而使阴极表面的电子获得足够的能量逃逸出来。
二、电子束的聚焦电子束发射后,需要经过一系列的电子光学元件进行聚焦,以使电子束能够集中在样品表面的一个小区域。
这些电子光学元件包括透镜和电子束扫描线圈。
透镜通过调节电场或者磁场来聚焦电子束,而电子束扫描线圈则用于控制电子束的扫描范围。
三、样品准备在将样品放入扫描电镜之前,需要对样品进行一系列的准备工作。
首先,样品需要被切割成适当的尺寸,并抛光以去除表面的粗糙度。
然后,样品需要被涂覆上一层导电薄膜,以便电子束能够在样品表面产生信号。
常用的导电薄膜材料包括金属(如金、铂)和碳。
四、电子与样品的相互作用当电子束照射到样品表面时,电子与样品原子之间会发生相互作用。
这些相互作用包括电子的散射、吸收和透射等过程。
其中,电子的散射是扫描电镜获取图象的主要过程。
五、信号的检测与放大样品表面与电子束相互作用后,会产生多种信号,包括二次电子(Secondary Electrons,简称SE)、反射电子(Backscattered Electrons,简称BSE)和X射线等。
这些信号可以通过相应的探测器进行检测和放大。
常用的探测器包括二次电子探测器和反射电子探测器。
六、图象的生成与显示通过探测器检测到的信号,可以转换为电信号,并经过放大和处理,最平生成扫描电镜图象。
这些图象可以通过显示器或者打印机进行显示和输出。
扫描电镜图象通常具有高分辨率和高对照度,能够显示样品表面的微观形貌和成份分布。
七、其他功能与技术除了样品表面形貌的观察,扫描电镜还具有其他功能和技术。
扫描电镜sem原理扫描电镜(Scanning Electron Microscope,简称SEM)是一种利用电子束来探测样品表面形貌和组成的仪器。
相较于光学显微镜,SEM具有更高的分辨率和更大的深度。
SEM的原理基于电子束与样品的相互作用。
SEM仪器主要由电子枪、电磁透镜、样品台、检测器和图像处理系统等部分组成。
首先,电子枪会产生高能电子;电子枪的基本构造是热阴极结构,利用热力学效应将钨丝加热到很高的温度,使其发射出的电子形成电子流。
然后,电子束经过电磁透镜的调节,变为聚焦的电子束,以控制电子束的聚束程度和尺寸。
接下来,电子束照射到样品表面,与样品中的原子和分子相互作用,产生多种效应。
主要有弹性散射、非弹性散射和辐射损失等。
其中,弹性散射主要是由电子与核相互作用,产生连续背散射电子,这些电子进入检测器成为信号的一部分。
非弹性散射主要由电子与样品表面的原子和分子发生相互作用,使得样品表面产生次级电子(secondary electrons)和反射电子(backscattered electrons),这些电子也会成为信号的一部分。
样品台部分是用于固定样品的部分,并且可以调节样品的位置。
样品台通常在一个真空室内,以防止电子束与空气相互作用的影响。
检测器是对散射的电子进行检测和放大的装置。
常用的检测器有二次电子检测器和反射电子检测器。
二次电子检测器能够检测到样品表面的微观拓扑特征,反射电子检测器则能够提供样品表面的元素成分信息。
最后,图像处理系统将检测到的信号转化为图像。
图像处理系统可以对信号进行增强、调整和数字化处理。
通常,SEM可以生成高分辨率、三维感的图像。
综上所述,SEM利用电子束与样品的相互作用原理,通过产生和检测电子散射的方式,实现对样品表面形貌和元素成分等的研究。
它具有较高的分辨率和更大的深度,广泛应用于材料科学、生物学、地质学等领域,为科学研究和技术发展提供了强大的工具。