矫直机辊缝值的计算
- 格式:pdf
- 大小:247.81 KB
- 文档页数:6
轮 胎 辊 道 输 送 机科研设计计算书(1)辊子输送机的型式、长度以及布置方式。
(2)物品的输送量(单位时间内输送的物品件数)、输送速度、载荷在辊子输送机上的分布情况。
(3)单个物件的质量、材质、外形尺寸。
(一)辊子长度圆柱形辊子输送机直线段的辊子长度一般可参照图18-17,按下式计算:L=B+△B 18-1式中 L=辊子长度,mmB=物件宽度, mm△B=宽度裕量,mm,可取△B=50~150mm图18-17 圆柱形辊子输送机断面图对于底部刚度很大的物件,在不影响正常输送和安全的情况下,物件宽度可大于辊子长度。
采用轮形辊子的多辊(短辊)输送机,其输送宽度一般可参照图18-18,可按下式计算:W=B+△B 18-2式中 W=输送宽度,mmB=物件宽度,mm△ B=宽度裕量,mm,可取△B=50mm。
图18-18 多辊(短辊)输送机断面图 图18-19 圆弧段的圆锥形辊子当多辊少于4列时,只宜输送刚度大的平底物件,物件宽度应大于输送宽度,可取W=(0.7~0.8)B。
辊子输送机圆弧段的圆锥形辊子,其辊子长度可参照图18-19,按下式计算: l=B R L B R △+-++22)2/()( 18-3式中 l=圆锥形辊子长度,mmR=圆弧段内侧半径,mmB=物件宽度,mmL=物件长度,mm△B=宽度裕量,mm,可取△B=50~150mm,B 较大时取大值。
在既有直线段又有圆弧段的辊子输送机线路系统中,输送同一尺寸宽度的物件,圆弧段的辊子长度要大于直线段的辊子长度。
一般取圆弧段的辊子长度作为该线路系统统一的辊子长度。
(二)辊子间距辊子间距P 应保证一个物件始终支撑在3个以上的辊子,一般情况下可按下式选取 P=31L 18-4 对要求输送平稳的物品 P=(5141~)L 18-5式中 P---辊子间距mmL---物件长度mm(三) 辊子直径辊子直径D 与辊子承载能力有关,可按下式选取:F≤[F] 18-6式中 F---作用在单个辊子上的载荷,N[F]---单个辊子上的允许载荷,N作用在辊子上的载荷F,与物件质量,支承物件的辊子数以及物件底部特性有关,可按下式计算:F=mg/(K 1K 2n) 18-7式中 m---单个物件的重量,kgK 1---单列辊子有效支承系数,与物件底面特性及辊子平面度有关,一般可取K 1=0.7,对底部刚度很大的物品,可取K 1=0.5;K 2---多列辊子不均衡承载系数,对单列辊子,取K 2=1,对双列辊子,取K 2=0.7~0.8:n---支承单个物件的辊子数g---重力加速度,取g=9.81m/s 2单个辊子的允许载荷[F],与辊子直径及长度有关,可从产品样本中查取。
矫直机第1章前言拉伸弯曲矫直机应用于精整机组中,对薄带材进行矫直.目前,国外已经开发生产出多种机型,并已广泛应用.我国尚在研制开发阶段,需加速发展独立成套.1.1 拉弯矫直机及其发展由于冷轧带钢中存在较大的残余应力,使得板面产生波浪和翘曲,不能满足用户的使用要求,需要对其进行矫直.板带材的矫直设备主要有以下三种形式:辊式矫直机,拉伸矫直机和拉弯矫直机.辊式矫直机对中厚板矫直效果良好,而对于薄带材则效果较差;拉伸矫直机依靠夹紧装置或张力辊组产生拉伸变形,使带材产生一定的塑性变形而达到矫直的目的,但由于张力较大,会降低带材的机械性能.基于以上原因便产生了拉弯矫直机,他综合了拉伸矫直机和辊式矫直机的优点,用较小的张力使带材产生较大的塑性变形,达到矫直带材的目的.这种设备对于薄带材矫直效果非常好,便于成卷作业,在薄带材矫直中逐渐取代了其他两种形式的矫直机.早期的拉弯矫直机只是拉伸矫直机和辊式矫直机的简单组合,见图 1.1a,矫直效果并不显著.后来出现了如图1.1b所示类型的拉弯矫直机,这种矫直机既减少了矫直辊的数量,又达到了较好的矫直精度.经过不断的开发研究,近年来又出现了多重拉弯矫直机,如图1.1c,使用了两组以上的矫直辊组,并增加了支撑辊的数目,提高了矫直辊的抗弯刚度和强度,这样就可以矫直高强度的薄带材.拉弯矫直机的设计制造方法,在国外已较为成熟,而国内只作过小型样机及理论探讨,还未达到在生产中应用的程度.设计拉弯矫直机的难点是矫直理论相当复杂,张力辊组的速度和张力控制也较复杂.图1.11.2 翁格勒拉弯矫直机的结构与特点下面通过武钢冷轧厂从德国(Ungerer) 机器制造有限公司引进的拉伸弯曲矫直纵横剪机组来认识一下这一类矫直机的结构特点。
1.2.1 拉弯矫直机的特点拉伸弯曲矫直机主要由三部分组成。
一部分是带有弯辊调节装置的23 辊式矫直机本体;另一部分是张力辊组(也称S 辊组) 和传动部分。
1.2.1.1 弯曲矫直机弯曲矫直机为23 辊式,辊径为25mm。
两辊压延机辊缝测量方法一、两辊压延机辊缝测量方法1. 使用千分尺测量:千分尺是一种常用的测量工具,可用于测量辊缝的宽度。
将千分尺的两个测头放置在辊缝两侧,使其与辊缝平行,然后读取千分尺上的数值即可得到辊缝的宽度。
2. 使用测微计测量:测微计是一种高精度的测量工具,适用于对辊缝进行微小尺寸的测量。
将测微计的测头放置在辊缝两侧,使其与辊缝平行,然后通过调节测微计的刻度盘,使测头与辊缝接触并读取测微计上的数值,即可得到辊缝的宽度。
3. 使用激光测量仪测量:激光测量仪是一种非接触式测量工具,能够准确测量辊缝的宽度。
将激光测量仪对准辊缝,触发测量,仪器将自动读取辊缝的宽度并显示在仪器的屏幕上。
二、辊缝测量注意事项1. 确保两辊平行:在进行辊缝测量之前,需要确保两辊之间的水平度,以免影响测量结果。
可以使用水平仪或其他工具进行校准。
2. 避免测量误差:在使用千分尺或测微计进行测量时,需要保持测量工具与辊缝平行,并确保测量工具垂直于辊缝表面,以避免误差的产生。
3. 注意辊缝的位置:辊缝通常位于两个辊子的中央,但有时也可能位于辊子的一侧。
在进行测量时,需要确定辊缝的准确位置,并将测量工具放置在正确的位置进行测量。
4. 多点测量:辊缝的宽度可能会存在一定的不均匀性,为了获得更准确的测量结果,建议在不同位置进行多点测量,并计算平均值。
5. 定期检查:辊缝的宽度可能会随着使用时间的增加而发生变化,为了保证生产质量和安全性,建议定期检查辊缝的宽度,并进行必要的调整或更换。
总结:两辊压延机辊缝的测量是保证生产质量和安全性的重要环节。
通过使用千分尺、测微计或激光测量仪等工具,可以准确测量辊缝的宽度。
在进行测量时,需要注意辊缝位置、工具的垂直度以及辊子的水平度,以避免测量误差。
同时,建议定期检查辊缝的宽度,确保其在合理范围内,以保证生产过程的稳定性和产品质量的可靠性。
1张力辊直径计算原则:带钢缠绕在张力辊上不产生塑性弯曲变形,即按厚带材绕过张力辊的弯矩小于或等于带材的弹性极限弯矩计算辊径。
D:张力辊辊径。
h:钢板厚度。
E:带钢的弹性模量。
σs:带钢的屈服强度。
说明:1).由上述计算可以发现,带钢规格相同,屈服强度越高需要的辊径越小。
这正是带退火炉的热镀锌线入口张力辊径小,出口张力辊径大的原因。
2).带钢经过张力辊不产生塑性变形的要求是相对的,为了不使辊径过大,实际生产中允许部分厚规格产品产生塑性变形。
3).根据产品规格不同,热镀锌及酸洗冷轧生产线常用的张力辊辊径范围是500~1200mm。
4).在实际生产中,最大带钢厚度为1.2mm的镀锌线,张力辊辊径通常选取为550~650mm;拉矫机张力辊径650~700mm;最大带钢厚度为1.5mm的镀锌线,张力辊辊径通常选取为600~700mm;拉矫机张力辊径800mm;最大带钢厚度为2.0mm的镀锌线,张力辊辊径通常选取为800~1000mm;拉矫机张力辊径1000~1200mm;5).根据我公司的现有设计,张力辊辊径选取系列为:560mm;650mm;800mm;900mm;1000mm;1200mm。
6).辊身长度依据带钢的宽度选取,通常是带宽加200~300mm,常用的宽度系列是1000mm;1300mm;1500mm。
2张力辊允许产生的张力说明带钢经过张力辊后,张力值可以得到放大,放大的量取决于张力辊的结构、辊面材质、传动功率等,μ:带钢与张力辊之间的摩擦系数;采用钢辊时取0.1~0.15;采用衬胶辊时取0.18~0.25;带钢表面有油时,摩擦系数降低。
α:带钢在张力辊上的包角。
图一张力辊1#辊包角为180+61度=241度=4.2弧度。
计算时取0.9的利用系数。
λ:张力辊传动带钢,保证带钢不打滑可能产生的张力放大倍数。
这是可能产生的放大倍数,张力辊实际放大能力取决于传动功率,但是传动能力超过此范围也没有意义。
辊压机主要参数确定第三节辊压机主要参数确定一、辊径D和辊宽B及最小辊隙S min的确定目前,在设计和使用上辊径有两种方案:一为大辊径;另一为小辊径。
辊径 D 有如下简化计算式D=Kd max(9-1)式中K ———系数,由统计数据而得,K=10-24 ;d max———喂料最大粒度,mm。
采用大辊径有如下优点:(1)大块物料容易咬入,向上反弹情况少。
(2)由点载荷、线载荷、径向挤压三者所组成的压力区高度较大,物料受压过程较长。
(3)辊子直径大,惯性大,运转平稳。
(4)辊径大,则轴承大,轴承及机架受力情况较好,且有足够空间便于轴承的安装与维修。
(5)辊面寿命相对延长。
但辊径大,则重量和体积较大,整机重量比小辊径方案重15%左右。
辊宽 B 的设计也有两种方案:一为宽辊;另一为窄辊。
辊宽B可用下式计算B=K B D (9-2)式中K B———辊宽系数,K B0.2-1.2;D ———辊径,mm 。
宽辊相应的辊径要小,窄辊相应的辊径要大。
宽辊具有边缘效应小、重量轻、体积小等优点。
但对喂料程度的反应较敏感,出料粒度组成及运转平稳性略差。
辊压机两辊之间的间隙称为辊隙,在两辊中心连线上的辊隙,称为最小辊隙,用S min表示。
根据辊压机的具体工作情况和物料性质的不同,在生产调试时,调整到比较合适的尺寸。
在喂料情况变化时,更应及时调整。
在设计时,最小辊隙S min可按下式确定S min=K s D(9-3)式中K s———最小辊隙系数,因物料不同而异,水泥熟料取K s=0.016-0.024,水泥原料取K s=0.020-0.030;D ———挤压辊外直径,mm。
二、工作压力水泥工业用辊压机,对于石灰石和水泥熟料,平均单位压力控制在140-180MPa 之间比较经济,设计最大工作压力宜取200MPa 。
这个压力值又直接控制着辊子的工作间隙和物料受压过程的压实度。
为了更精确地表示辊压机的压力,用辊子的单位长度粉磨力(即线压力)F m(kN/cm)来表示,一般为80-100kN/cm。
《Φ100~Φ150mm棒材二辊矫直机矫直曲率分析及辊型设计》篇一一、引言随着工业生产的发展,棒材的矫直技术在众多行业中发挥着至关重要的作用。
二辊矫直机作为一种常用的矫直设备,广泛应用于棒材的生产线中。
本文将重点分析Φ100~Φ150mm棒材二辊矫直机的矫直曲率及辊型设计,为棒材矫直技术的发展提供一定的理论支持和实践指导。
二、矫直曲率分析1. 矫直原理二辊矫直机通过两个相对旋转的辊子对棒材进行挤压,使棒材在受到一定压力的作用下发生塑性变形,从而达到矫直的目的。
矫直曲率是评价矫直效果的重要指标,其大小直接影响着棒材的矫直质量和效率。
2. 影响因素(1)棒材材质:不同材质的棒材在矫直过程中表现出不同的塑性和弹性,影响矫直曲率的大小。
(2)辊子转速:辊子转速过快或过慢都会影响棒材的矫直效果,进而影响矫直曲率。
(3)辊子间距:辊子间距的调整对矫直曲率有着直接的影响,间距过大或过小都会导致矫直效果不佳。
3. 曲率分析方法通过对棒材在矫直过程中的变形情况进行观察和分析,结合理论计算和实验数据,可以得出矫直曲率的计算公式和影响因素。
同时,采用数值模拟的方法对矫直过程进行模拟,可以更直观地了解棒材的矫直过程和曲率变化。
三、辊型设计1. 设计原则二辊矫直机的辊型设计应遵循以下原则:保证棒材在矫直过程中能够顺利通过,避免卡阻和损伤;确保矫直效果良好,使棒材达到所需的直线度;同时考虑设备的结构和使用寿命。
2. 辊型类型及特点常见的二辊矫直机辊型包括平型辊、凸型辊和凹型辊等。
平型辊适用于矫直直径较小、表面要求不高的棒材;凸型辊和凹型辊则适用于矫直直径较大、表面要求较高的棒材。
在实际应用中,根据棒材的材质、直径和表面要求等因素,选择合适的辊型。
3. 参数设计辊型的参数设计包括辊子直径、长度、间距等。
这些参数的设计应根据棒材的材质、直径和矫直要求等因素进行综合考虑。
同时,还需考虑设备的结构和使用寿命等因素,以确保设备的稳定性和可靠性。
辊式板材矫直机的力能参数的确定摘要:从矫直原理入手,研究了矫直时金属变形理论,给出了板带材矫直机力能参数的确定方法。
关键词:矫直机;矫直理论;力能参数Research On the Power Parameter of Strip StraightenerThe Northwest Machine Factory XU Hong-jieAbstract: From the straightening principle for strip, this paper studies the theory of metal deformation and puts forwards amethod for selecting the power parameter of strip straightener. Key words: Straightener, Straightener theory, Power Parameter一.序言随着国民经济健康快速发展,各种金属板带材在各个行业获得了广泛的应用。
这些材料在轧制、锻造、挤压、拉拔、运输、冷却及各种加工过程中,常常因为外力作用,温度变化,或内力消长而发生弯曲或扭曲变形。
为了消除这些缺陷,必须用矫直机加以矫直。
我厂研制开发了适用于板带材矫直的辊式系列矫直设备。
下面以我厂研制开发的某型十七辊板材矫直机为例对它的矫直原理、主要结构、力能参数的确定等作一简要介绍。
二.技术规格a)适用材质:屈服强度σs≤260Mp的钢板或有色金属板材b)矫平板材厚度:0.3~2mmc)矫平板材最大宽度:1000mmd)矫平板材最小长度:100mme)矫平辊每分钟转速:68rpm,100rpmf)矫平板材移动速度:10m/min,14m/ming)矫平辊数n:17辊(上排8辊,下排9辊)h)矫平辊直径D:φ45mmi)矫平辊节距t:48mmj)支撑辊排数:上下各2排k)支撑辊直径:φ47mml)电机功率:主电机20KW 970rpm升降电机0.75KW 1500rpm13. 外形尺寸:3060mm×1900mm×1760mm三.工作原理金属材料在较大弹塑性弯曲条件下,不管其原始弯曲程度有多大区别,在弹复后残留的弯曲程度差别会显著减小,甚至会趋于一致。
辊压机的主要参数辊子的直径和宽辊子直径计算公式:max d D K d =式中 D —辊子的直径 ,m md max --- 喂料最大粒度,mm ; K d ——系数,由统计所得,K d =10~24辊压机的辊子直径和长度之比D/L=1~2.5,D/L 大时,容易咬住大块物料,向上弹的可能性不大,压力区高度大,物料受压过程较长,运转平稳。
不过运转时会出现边缘效应。
但D/L 小时,情况与上述相反。
压力压力是决定辊压效果的最基本参数。
前面已说过粉碎后细粉比例和平均辊压的关系,平均辊压超过150MPa 细粉不再增加,在80~120MPa 之问增速最快。
辊压增加单位能力的电耗也增加,而且辊面磨损也加重。
为此辊压机设计时要寻找一个适宜的辊压值,当然该值与粉磨系统有关,亦即与出辊压机的成品质量有关。
如图1所示,平均辊压可按下式计算,即ααsin 2sin BD F BR F Bh F P CP ===式中 F —辊压机的总力,kN ;B —辊压机辊宽,m ; D —辊压机直径,m ; R —辊压机半径,m ; α—压力角或称咬入角,(℃;)P CP —平均辊压,kN/m 2。
由于平均压力涉及到α,而α在一定范围内随辊面、物料而变。
所以对图1 辊压机受力情况δ—夹角;h —压力区高度于设计参数亦可应用辊子投影压力P r 来计算。
BDFP r =式中P r ——投影压力,kN/m 2。
如α为8°,则P CP 等于14.4P r 。
早期用于预粉磨的辊压机辊子的投影压力波动于8500~10000kN /㎡,相当于平均压力为120~150MPa 。
当前联合粉磨的辊压机投影压力已降至5000~6000kN /㎡,相当于平均压力为70~85MPa 。
实际上真正对辊压效果起作用的是最大压力。
转速辊压机加压时间对料饼质量无关,故转速对质量段有影响,转速只与辊压机的能力有关。
转速快、能力大,但超过一定速度,能力不再增加。
一、辊径D和辊宽B及最小辊隙Smin的确定目前,在设计和使用上辊径有两种方案:一为大辊径;另一为小辊径。
辊径 D 有如下简化计算式D=Kdmax(9-1)式中 K ———系数,由统计数据而得,K=10-24 ;dmax———喂料最大粒度,mm。
采用大辊径有如下优点:(1)大块物料容易咬入,向上反弹情况少。
(2)由点载荷、线载荷、径向挤压三者所组成的压力区高度较大,物料受压过程较长。
(3)辊子直径大,惯性大,运转平稳。
(4)辊径大,则轴承大,轴承及机架受力情况较好,且有足够空间便于轴承的安装与维修。
(5)辊面寿命相对延长。
但辊径大,则重量和体积较大,整机重量比小辊径方案重15%左右。
辊宽 B 的设计也有两种方案:一为宽辊;另一为窄辊。
辊宽B可用下式计算 B=KBD (9-2)式中 KB ———辊宽系数,KB0.2-1.2;宽辊相应的辊径要小,窄辊相应的辊径要大。
宽辊具有边缘效应小、重量轻、体积小等优点。
但对喂料程度的反应较敏感,出料粒度组成及运转平稳性略差。
辊压机两辊之间的间隙称为辊隙,在两辊中心连线上的辊隙,称为最小辊隙,用Smin表示。
根据辊压机的具体工作情况和物料性质的不同,在生产调试时,调整到比较合适的尺寸。
在喂料情况变化时,更应及时调整。
在设计时,最小辊隙 Smin可按下式确定 Smin =KsD(9-3)式中 Ks———最小辊隙系数,因物料不同而异,水泥熟料取Ks =0.016-0.024,水泥原料取Ks=0.020-0.030;D ———挤压辊外直径,mm。
二、工作压力水泥工业用辊压机,对于石灰石和水泥熟料,平均单位压力控制在 140-180MPa 之间比较经济,设计最大工作压力宜取 200MPa 。
这个压力值又直接控制着辊子的工作间隙和物料受压过程的压实度。
为了更精确地表示辊压机的压力,用辊子的单位长度粉磨力(即线压力)Fm(kN/cm)来表示,一般为80-100kN/cm。
三、辊速辊压机的辊速有两种表示方法:一种是以辊子圆周线速度 V 表示;另一种是以辊子转速表示。
《Φ100~Φ150mm棒材二辊矫直机矫直曲率分析及辊型设计》篇一一、引言随着金属材料加工技术的发展,二辊矫直机作为棒材矫直的关键设备,其矫直曲率及辊型设计对产品质量和效率具有重要影响。
本文针对Φ100~Φ150mm棒材二辊矫直机的矫直曲率及辊型设计进行深入分析,旨在为相关设备的优化设计和生产提供理论支持。
二、矫直曲率分析1. 矫直原理二辊矫直机通过两个相对旋转的矫直辊对棒材进行挤压,使棒材内部的残余应力得到释放,从而达到矫直的目的。
矫直过程中,棒材的曲率变化是评估矫直效果的重要指标。
2. 曲率计算方法根据棒材的材质、直径及矫直前后的弯曲程度,可以通过弹性力学原理计算矫直过程中的曲率变化。
同时,结合实际生产过程中的矫直数据,对计算方法进行验证和修正。
3. 影响因素分析矫直曲率受多种因素影响,包括棒材的材质、直径、温度、矫直速度及矫直辊的间隙等。
不同因素对矫直曲率的影响程度不同,需进行综合分析。
三、辊型设计1. 辊型设计原则辊型设计需遵循合理性、适用性和经济性的原则,同时考虑棒材的材质、直径及矫直要求。
设计过程中,应确保矫直辊的线速度与棒材的线速度相匹配,以减少矫直过程中的滑移和损伤。
2. 矫直辊材料选择及热处理矫直辊的材料选择及热处理对辊的耐用性和矫直效果具有重要影响。
一般选用高强度、高耐磨性的合金钢作为矫直辊材料,并经过适当的热处理,以提高其硬度和耐磨性。
3. 辊型结构设计辊型结构设计应考虑棒材的矫直路径、矫直力及矫直效率等因素。
合理的辊型结构设计能够确保棒材在矫直过程中受力均匀,减少应力集中和变形。
同时,应考虑辊型的可调性,以适应不同规格和材质的棒材。
四、实际应用及优化建议1. 实际应用在实际生产过程中,应根据棒材的具体情况和生产要求,合理设置矫直机的参数,包括矫直速度、矫直力及矫直辊的间隙等。
同时,定期对矫直机进行维护和保养,确保其正常运行。
2. 优化建议为进一步提高二辊矫直机的矫直效果和效率,建议从以下几个方面进行优化:(1)优化矫直曲率计算方法,提高计算的准确性和可靠性;(2)改进辊型设计,提高矫直辊的耐用性和适用性;(3)引入智能化控制系统,实现矫直过程的自动控制和优化;(4)加强设备的维护和保养,确保设备的稳定性和可靠性。
螺旋管机组成型参数计算一、成型参数计算大桥成型角:β=arccon(B/πD中)——B-板宽、D-管径;H-2#辊至地基面距h-1#\3#辊旋转中心至地面距a-1#\3#辊旋转中心至管中心方向的基面成型内外辊角度:β内=arctg〔πD内sinβ/B〕β外=arctg〔πD外sinβ/B〕钢管螺距:L螺=B/sinβ(mm)钢管周长范围:π(D外+δ正)≥S≥π(D外+δ负)δ正、δ负由执行标准决定。
1#\3#辊仰角α:α=arccos〔(H-h+D/2)/L+D/2〕1#\3#辊距基准距离X:X=sinα(L+D/2) -aK值=1#辊与中心距离+3#辊与中心距离二、各机组实际参数φ170成型辊(φ1620机组):H=590h1=360h3=389L1=260L3=260a1=175a3=175φ170成型辊(φ4020机组):H=590h1=350h3=372L1=260L3=260a1=175a3=175φ150成型辊(φ920机组):H=550h1=335h3=365L1=243L3=245a1=175a3=175滑台中心:800-S/2S—螺距φ110成型辊(φ820机组):H=335(生产φ219时)H=340h1=180h3=210L1=185L3=185a1=120a3=120滑台中心:600-S/2S—螺距将以上固定参数代入:一、φ170成型辊(φ4000机组):1#\3#辊仰角α:α1=arccos〔(H-h1+D/2)/L1+D/2〕=arccos〔(240+D/2)/(260+D/2)〕α3 =arccos〔(218+D/2)/(260+D/2)〕φ170成型辊(φ1620机组):1#\3#辊仰角α:α1=arccos〔(H-h1+D/2)/L1+D/2〕=arccos〔(230+D/2)/(260+D/2)〕α3 =arccos〔(201+D/2)/(260+D/2)〕1#\3#辊距基准距离X:X1=sinα1(L1+D/2) –a1= sinα1(260+D/2) –175X3=sinα3(L3+D/2) –a3= sinα3(260+D/2) –175二、φ150成型辊(φ920机组):1#\3#辊仰角α:α1=arccos〔(H-h1+D/2)/L1+D/2〕=arccos〔(215+D/2)/(243+D/2)〕α3 =arccos〔(185+D/2)/(245+D/2)〕1#\3#辊距基准距离X:X1=sinα1(L1+D/2) –a1= sinα1(243+D/2) –175X3=sinα3(L3+D/2) –a3= sinα3(245+D/2) –175三、φ110成型辊(φ820机组):1#\3#辊仰角α:α1=arccos〔(H-h1+D/2)/L1+D/2〕=arccos〔(155+D/2)/(185+D/2)〕α3 =arccos〔(130+D/2)/(185+D/2)〕1#\3#辊距基准距离X:X1=sinα1(L1+D/2) –a1= sinα1(185+D/2) –120X3=sinα3(L3+D/2) –a3= sinα3(185+D/2) –120。