山东省潍坊市2018-2019学年高一下学期期中考试数学试题(精编含解析)
- 格式:pdf
- 大小:593.51 KB
- 文档页数:20
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
福清龙西中学2018-2019学年度高一下学期期中考试试卷数学一、选择题(共12小题,每题5分共60分,只有一个选项正确,请把..★.答案..★.写在答题卷上......) 1.在ABC ∆中,sin sin AB等于( ) A.b a B.a bC.A BD.cos cos AB【★答案★】B 【解析】 【分析】根据正弦定理变形后易得结论. 【详解】由正弦定理得sin sin a b A B=, 所以sin sin A aB b=. 故选B .【点睛】本题考查正弦定理的变形,解题时由正弦定理可直接得到结论,属于简单题. 2.若0a <,01b <<,那么( ) A. 2a ab ab >> B. 2ab ab a >> C. 2ab a ab >> D. 2ab ab a >>【★答案★】B 【解析】 【分析】根据不等式的性质比较判断即可求解. 【详解】因为01b <<, 所以21b b <<, 又0a <,所以2a ab ab <<, 故选:B【点睛】本题主要考查了不等式性质,考查了推理分析能力,属于容易题. 3.下列命题中正确的是( )A. 若正数,,a b c 是等差数列,则2,2,2a b c 是等比数列B. 若正数是,,a b c 等比数列,则2,2,2a b c 是等差数列C. 若正数是,,a b c 等差数列,则222log ,log ,log a b c 是等比数列D. 若正数是,,a b c 等比数列,则是222log ,log ,log a b c 等差数列 【★答案★】D 【解析】 【分析】根据等差数列与等比数列的性质,结合对数的运算性质,逐一判断真假,可得★答案★. 【详解】若正数a, b , c 是等差数列,则2a, 2b, 2c 是等差数列,但不一定是等比数列,例如,1,2,3是等差数列,2,4,6是等差数列,但不是等比数列,故A 错误;若正数a ,b ,c 是等比数列,则2a ,2b, 2c 是等比数列,但不一定是等差数列,例如,1,2,4成等比数列,2,4,8成等比数列,不是等差数列,故B 错误;若正数a, b , c 是等差数列,但222log ,log ,log a b c 中可能有0,不能做为等比数列的项,故C 错误;若正数a, b, c 是等比数列,则2222222log log log log log , b b ac a c ===+故222log ,log ,log a b c 成等差数列,故D 正确.故选:D 【点睛】本题以命题的真假判断为载体考查了等差数列和等比数列的定义,熟练掌握等差,等比数列的定义及性质是解答的关键,属于中档题.4.边长为5,7,8的三角形的最大角与最小角之和为 ( )A. 90︒B. 120︒C. 135︒D. 150︒【★答案★】B 【解析】【详解】解:根据三角形角边关系可得,最大角与最小角所对的边的长分别为8与5, 设长为7的边所对的角为θ,则最大角与最小角的和是180°-θ,有余弦定理可得,cosθ=25644912582+-=⨯⨯,易得θ=60°,则最大角与最小角的和是180°-θ=120°,故选B . 5.不等式20(0)ax bx c a ++<≠的解集为φ,那么( )A. 0,0a <∆≥B. 0,0a <∆≤C. 0,0a >∆≤D. 0,0a >∆>【★答案★】C 【解析】 【分析】由二次不等式解集为φ,结合二次函数图象及二次方程可知满足的条件. 【详解】因为不等式20(0)ax bx c a ++<≠的解集为φ,所以对应的二次函数2y ax bx c =++开口向上,与x 轴无交点或只有一个交点即可, 所以需满足0,0a >∆≤. 故选:C 【点睛】本题主要考查了二次不等式与二次函数、二次方程的关系,由不等式的解求参数满足的范围,属于容易题.6.设,x y 为正数, 则()14x y x y ⎛⎫++ ⎪⎝⎭的最小值为 ( )A. 6B. 9C. 12D. 15【★答案★】B 【解析】 【分析】整理后可用基本不等式求最小值. 【详解】()1444552549x y x yx y x y y x y x ⎛⎫++=++≥+=+=⎪⎝⎭,当且仅当2y x =时等号成立,故最小值为9,选B. 【点睛】本题考查不等式的应用,属于容易题.7.已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A. 30B. 45C. 90D. 186【★答案★】C 【解析】由2115163{{4153a a d a a a d d =+==⇒=+==,33(1)3n a n n ∴=+-=,26n nb a n ==,所以56305902S +=⨯=.8.在ABC 中,若22tan tan A a B b=,则ABC 的形状是A. 等腰或直角三角形B. 直角三角形C. 不能确定D. 等腰三角形【★答案★】A 【解析】 【分析】题设中的边角关系可以转化为sin 2sin 2A B =,故可判断三角形的形状.【详解】有正弦定理有2222tan 4sin tan 4sin A R AB R B=,因sin 0A >,故化简可得 sin cos sin cos A A B B =即sin 2sin 2A B =,所以222A B k π=+或者222A B k ππ+=+,k Z ∈. 因()(),0,,0,A B A B ππ∈+∈,故A B =或者2A B π+=,所以ABC ∆的形状是等腰三角形或直角三角形.故选A.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.9.设等差数列{}n a 前n 项和为n S ,若19a =-,356a a +=-,则当n S 取最小值时,n 等于( ) A. 5B. 6C. 7D. 8【★答案★】A 【解析】 【分析】由等差数列{}n a 中19a =-,356a a +=-,可求出公差,写出等差数列的求和公式,利用二次函数求最值即可.【详解】因为等差数列{}n a 中19a =-,356a a +=-, 所以11246a d a d +++=-, 即612d =,解得2d =, 所以2(1)92102n n n S n n n -=-+⨯=-, 故当5n =时,2min ()510525n S =-⨯=-,故选:A【点睛】本题主要考查了等差数列的基本量的计算,求和公式,二次函数求最值,属于中档题. 10.ABC ∆的内角,,A B C 的对边分别为,,a b c 成等比数列,且2c a =,则cos B 等于( )A.14B.34C.23D.24【★答案★】B 【解析】 【分析】,,a b c 成等比数列,可得2b ac =,又2c a =,可得222b a =,利用余弦定理即可得出.【详解】解:,,a b c 成等比数列,∴2b ac =,又2c a =,222b a ∴=,则222222423cos 2224a cb a a a B ac a a +-+-===⨯故选B .【点睛】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.11.ABC 中三个角的对边分别记为a 、b 、c ,其面积记为S ,有以下命题:①21sin sin 2sin B CS a A=;②若2cos sin sin B A C =,则ABC 是等腰直角三角形;③222sin sin sin 2sin sin cos C A B A B C =+-;④2222(+)sin ()()sin ()a b A B a b A B -=-+,则ABC 是等腰或直角三角形.其中正确的命题是( ) A. ①②③ B. ①②④C. ②③④D. ①③④【★答案★】D 【解析】 【分析】根据正弦定理、余弦定理、三角形面积公式、三角函数恒等变换对各个命题进行判断.【详解】由sin sin a b A B=得sin sin a B b A =代入in 12s S ab C =得21sin sin 2sin B C S a A =,①正确;若2cos sin sin B A C =sin()sin cos cos sin A B A B A B =+=+,∴cos sin cos sin 0B A A B -=,in 0()s A B -=,∵,A B 是三角形内角,∴0A B -=,即A B =,ABC 为等腰三角形,②错;由余弦定理2222cos c a b ab C =+-,又sin sin sin a b c A B C==,∴222sin sin sin 2sin sin cos C A B A B C =+-,③正确;2222(+)sin ()()sin ()a b A B a b A B -=-+,则2222sin()sin cos cos sin sin()sin cos cos sin a b A B A B A B a b A B A B A B ---==+++,∴22sin cos cos sin a A Bb A B =,由正弦定理得22sin cos sin sin cos sin =A BA AB B,三角形中sin 0,sin 0A B ≠≠,则sin cos sin cos A A B B =,sin 2sin 2A B =,∴22A B =或22A B π+=,∴A B =或2A B π+=,④正确.故选:D .【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查三角形形状的判断,由正弦定理进行边角转化在其中起到了重要的作用,解题时注意体会边角转换.12.将等差数列1,4,7……,按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第20行从左至右的第3个数是_______【★答案★】577 【解析】 【分析】由等差数列的特征得到等差数列的通项公式32n a n =-,再根据三角形数阵的特点找出第20行3列的数代入公式计算即可.【详解】由题意可得等差数列的通项公式为32n a n =-,由三角形数阵的特点可知第20行3列的数为:1234193193++++++=,过数阵中第20行3列的数是数列的第193项,中19331932577a =⨯-=.【点睛】本题考查学生的观察能力以及数列的简单知识.本题解题的关键是找到三角形数阵中数排列的规律.二、填空题(共4小题,每小题4分,共16分,请把..★.答案..★.写在答题卷上......) 13.若n S 是数列{}n a 的前n 项和,且2n S n =,则345a a a ++=________.【★答案★】21 【解析】 【分析】直接由n S 的定义计算.【详解】22345525221a a a S S ++=-=-=.故★答案★为:21.【点睛】本题考查数列的前n 项的概念,属于基础题.14.在ABC 中,sin :sin :sin 2:5:6A B C =,则cos C 的值为_______. 【★答案★】720- 【解析】 【分析】由正弦定理化角为边,再由余弦定理计算.【详解】sin :sin :sin 2:5:6A B C =,由正弦定理得::2:5:6a b c =,设2,5,6a k b k c k ===,则222222425367cos 222520a b c k k k C ab k k +-+-===-⨯⨯.故★答案★为:720-. 【点睛】本题考查正弦定理和余弦定理,属于基础题.15.ABC 中,5a =,3b =, cos C 是方程25760x x --=的根,则ABCS =________.【★答案★】6 【解析】 【分析】解方程求出cos C ,再利用同角三角函数的基本关系:22cos sin 1C C +=求出sin C ,利用三角形的面积公式1sin 2ABCSab C =即可求解. 【详解】()()257605320x x x x --=⇒+-=, 解得135x =-,12x =, 因为1cos 1C -<<,所以3cos 5C =-, 因为C ∠为三角形的内角, 所以24sin 1cos 5=-=C C , 由5a =,3b =, 所以114sin 536225ABCSab C ==⨯⨯⨯=, 故★答案★为:6【点睛】本题考查了三角形的面积公式、同角三角函数的基本关系,熟记公式是解题的关键,属于基础题.16.已知x 、y 都为正数,且4x y +=,若不等式14m x y+>恒成立,则实数m 的取值范围是________. 【★答案★】9,4⎛⎫-∞ ⎪⎝⎭【解析】 【分析】利用基本不等式求出14x y+的最小值,即可得出实数m 的取值范围. 【详解】x、y 都为正数,且4x y +=,由基本不等式得()14144x y x y x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭445259y x y xx yx y =++≥⋅+=,即1494x y +≥,当且仅当2y x=时,等号成立, 所以,14x y +的最小值为94,94m ∴<. 因此,实数m 的取值范围是9,4⎛⎫-∞ ⎪⎝⎭.故★答案★为:9,4⎛⎫-∞ ⎪⎝⎭. 【点睛】本题考查基本不等式恒成立问题,利用基本不等式求出最值是解答的关键,考查计算能力,属于中等题.三、解答题(6题,共74分,要求写出解答过程或者推理步骤) 17.若不等式2520ax x +->的解集是1|22x x ⎧⎫<<⎨⎬⎩⎭(1)求a 的值; (2)求不等式151axa x ->++. 【★答案★】(1)2a =-(2){|21}x x -<<- 【解析】 【分析】(1)根据方程与不等式关系,可知2520ax x +-=的两个根分别为12和2,结合韦达定理即可求得a 的值;(2)代入a 的值,可得1231xx +>+.通过移项,通分、合并同类项,即可解不等式. 【详解】(1)依题意知,0a <且2520ax x +-=的两个实数根为12和2 由韦达定理可得1522a+=-, 解得2a =-(2)将2a =-代入不等式得1231xx +>+ 即12301x x +->+,整理得(2)01x x -+>+ 即(1)(2)0x x ++<, 解得21x -<<-,故不等式的解集为{|21}x x -<<-【点睛】本题考查了一元二次方程与二次不等式的关系,分式不等式的解法,特别注意解分式不等式不能够去分母,属于基础题.18.如图,货轮在海上B 处,以50海里/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155o 的方向航行,为了确定船位,在B 点处观测到灯塔A 的方位角为125o .半小时后,货轮到达C 点处,观测到灯塔A 的方位角为80o .求此时货轮与灯塔之间的距离(★答案★保留最简根号).【★答案★】2522海里 【解析】【详解】应该解△ABC,根据条件可求出∠BCA=180o -155o +80o =105o ,∠BAC=180o -30o -105o=45o, BC =150252⨯=,所以应用正弦定理解之即可 在△ABC 中,∠ABC=155o-125o=30o∠BCA=180o -155o +80o =105o , ∠BAC=180o -30o -105o =45o ,BC =150252⨯=, 由正弦定理,得00sin 30sin 45AC BC= ∴AC=00sin 30sin 45BC ⋅=2522(海里) 答:船与灯塔间的距离为2522海里. 19.(1)已知数列{}n a 的前n 项和222n S n n =-+,求通项公式n a ;(2)已知等比数列{}n a 中,332a =,392S =,求通项公式n a . 【★答案★】(1)1,123,2n n a n n =⎧=⎨-≥⎩;(2)32n a =或1162n n a -⎛⎫=⋅- ⎪⎝⎭.【解析】 【分析】(1)由题意结合数列n a 与n S 的关系,按照1n =、2n ≥分类讨论即可得解;(2)由题意结合等比数列的通项公式可得21219(1)232a q q a q ⎧++=⎪⎪⎨⎪⋅=⎪⎩,解出方程后,再利用等比数列的通项公式即可得解.【详解】(1)当1n =时,111a S ==;当2n ≥时,()()()22122121223n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦, 当1n =时,1123a =≠-;故有1,123,2n n a n n =⎧=⎨-≥⎩; (2)由题意可得2312312319(1)232S a a a a q q a a q ⎧=++=++=⎪⎪⎨⎪=⋅=⎪⎩,化简得2210q q --=,解得1q =或12q =-, 所以1321a q ⎧=⎪⎨⎪=⎩或1612a q =⎧⎪⎨=-⎪⎩, 由11n n a a q -=可得32n a =或1162n n a -⎛⎫=⋅- ⎪⎝⎭.【点睛】本题考查了利用数列n a 与n S 的关系求数列的通项公式,考查了等比数列通项公式的基本量运算,属于基础题.20.在ABC 中,内角A 、B 、C 的所对的边是a 、b 、c ,若1cos cos sin sin 2B C B C -=(1)求A ;(2)若23,4a b c =+=,求ABC 的面积.【★答案★】(1)23π.(2)3 【解析】【分析】(1)根据余弦的差角公式化简,并利用三角形内角和为π利用诱导公式求解即可.(2)利用余弦定理可得4bc =,再代入面积公式求解即可.【详解】(1)1cos cos sin sin cos()cos()cos 2B C B C B C A A π-=+=-=-= ∴1cos 2A =-,又∵(0,)A π∈,∴23A π=. (2)由余弦定理有: 22222()21cos 222b c a b c a bc A bc bc +-+--===-, 又因为23,4a b c =+=, 16122211422bc bc bc bc --=-=-⇒= 23,sin 32A A π=∴=, 113sin 43222ABC S bc A ∴==⨯⨯=△ 【点睛】本题主要考查了三角函数恒等变换在解三角形中运用,同时也考查了解三角形中余弦定理与面积公式的运用,属于基础题.21.某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.(1)求使用n 年后,保养、维修、更换易损零件的累计费用S (千元)关于n 的表达式;(2)问这台机器最佳使用年限是多少年?并求出年平均费用(单位:千元)的最小值.(最佳使用年限是指使年平均费用最小的时间,年平均费用=(购入机器费用+运输安装费用+每年投保、动力消耗的费用+保养、维修、更换易损零件的累计费用)÷机器使用的年数)【★答案★】(1)(3)2n n S ⋅+=;(2)最佳年限是12年,平均费用为15.5千元. 【解析】【分析】(1)根据已知可得保养、维修、更换易损零件的费用成等差数列,根据首项公式,可得累计费用的表达式;(2) 由(1)得到平均费用的表达式,结合基本不等式可得年平均费用的最小值.【详解】(1)因为第一年为2千元,第二年为3千元,第三年为4千元,每年增加1千元, 故每年的费用构成一个以2为首项,以1为公差的等差数列,所以前n 年的总费用(3)23(1)2n n S n ⋅+=++++= (2)设使用n 年的年平均费用为y ,则[7022(3)/2]y n n n n =++++÷7277312362222n n =++≥+= 当且仅当12n =时,取等号,取最小值 故最佳年限是12年,平均费用为15.5千元.【点睛】本题主要考查了等差数列求和,基本不等式,分析题意,提炼出数学模型是解答的关键,属于中档题.22.已知等差数列{}n a 满足:,,{}n a 的前n 项和为n S .(Ⅰ)求通项公式n a 及前n 项和n S ;(Ⅱ)令=211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【★答案★】(Ⅰ)21n a n =+;n S =2n +2n ;(Ⅱ)n T =n 4(n+1). 【解析】 试题分析:(1)结合已知中的等差数列的项的关系式,联立方程组得到其通项公式和前n 项和.(2)在第一问的基础上,得到bn 的通项公式,进而分析运用裂项法得到.解:(Ⅰ)设等差数列{}n a 的公差为d ,由已知可得1127{21026a d a d +=+=, 解得13,2a d ==,……………2分,所以321)=2n+1n a n =+-(;………4分 n S =n(n-1)3n+22⨯=2n +2n ………6分 (Ⅱ)由(Ⅰ)知2n+1n a =,所以=211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅……9分 所以n T =111111(1-+++-)4223n n+1⋅-=11(1-)=4n+1⋅n 4(n+1)即数列{}n b 的前n 项和n T =n 4(n+1)……12分 考点:本试题主要考查了等差数列的通项公式以及前n 项和的求解运用.点评:解决该试题的关键是能得到等差数列的通项公式,然后求解新数列的通项公式,利用裂项的思想来得到求和.易错点就是裂项的准确表示.感谢您的下载!快乐分享,知识无限!。
2019年高一下学期期中试题数学xx.4一、选择题(本题共10个小题,每小题5分,共50分)1.cos300的值为( ) A.- B. C.- D. 2.在边长为2的正中, ( ) A .2 B.2 C.-2 D. -2 3. 等比数列中,则( )A .3B .C .3或D .-3或- 4.角,则点P()在坐标平面内所处的象限为( )A .第一象限 B.第二象限 C.第三象限 D.第四象限 5.已知,则( )A .B .C .D .6.函数y=2sin (x+)(>0, -<)的部分图象如图所示,则=( )A. B.C. D. 7.如图由三个相同的正方形拼接而成,设,则=( ) A. B. C. D.y xO10 H F G α β8.设函数,则下列结论正确的是:A.的图象关于点中心对称B.在上单调递增C.把的图象向左平移个单位后关于y 轴对称D.的最小正周期为 9. 在等比数列中,若,则=( ) A. B. C. D.10.若△ABC 的内角A 、B 、C 所对的边a 、b 、c,若角A 、B 、C 依次成等差数列,且,则△ABC 的面积为A .B .C .D .二、填空题(本大题共4小题,每小题5分,共20分)11. = ▲ .12.等差数列中,有,则= ▲ 。
13. 向量、的坐标分别是(1,2)、(3,-4),则在上的射影= ▲ .14.观察下面的行列数阵的排列规律:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------12321.....................215431143212321n n n nn n n n n n记位于第行第列的数为。
当n=8时,= ▲ ;(2分) 当n=xx 时,= ▲ .(3分)三、解答题(本题共6小题,共80分。
解答应写出文字说明、证明过程或演算步骤)15. (本小题满分12分)(6分+6分)在直角坐标系中,A (3,0),B(0,3),C(1)若,求的值;(2)与能否共线?说明理由。
2019级高一下学期期中线上教学质量检测数学试题2020.04一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数4212ii +-+的虚部为()A.2B.-2C.2iD.-2i2.已知向量()()cos ,sin ,2,1a b θθ==- ,且b a ⊥,则⎪⎭⎫ ⎝⎛-4tan πθ的值是()A.13B.-3C.3D.13-3.如图正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图,则原图形的面积为()A.22B.1B.C.2D.()212+4.设两个单位向量a,b的夹角为23π,则|3a +4b |=()A .1B .13C .37D .75.圆锥的高h 和底面半径r 之比:2:1h r =,且圆锥的体积18V π=,则圆锥的表面积为()A.185πB.9(125)π+ C.95πD.9(15)π+6.将函数sin2y x =的图象向右平移π4个单位长度,所得图象对应的函数解析式是()A.cos2y x= B.cos2y x =- C.πsin 24y x ⎛⎫=-⎪⎝⎭D.sin2y x=-7.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是()海里.A .210B .320C .310D .2208.设a ,m ,n 是三条不同的直线,α,β是两个不重合的平面,给定下列命题:①//m n n m αα⊥⎫⇒⎬⊥⎭;②,,a m a n a m n αα⊥⊥⎫⇒⊥⎬⊂⎭;③//m m ααββ⊥⎫⇒⎬⊥⎭;④////m n m n αβαβ⊂⎫⎪⊂⇒⎬⎪⎭;⑤a a ααββ⊥⎫⇒⊥⎬⊂⎭;⑥//m m n n αβαβ⊥⎫⎪⇒⊥⎬⎪⊥⎭.其中为真命题的个数为()A.1B.2C.3D.4二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.有下列说法,其中错误的说法为()A.若//,//a b b c r r r r,则//a cB.若PA PC PC PB PB PA ⋅=⋅=⋅则P 是三角形ABC 的垂心C.两个非零向量,a b ,若a b a b -=+,则a 与b 共线且反向D.若//a b r r ,则存在唯一实数λ使得a bλ=r r 10.将函数()sin()f x x =+ωϕ的图像向左平移2π个单位。
数学1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回. 一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. tan(45)-o +sin30o = A.3 B.12- C.2 D.3 2.如图所示,+a b =A. 124e e -+u r u rB. 123e e --u r u rC. 123e e --u r u rD. 123e e -+u r u r3对于任意两个向量a v 和b v,下列命题中正确的是A .若a v ,b v 满足a b >v v ,且a v 与b v 同向,则a b >v vB .a b a b ++v v v v „C .a b a b ⋅v v v v …D .a b a b --v v v v „4.函数()sin 53cos5f x x x =-的最小值是 A .7 B .2 C.1- D .2-5.已知OA uu r =(-1,2),OB uu u r =(3,m),若OA OB ⊥uu r uu u r,则m =A.1B.2C.32D.4 6. 已知1sin()123πα-=,则17cos()12πα+的值等于A .13B .223C .13-D .223-7.将函数()sin(2)3f x x π=+的图像向右平移6π个单位长度,得到函数()g x 的图像,则下列说法不正确的是A .()g x 的最小正周期为πB .()6g π=3 C .6x π=是()g x 图像的一条对称轴 D .()g x 为奇函数8.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中OA=1,则下列结论中错误..的是。
2018-2019学年高一下学期期中考试数学(文)试题注意事项:1.本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,总分150分,考试时间120分钟.2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3.选择题的每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4.非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效.6.考试结束,将答题卡交回即可.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若点在角的终边上,则()A. B. C. D.【答案】A【解析】试题分析:由任意角的三角函数的定义可知,,故选A.考点:任意角的三角函数定义.2.在下列函数中,图像关于坐标原点对称的是( )A. B. C. D.【答案】B【解析】【分析】根据函数的性质可得奇函数关于原点对称,偶函数的图象关于y轴对称,要找图象关于原点对称,即在4个选项中找出奇函数即可,结合选项利用排除法.【详解】根据函数的性质可得奇函数关于原点对称,偶函数的图象关于y轴对称,A:y=lgx是非奇非偶函数,错误;B:y=sin x为奇函数,图象关于原点对称,正确;C:y=cos x为偶函数,图象关于y轴对称,错误;D: y=|x|为偶函数,图象关于y轴对称,错误;故选:B.【点睛】本题主要考查了函数奇偶性,奇函数关于原点对称,偶函数的图象关于y轴对称,判断函数的奇偶性时,不但要检验f(﹣x)与f(x)的关系,更不能漏掉对函数的定义域要求对称的检验,属于基础题.3.若点在函数的图象上,则的值为( )A. 0B.C.D. 1【答案】C【解析】【分析】根据点在函数的图象上可求出,然后求出的值即可得到所求.【详解】∵点在函数的图象上,∴,∴,∴.故选C.【点睛】本题考查特殊角的三角函数值,解题的关键是根据点在函数的图象上求出的值,属于简单题.4.已知向量若为实数,则=()A. 2B. 1C.D.【答案】D【解析】【分析】求出向量的坐标,然后根据向量的平行得到所求值.【详解】∵,∴.又,∴,解得.故选D.【点睛】本题考查向量的运算和向量共线的坐标表示,属于基础题.5.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则因为所以故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第6页。
考试时间为120分钟,满分为150分。
2019-2020年高一下学期期中考试 数学试题 含答案(I)一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的. 本大题共12小题,每小题5分,共60分.)1.不等式20x y ->表示的平面区域(阴影部分)为A BCD2.如果a<0,b>0,那么下列不等式中正确的是A B .11a b< C .22a b < D .||||a b > 3.. 若△ABC 的内角A 、B 、C 所对的边a 、b 、c,若角A 、B 、C 依次成等差数列,且2212)(b c a +=+,则△ABC 的面积为A .336-B .936-C .3D .32 4.在等比数列{}n a 中,若n a >0且3764a a =,则5a 的值为 A .2 B .4 C .6 D .85.在A B C △中,3A π∠=,3B C =,A B C ∠=A.4π或34π B.34πC.4π D.6π6.已知等比数列的公比为2,若前4项之和为1,则前8项之和为( ) A.15 B.17 C.19 D.21 7.已知x >0,y >0,x +2y +2xy=8,则x +2y 的最小值是A. 3B. 4C. 92D. 1128.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0, S n 是数列{a n }的前n 项和,则( ) A .S 5=S 6 B .S 5<S 6 C .S 6=0 D .S 5>S 6 9.数列{a n }的通项公式2cos 41πn a n +=,其前n 项和为S n ,则S 2012等于( ) A.1006 B.2012 C.503 D.010.不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于A.43B.23C.32 D. 3411. 若关于x 的不等式2-2x >|x -a| 至少有一个负数解,则a 的取值范围为( ) A. 7,33⎛⎫-⎪⎝⎭B.5,24⎛⎫-⎪⎝⎭ C.7,24⎛⎫- ⎪⎝⎭ D. 9,24⎛⎫- ⎪⎝⎭12. 设函数()f x 是定义在R 上的奇函数,且当0x ≥时,()f x 单调递减,若数列{}n a 是等差数列,且30a <,则()()()()()12345f a f a f a f a f a ++++的值 A.恒为正数 B.恒为负数C.恒为0D.可正可负开滦二中2012-2013学年第二学期高一年级期中考试试题第Ⅱ卷(非选择题共90分)二、填空题:(本题共4小题,每小题5分,共20分。
2018-2019学年山东省潍坊市高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈N|-2<x<2}的真子集的个数是()A. 8B. 7C. 4D. 32.下列函数中,既是奇函数又是增函数的是()A. B. C. D.3.已知f(x)=,则f[f(2)]=()A. 5B.C.D. 24.a=40.9、b=80.48、c=()-1.5的大小关系是()A. B. C. D.5.已知函数f(x+1)=2x-3,若f(m)=4,则m的值为()A. B. C. D.6.函数f(x)=a x-(a>0,a≠1)的图象可能是()A. B.C. D.7.设f(x)是(-∞,+∞)上的减函数,则()A. B. C. D.8.下列变化过程中,变量之间不是函数关系的为()A. 地球绕太阳公转的过程中,二者间的距离与时间的关系B. 在银行,给定本金和利率后,活期存款的利息与存款天数的关系C. 某地区玉米的亩产量与灌溉次数的关系D. 近年来,中国高速铁路迅猛发展,中国高铁年运营里程与年份的关系9.已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A. B. C. D.10.一次社会实践活动中,数学应用调研小组在某厂办公室看到该厂5年来某种产品的总产量y与时间x(年)的函数图象(如图),以下给出了关于该产品生产状况的几点判断:①前三年的年产量逐步增加;②前三年的年产量逐步减少;③后两年的年产量与第三年的年产量相同;④后两年均没有生产.其中正确判断的序号是()A. B. C. D.11.已知函数f(x)=,若函数g(x)=f(x)-m恰有一个零点,则实数m的取值范围是()A. B.C. ,D. ,12.已知f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(4)=()A. 10B. 2C. 0D. 4二、填空题(本大题共4小题,共20.0分)13.计算(2)×(3)=______.14.如图所示,图中的阴影部分可用集合U,A,B,C表示为______.15.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=______.16.已知函数f(x)=(t>0)的最大值为M,最小值为N,且M+N=4,则实数t的值为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=+的定义域为集合M.(1)求集合M;(2)若集合N={x|2a-1≤x≤a+1},且M∩N={2},求N.18.已知函数f(x)=(a∈R).(1)若f(x)为奇函数,求实数a的值;(2)当a=0时,判断函数f(x)的单调性,并用定义证明.19.已知四个函数f(x)=2x,g(x)=()x,h(x)=3x,p(x)=()x,若y=f(x),y=g(x)的图象如图所示.(1)请在如图坐标系中画出y=h(x),y=p(x)的图象,并根据这四个函数的图象抽象出指数函数具有哪些性质?(2)举出在实际情境能够抽象出指数函数的一个实例并说明理由.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图①;投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图②.(注:收益与投资额单位:万元)(Ⅰ)分别写出两种产品的一年收益与投资额的函数关系;(Ⅱ)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?21.已知函数f(x)是定义在R上的增函数,且满足f(x+y)=f(x)•f(y),且f(2)=.(1)求f(4)的值;(2)当x∈[,]时,f(kx2)<2f(2x-5)恒成立,求实数k的取值范围.22.对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.(1)求函数y=x2的所有“保值”区间;(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.答案和解析1.【答案】D【解析】解:∵集合A={x∈N|-2<x<2}={0,1},∴集合A的真子集的个数是:22-1=3.故选:D.先求出集合A={0,1},由此能求出集合A的真子集的个数.本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:根据题意,依次分析选项:对于A,y=是奇函数但不是增函数,不符合题意;对于B,y=x-1,不是奇函数,不符合题意;对于C,y=-x2,为偶函数不是奇函数,不符合题意;对于D,y=2x是正比例函数,既是奇函数又是增函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性以及单调性,综合即可得答案.本题考查函数奇偶性、单调性的判定,关键是掌握常见函数的奇偶性、单调性,属于基础题.3.【答案】D【解析】解:f(2)=-2×2+3=-1,所以f[f(2)]=f(-1)=(-1)2+1=2.故选D.根据所给解析式先求f(2),再求f[f(2)].本题考查分段函数求值问题,属基础题,关键看清所给自变量的值所在范围.4.【答案】D【解析】解:∵a=40.9=21.8,b=80.48=21.44,c==21.5,∵y=2x为单调增函数,而1.8>1.5>1.44,∴a>c>b.故选:D.利用有理指数幂的运算性质将a,b,c均化为2x的形式,利用y=2x的单调性即可得答案.本题考查不等关系与不等式,考查有理数指数幂的化简求值,属于中档题.5.【答案】B【解析】解:∵函数f(x+1)=2x-3,f(m)=4由2x-3=4,得x=,∴m=x+1=.故选:B.由2x-3=4,得x=,再由m=x+1,能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:当0<a<1时,函数f(x)=a x-,为减函数,当a>1时,函数f(x)=a x-,为增函数,且当x=-1时f(-1)=0,即函数恒经过点(-1,0),故选:D.先判断函数的单调性,再判断函数恒经过点(-1,0),问题得以解决.本题主要考查了函数的图象和性质,求出函数恒经过点是关键,属于基础题.7.【答案】D【解析】解:f(x)是(-∞,+∞)上的减函数,当a>0时,a<2a,f(a)>f(2a),当a≤0时,a≥2a,f(a)≤f(2a),故A错误;当a=0,则a2=a,则f(a2)=f(a),故B错误;当a=0,a2+a=a,则f(a2+a)=f(a),故C错误;由a2+1>a,则f(a2+1)<f(a).故选:D.采用排除法,根据a的取值范围,根据导数与函数单调性的关系,即可求得答案.本题考查导数与函数的单调性的关系,属于基础题.8.【答案】C【解析】解:根据函数的定义得:某地区玉米的亩产量与灌溉次数的关系不是函数关系,故选:C.根据函数的定义对各个选项分别判断即可.本题考查了函数的定义,考查对应关系,是一道基础题.9.【答案】A【解析】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】解:由该厂5年来某种产品的总产量y与时间x(年)的函数图象,得:前三年的年产量逐步减少,故错误,正确;后两年均没有生产,故错误,正确.故选:B.利用该厂5年来某种产品的总产量y与时间x(年)的函数图象直接求解.本题考查命题真假的判断,考查该厂5年来某种产品的总产量y与时间x(年)的函数图象的性质等基础知识,考查数形结合思想,是基础题.11.【答案】D【解析】解:令g(x)=0得f(x)=m,作出y=f(x)的函数图象如图所示:由图象可知当m<0或m≥1时,f(x)=m只有一解.故选:D.作出f(x)的函数图象,根据图象判断m的值.本题考查了函数的零点与函数图象的关系,属于中档题.12.【答案】C【解析】解:∵f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),∴f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),∵f(1)=2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f(-1)+f(0)=0.故选:C.推导出f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),从而f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f (-1)+f(0),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.13.【答案】1【解析】解:(2)×(3)===.故答案为:1.化带分数为假分数,再由有理指数幂的运算性质化简求值.本题考查有理指数幂的运算性质,是基础的计算题.14.【答案】(A∩B)∩(∁U C)【解析】解:如图所示,图中的阴影部分可用集合U,A,B,C表示为:(A∩B)∩(∁U C).故答案为:(A∩B)∩(∁U C).利用维恩图直接求解.本题考查集合的交集的求法,考查维恩图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.15.【答案】1【解析】解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得f(-x)-g(-x)=-x3+x2+1,∵f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(x)=f(-x),g(-x)=-g(x),即f(x)+g(x)=-x3+x2+1,再令x=1,得f(1)+g(1)=1.故答案为:1.将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.本题考查利用函数奇偶性求值,本题中也可以将原代数式中的x直接令其等于-1也可以得到计算结果,属于基础题.16.【答案】2【解析】解:由题意,f(x)==+t,显然函数g(x)=是奇函数,∵函数f(x)最大值为M,最小值为N,且M+N=4,∴M-t=-(N-t),即2t=M+N=4,∴t=2,故答案为:2.由题意f(x)=t+g(x),其中g(x)是奇函数,从而2t=4,即可求出实数t的值.本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)要使函数f(x)=有意义,则需;解得-3<x≤2;∴函数f(x)的定义域M=(-3,2];(2)∵M∩N={2},且M=(-3,2];∴2∈N;∴ ;解得;∴ ,.【解析】(1)要使得函数f(x)有意义,则需满足,从而求出M=(-3,2];(2)根据M∩N={2},便可得出2∈N,从而得出2a-1=2,求出a即可得出集合N.考查函数定义域的概念及求法,指数函数的单调性,交集的概念,元素与集合的关系.18.【答案】解:(1)函数f(x)的定义域是R,且f(-x)==,由y=f(x)是奇函数,得对任意的x都有f(x)=-f(-x),故=-,得2x(a-1)=1-a,解得:a=1;(2)由a=0得:f(x)=1-,任取x1,x2∈R,设x1<x2,则f(x2)-f(x1)=-=,∵y=2x在R递增且x1<x2,∴ ->0,又(+1)(+1)>0,故f(x2)-f(x1)>0即f(x2)>f(x1),故f(x)在R递增.【解析】(1)根据函数的奇偶性的定义求出a的值即可;(2)根据函数的单调性的定义证明即可.本题考查了函数的奇偶性和函数的单调性问题,考查单调性的证明,是一道中档题.19.【答案】解:(1)画出y=h(x),y=p(x)的图象如图所示:4个函数都是y=a x(a>0,a≠1)的形式,它们的性质有:①定义域为R;②值域为(0,+∞);③都过定点(0,1);④当a>1时,函数在定义域内单调递增,0<a<1时,函数在定义域内单调递减;⑤a>1时,若x<0,则0<y<1,若x>0,则y>1.0<a<1时,若x>0,则0<y<1,若x<0,则y>1;⑥对于函数y=a x(a>0,a≠1),y=b x(b>0,b≠1),当a>b>1时,若x<0,则0<a x<b x<1;若x=0,则a x=b x=1;若x>0,则a x>b x>1.当0<a<b<1时,若x<0,则a x>b x>1;若x=0,则a x=b x=1;若x>0,则0<a x<b x<1.(2)举例:原来有一个细胞,细胞分裂的规则是细胞由一个分裂成2个,则经过x次分裂,细胞个数y,则y=2x,是一个指数函数.【解析】(1)根据指数函数的图象性质,得出结论.(2)举细胞分裂的例子,抽象出指数函数的一个实例.本题主要考查指数函数的性质,指数函数的应用,属于中档题.20.【答案】解:(Ⅰ)f(x)=k1x,g(x)=k2,∴f(1)==k1,g(1)=k2=,∴f(x)=x(x≥0),g(x)=(x≥0)(Ⅱ)设:投资债券类产品x万元,则股票类投资为20-x万元.y=f(x)+g(20-x)=+(0≤x≤20)令t=,则y==-(t-2)2+3所以当t=2,即x=16万元时,收益最大,y max=3万元.【解析】(Ⅰ)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(Ⅱ)由(Ⅰ)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.【答案】解:(1)令x=y=2,得:f(2+2)=f(2)•f(2),即f(4)═2(2)2f(2x-5)=f(4),f(2x-5)=f(2x-1)所以f(kx2)<2f(2x-5)化为:f(kx2)<f(2x-1),因为函数f(x)是定义在R上的增函数,所以kx2<2x-1在x∈[,]时恒成立,即k<在x∈[,]时恒成立,令y===-()2+1,x∈[,],∈[,],y有最小值为0.所以,k<0.【解析】(1)利用赋值法,x=y=2求解即可.(2)利用已知条件化简不等式为f(kx2)<f(2x-1),利用函数的单调性,分离变量,通过二次函数的性质求解闭区间上的最值即可.本题考查函数与方程的应用,函数的单调性以及二次函数的性质的应用,考查转化思想以及计算能力.22.【答案】解:(1)因为函数y=x2的值域是[0,+∞),且y=x2在[a,b]的值域是[a,b],所以[a,b]⊆[0,+∞),所以a≥0,从而函数y=x2在区间[a,b]上单调递增,或故有解得或又a<b,所以所以函数y=x2的“保值”区间为[0,1].…(3分)(2)若函数y=x2+m(m≠0)存在“保值”区间,则有:①若a<b≤0,此时函数y=x2+m在区间[a,b]上单调递减,所以消去m得a2-b2=b-a,整理得(a-b)(a+b+1)=0.因为a<b,所以a+b+1=0,即a=-b-1.又所以<.因为<,所以<.…(6分)②若b>a≥0,此时函数y=x2+m在区间[a,b]上单调递增,所以消去m得a2-b2=a-b,整理得(a-b)(a+b-1)=0.因为a<b,所以a+b-1=0,即b=1-a.又所以<.因为<,所以<.因为m≠0,所以<<.…(9分)综合①、②得,函数y=x2+m(m≠0)存在“保值”区间,此时m的取值范围是,,.…(10分)【解析】(1)由已知中保值”区间的定义,结合函数y=x2的值域是[0,+∞),我们可得[a,b]⊆[0,+∞),从而函数y=x2在区间[a,b]上单调递增,则,结合a<b即可得到函数y=x2的“保值”区间.(2)根据已知中保值”区间的定义,我们分函数y=x2+m在区间[a,b]上单调递减,和函数y=x2+m在区间[a,b]上单调递增,两种情况分类讨论,最后综合讨论结果,即可得到答案.本题考查的知识点是函数单调性,函数的值,其中正确理解新定义的含义,并根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为数学熟悉的数学模型是解答本题的关键.。
2018-2019学年度第二学期期中自主练习高一数学试题一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求,第11~13题有多项符合题目要求全部选对的得4分,选对但不全的得2分,有选错的得0分.1.sin1140︒=( ) A. 32B. 12C. 3-D. 12- 2.若点(1,1)P 为圆2240x y x +-=的弦AB 的中点,则弦AB 所在直线的方程为( )A. 20x y +-=B. 0x y -=C. 20x y -+=D. 22(1)5x y +-= 3. 某全日制大学共有学生5600人,其中专科生有1300人,本科生有3000人,研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取( )人.A. 65,150,65B. 30,150,100C. 93,94,93D. 80,120,80 4.圆22(1)5x y +-=与直线120mx y m -+-=的位置关系( )A. 相切B. 相离C. 相交D. 不能确定 5.若角θ满足sin |sin |cos |cos |1θθθθ+=-,则θ是( )A. 第一象限的角B. 第二象限的角C. 第三象限的角D. 第四象限的角6.已知x 与y 之间一组数据如下表,根据表中提供的数据,求出y 关于x 的线性回归方程为0.8.5ˆ0yx =+ ,那么t 的值为( )A 5 B. 6C. 7D. 87.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A . 26B. 5C. 26D. 42+ 8.某副食品店对某月的前11天内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数和方差(结果保留一位小数)分别是)( )A. 45,45.3B. 45,46.4C. 47,45.3D. 47,46.49.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A. 至少有1件次品与至多有1件正品B. 至少有1件次品与都是正品C. 至少有1件次品与至少有1件正品D. 恰有1件次品与恰有2件正品 10.若从集合{}2,1,2A =-中随机取一个数a ,从集合{}1,1,3B =-中随机取一个数b ,则直线0ax y b -+=一定..经过第四象限的概率为( ) A. 29 B. 13 C. 49 D. 5911.设MP 、OM 和AT 分别是角1718π的正弦、余弦和正切线,则以下不等式正确的是( ) A. MP AT OM <<B. OM AT MP <<C. 0OM AT <<D. 0AT OM << 12.已知3log ,0()2,0x x x f x x >⎧=⎨≤⎩,角α的终边经过点(1,22),则下列结论正确的是( ) A. (cos )1f α=-B. (sin )1f α=C. 1((cos ))2f f α=D. ((sin ))2f f α=13.已知圆2221:C x y r +=和圆2222:()()(0)C x a y b r r -+-=>交于不同的两点1122(,),(,)A x y B x y ,则下列结论正确的是( )A. 1212,y x a y x b ++==B. 2211220ax by a b +++=C. 2222220ax by a b +--=D. 1212()()0a x x b y y -+-= 二、填空题:本大题共有4个小题,每小题4分,共16分.14.甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则甲获胜的概率是_____ 15.在半径为10米的圆形弯道中,120°角所对应的弯道长为 米.16.一袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则1只红球和1只黄球的概率为__________,2只球颜色相同的概率为________.17.若直线y x b =+与方程21x y =-所表示的曲线有公共点,则实数b 的取值范围为______,若恰有两个不同的交点,则实数b 的取值范围为_________.三、解答题:本大题共6个小题,共82分.解答应写出文字说明、证明过程或演算步骤.18.已知角θ的终边与单位圆221x y +=在第一象限交于点P ,且点P 的坐标为(3,5)y . (1)求tan θ的值;(2)求22sin (2)cos (4)sin cos πθπθθθ+-+的值. 19.已知点(2,2),(2,6),(4,2)A B C ----,点P 在圆22:4E x y +=上运动. (1)求过点C 且被圆E 截得的弦长为22的直线方程;(2)求222||||||PA PB PC ++的最值.20.从某校参加期中考试的高一学生中随机抽取100名得到这100名学生语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[80,90),[90,100),[100,110),[110,120),[120,130].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)已知学生A 的语文成绩为123分,现从成绩在[120,130]中的学生中随机抽取2人参加演讲赛,求学生A 被抽中的概率.21.已知点(4,0),(2,0)A B -,动点P 满足||2||PA PB =.(1)求点P 的轨迹C 的方程;(2)求经过点(2,2)M -以及曲线C 与224x y +=交点的圆的方程.22.已知一工厂生产了某种产品700件,该工厂需要对这些产品的性能进行检测现决定利用随机数表法从中抽取100件产品进行抽样检测,将700件产品按001,002,…,700进行编号(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;(下面摘取了随机数表的第7~9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54(2)检测结果分为优等、合格、不合格三个等级,抽取的100件产品的安全性能和环保性能的检测结果如下表(横向和纵向分别表示安全性能和环保性能):(i )若在该样本中,产品环保性能是优等概率为34%,求,m n 的值;(ii )若12,8m n ≥≥,求在安全性能不合格的产品中,环保性能为优等的件数比不合格的件数少的概率.23.已知ABC V 的顶点坐标分别是(0,0),(1,1),(4,2)A B C ,ABC V 的外接圆为M . (1)求圆M 的方程; (2)在圆M 上是否存在点P ,使得22||||4PA PB -=?若存在,求点P 的个数:若不存在,说明理由;(3)在圆M 上是否存在点Q ,使得22||||12QA QC +=?若存在,求点Q 的个数:若不存在,说明理由.。
2018-2019学年山东省烟台市高一(下)期中数学测试卷一、选择题1.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、142.圆x2+y2﹣8x+6y+16=0与圆x2+y2=64的位置关系是()A.相交 B.内切 C.相离 D.外切3.样本中共有5个个体.其值分别为a,0,1,2,3.若该样本的平均值为1,则样本的标准差为()A.B.C.2 D.4.某校1000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示.规定90分为优秀等级,则该校学生优秀等级的人数是()A.300 B.150 C.30 D.155.若一口袋中装有4个白球3个红球,现从中任取两球,则取出的两球中至少有一个白球的概率为()A.B.C.D.6.过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为原点,则△OAB的外接圆方程是()A.(x﹣2)2+(y﹣1)2=5 B.(x﹣4)2+(y﹣2)2=20 C.(x+2)2+(y+1)2=5 D.(x+4)2+(y+2)2=207.从分别写上数字1,2,3,…,9的9张卡片中,任意取出两张,观察上面的数字,则两数积是完全平方数的概率为()A.B.C.D.8.阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写()A .i <3B .i <4C .i <5D .i <69.一只蚂蚁在三边长分别为3,4,5的三角形内爬行,则此蚂蚁距离三角形三个顶点的距离均超过1的概率为( )A .1﹣B .1﹣C .D .10.已知直线l 过点(0,﹣4),P 是l 上的一动点,PA ,PB 是圆C :x 2+y 2﹣2y=0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则直线的斜率为( )A .B .±C .±2D .±2二、填空题11.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P (A ∪B )= .(结果用最简分数表示)12.已知圆C 1:(x ﹣2)2+(y ﹣1)2=4与圆C 2:x 2+(y ﹣2)2=9相交,则交点连成的直线的方程为 .13.一束光线从点A (﹣1,1)出发,经x 轴反射到圆C :(x ﹣2)2+(y ﹣3)2=1上的最短路径的长度是 .14.两艘轮船都要停靠同一泊位,它们能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为1小时与2小时,求有一艘船停靠泊位时必须等待一段时间的概率为多少 .15.对任意非零实数a 、b ,若a ⊙b 的运算原理如程序框图所示,则(3⊙2)⊙4的值是 .三、解答题16.求经过点A(5,2),B(3,2),圆心在直线2x﹣y﹣3=0上的圆的方程.17.济南天下第一泉风景区为了做好宣传工作,准备在A和B两所大学分别招募8名和12名志愿者,将这20名志愿者的身高编成如右茎叶图(单位:cm).若身高在175cm以上(包括175cm)定义为“高精灵”,身高在175cm以下(不包括175cm)定义为“帅精灵”.已知A大学志愿者的身高的平均数为176cm,B大学志愿者的身高的中位数为168cm.(Ⅰ)求x,y的值;(Ⅱ)如果用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人.求至少有一人为“高精灵”的概率.18.甲、乙两人在2015年1月至5月的纯收入(单位:千元)的数据如下表:(2)求y关于x的线性回归方程,并预测甲在6月份的纯收入;(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间(3,3.5)中的概率.19.已知圆x2+y2﹣x﹣6y+m=0与直线2x+y﹣3=0交于M、N两点,O为坐标原点,文是否存在实数m,使OM⊥ON,若存在,求出m的值若不存在,请说明理由.20.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.21.已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.(1)求直线l1的方程;(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.2018-2019学年山东省烟台市高一(下)期中数学试卷参考答案与试题解析一、选择题1.有20位同学,编号从1至20,现从中抽取4人作问卷调查,用系统抽样法所抽的编号为()A.5、10、15、20 B.2、6、10、14 C.2、4、6、8 D.5、8、11、14【考点】系统抽样方法.【分析】系统抽样,要求编号后,平均分租,每一组只抽一个样本,两个相邻的样本的编号间距相等【解答】解:从20人中用系统抽样抽4个人,须把20人平均分成4组,每一组只抽1人,且所抽取的号码成等差数列只有A选项满足故选A2.圆x2+y2﹣8x+6y+16=0与圆x2+y2=64的位置关系是()A.相交 B.内切 C.相离 D.外切【考点】圆与圆的位置关系及其判定.【分析】把第一个圆的方程化为标准方程,找出圆心A的坐标和半径r,再由第二个圆的方程找出圆心B的坐标和半径R,利用两点间的距离公式求出两圆心间的距离d,发现d=R﹣r,从而判断出两圆位置关系是内切【解答】解:把圆x2+y2﹣8x+6y+16=0化为标准方程得:(x﹣4)2+(y+3)2=9,∴圆心A的坐标为(4,﹣3),半径r=3,由圆x2+y2=64,得到圆心B坐标为(0,0),半径R=8,两圆心间的距离d=|AB|=5,∵8﹣3=5,即d=R﹣r,则两圆的位置关系是内切.故选:B.3.样本中共有5个个体.其值分别为a,0,1,2,3.若该样本的平均值为1,则样本的标准差为()A.B.C.2 D.【考点】极差、方差与标准差.【分析】根据已知中数据,代入平均数公式,计算出a值,进而代入标准差计算公式,可得答案.【解答】解:∵样本a,0,1,2,3的平均值为1,∴=1解得a=﹣1则样本的标准差s==故选D4.某校1000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示.规定90分为优秀等级,则该校学生优秀等级的人数是()A.300 B.150 C.30 D.15【考点】用样本的频率分布估计总体分布.【分析】根据频率分布直方图得出该校学生优秀等级的频率,即可求出该校学生优秀等级的人数是多少.【解答】解:根据频率分布直方图得,该校学生优秀等级的频率是0.015×=0.15;∴该校学生优秀等级的人数是1000×0.15=150.故选:B.5.若一口袋中装有4个白球3个红球,现从中任取两球,则取出的两球中至少有一个白球的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】取出的两球中至少有一个白球的对立事件是取出的两个球都是红球,由此利用对立事件概率计算公式能求出取出的两球中至少有一个白球的概率.【解答】解:∵一口袋中装有4个白球3个红球,现从中任取两球,∴基本事件总数=21,∵取出的两球中至少有一个白球的对立事件是取出的两个球都是红球,∴取出的两球中至少有一个白球的概率为:p=1﹣=.故选:C.6.过点P(4,2)作圆x2+y2=4的两条切线,切点分别为A,B,O为原点,则△OAB的外接圆方程是()A.(x﹣2)2+(y﹣1)2=5 B.(x﹣4)2+(y﹣2)2=20 C.(x+2)2+(y+1)2=5 D.(x+4)2+(y+2)2=20【考点】直线与圆的位置关系.【分析】由题意知OA⊥PA,BO⊥PB,四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,△AOB 外接圆就是四边形AOBP的外接圆.【解答】解:由题意知,OA⊥PA,BO⊥PB,∴四边形AOBP有一组对角都等于90°,∴四边形AOBP的四个顶点在同一个圆上,此圆的直径是OP,∵OP的中点为(2,1),OP=2,∴四边形AOBP的外接圆的方程为(x﹣2)2+(y﹣1)2=5,∴△AOB外接圆的方程为(x﹣2)2+(y﹣1)2=5.故选:A7.从分别写上数字1,2,3,…,9的9张卡片中,任意取出两张,观察上面的数字,则两数积是完全平方数的概率为()A.B.C.D.【考点】等可能事件的概率.【分析】所有的取法有C92=36种,两数积是完全平方数的取法只有4种,故两数积是完全平方数的概率为.【解答】解:所有的取法有C92=36种,当取出的两个数是1和4,1和9,2和8,4和9时,两数积是完全平方数.故两数积是完全平方数的概率为=,故选A.8.阅读如图的程序框图,若输出s的值为﹣7,则判断框内可填写()A.i<3 B.i<4 C.i<5 D.i<6【考点】设计程序框图解决实际问题.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加变量i 的值到S并输出S,根据流程图所示,将程序运行过程中各变量的值列表如下:【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环S i循环前/2 1第一圈是 1 3第二圈是﹣2 5第三圈是﹣7 7第四圈否所以判断框内可填写“i<6”,故选D.9.一只蚂蚁在三边长分别为3,4,5的三角形内爬行,则此蚂蚁距离三角形三个顶点的距离均超过1的概率为()A.1﹣B.1﹣C.D.【考点】几何概型.【分析】求出三角形的面积;再求出据三角形的三顶点距离小于等于1的区域为三个扇形,三个扇形的和是半圆,求出半圆的面积;利用对理事件的概率公式及几何概型概率公式求出恰在离三个顶点距离都大于1的地方的概率.【解答】解:三角形ABC的面积为,离三个顶点距离都不大于1的地方的面积为S=,所以其恰在离三个顶点距离都大于1的地方的概率为P=1﹣,故选:B10.已知直线l过点(0,﹣4),P是l上的一动点,PA,PB是圆C:x2+y2﹣2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则直线的斜率为()A.B.±C.±2D.±2【考点】圆的切线方程.【分析】由圆的方程为求得圆心C,半径r,由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后利用点到直线的距离求出直线的斜率即可.【解答】解:∵圆的方程为:x2+(y﹣1)2=1,∴圆心C(0,1),半径r=1.根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小,切线长为2,∴PA=PB=2.∴圆心到直线l的距离为d=,直线方程为y+4=kx,即kx﹣y﹣4=0,∴=,解得k=±2.则所求直线的斜率为:±2.故选:D.二、填空题11.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)=.(结果用最简分数表示)【考点】互斥事件的概率加法公式.【分析】由题意知本题是一个古典概型和互斥事件,分别求两个事件的概率是我们熟悉的古典概型,这两个事件是不能同时发生的事件,所以用互斥事件的概率公式得到结果.【解答】解:由题意知本题是一个古典概型和互斥事件,∵事件A为“抽得红桃K”,∴事件A的概率P=,∵事件B为“抽得为黑桃”,∴事件B的概率是P=,∴由互斥事件概率公式P(A∪B)=.故答案为:.12.已知圆C1:(x﹣2)2+(y﹣1)2=4与圆C2:x2+(y﹣2)2=9相交,则交点连成的直线的方程为x+2y ﹣1=0.【考点】圆与圆的位置关系及其判定.【分析】对两圆的方程作差即可得出交点连成的直线的方程.【解答】解:由题意,∵圆C1:(x﹣2)2+(y﹣1)2=4与圆C2:x2+(y﹣2)2=9相交,∴两圆的方程作差得2x﹣y﹣3=0,即交点连成的直线的方程为x+2y﹣1=0.故答案为:x+2y﹣1=0.13.一束光线从点A(﹣1,1)出发,经x轴反射到圆C:(x﹣2)2+(y﹣3)2=1上的最短路径的长度是4.【考点】直线和圆的方程的应用.【分析】求出点A关于x轴的对称点A′,则要求的最短路径的长为A′C﹣r(圆的半径),计算求得结果.【解答】解:由题意可得圆心C(2,3),半径为r=1,点A关于x轴的对称点A′(﹣1,﹣1),求得A′C==5,则要求的最短路径的长为A′C﹣r=5﹣1=4,故答案为:4.14.两艘轮船都要停靠同一泊位,它们能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为1小时与2小时,求有一艘船停靠泊位时必须等待一段时间的概率为多少.【考点】几何概型.【分析】利用几何概率公式求解.【解答】解:以甲船到达泊位的时刻x,乙船到达泊位的时刻y分别为坐标轴,则由题意知:0≤x,y≤24.设事件A={有一艘轮船停靠泊位时必须等待一段时间},事件B={甲船停靠泊位时必须等待一段时间},事件C={乙船停靠泊位时必须等待一段时间}.则A=B+C,并且事件B与事件C是互斥事件.∴P(A)=P(B+C)=P(B)+P(C).甲船停靠泊位时必须等待一段时间需满足的条件是0<x﹣y≤2,乙船停靠泊位时必须等待一段时间需满足的条件是0<y﹣x≤1,在如图所示的平面直角坐标系下,点(x,y)的所有可能结果是边长为24的正方形,事件A的可能结果由图中的阴影部分表示,=242=576.则S正方形=69.5,∴由几何概率公式得P(A)==.∴有一艘船停靠泊位时必须等待一段时间的概率为.故答案为:.15.对任意非零实数a、b,若a⊙b的运算原理如程序框图所示,则(3⊙2)⊙4的值是.【考点】程序框图.【分析】根据a⊗b的运算原理知a=3,b=2,通过程序框图知须执行,故把值代入求解,类似地即可求得(3⊙2)⊙4的值.【解答】解:由题意知,a=3,b=2;再由程序框图得,3≤2不成立,故执行,得到3⊗2==2.同样:2⊙4=故答案为:.三、解答题16.求经过点A(5,2),B(3,2),圆心在直线2x﹣y﹣3=0上的圆的方程.【考点】圆的标准方程.【分析】由A和B的坐标求出直线AB的斜率,根据两直线垂直斜率的乘积为﹣1求出直线AB垂直平分线的斜率,根据垂径定理得到圆心在弦AB的垂直平分线上,又圆心在已知直线上,联立两直线方程组成方程组,求出方程组的解集,得到圆心M的坐标,再利用两点间的距离公式求出|AM|的长,即为圆的半径,由圆心坐标和半径写出圆的标准方程即可.【解答】解:∵A(5,2),B(3,2),∴直线AB的斜率为=0,∴直线AB垂直平分线与x轴垂直,其方程为:x==4,与直线2x﹣y﹣3=0联立解得:x=4,y=5,即所求圆的圆心M坐标为(4,5),又所求圆的半径r=|AM|==,则所求圆的方程为(x﹣4)2+(y﹣5)2=10.17.济南天下第一泉风景区为了做好宣传工作,准备在A和B两所大学分别招募8名和12名志愿者,将这20名志愿者的身高编成如右茎叶图(单位:cm).若身高在175cm以上(包括175cm)定义为“高精灵”,身高在175cm以下(不包括175cm)定义为“帅精灵”.已知A大学志愿者的身高的平均数为176cm,B大学志愿者的身高的中位数为168cm.(Ⅰ)求x,y的值;(Ⅱ)如果用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人.求至少有一人为“高精灵”的概率.【考点】古典概型及其概率计算公式;分层抽样方法;茎叶图.【分析】(I)根据求平均数及中位数的方法,即可求解x,y.(II)根据分层抽样方法求得抽到的“高精灵”和“帅精灵”的志愿者人数,再分类求得至少有1人是“高精灵”的抽法种数与从这5人中选2人的种数,代入古典概型概率公式计算.【解答】解:(I)由茎叶图得:,解得,x=5,y=7(II)由题意可得,高精灵有8人,帅精灵有12人,如果从“高精灵”和“帅精灵”中抽取5人,则“高精灵”和“帅精灵”的人数分别为:,=3记抽取的高精灵分别为b1,b2,帅精灵为c1,c2,c3,从已经抽取的5人中任选2人的所有可能为:(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共10种结果记从这5人中选2人.求至少有一人为“高精灵”为事件A,则A包括,(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3)共7种∴因此,如果用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人,至少有一人为“高精灵的概率为18.甲、乙两人在2015年1月至5月的纯收入(单位:千元)的数据如下表:(2)求y关于x的线性回归方程,并预测甲在6月份的纯收入;(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间(3,3.5)中的概率.【考点】线性回归方程.【分析】(1)由表中数据的分散程度可得结论;(2)由表中数据可得,,进而可得和,可得回归方程,令x=6可得预测值;(3)列举可得总的基本事件有10个,符合题意的有6个,由概率公式可得.【解答】解:(1)由表中数据可知,甲的纯收入比乙的纯收入集中,故甲的纯收入较稳定;(2)∵=(1+2+3+4+5)=3,=(2.9+3.3+3.6+4.4+4.8)=3.8,(x i﹣)2=(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2=10,同理可得(x i﹣)(y i﹣)=4.9,∴==0.49,=3.8﹣0.49×3=2.33,∴所求回归方程为=0.49x+2.33,令x=6可得=0.49×6+2.33=5.27,∴预测甲在6月份的纯收入为5.27千元;(3)现从乙这5个月的纯收入中,随机抽取两个月的基本事件有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种,记“恰有1个月的纯收入在区间(3,3.5)中”为事件A,则A包括的基本事件有:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)共6种,∴恰有1个月的纯收入在区间(3,3.5)中的概率为P(A)==19.已知圆x2+y2﹣x﹣6y+m=0与直线2x+y﹣3=0交于M、N两点,O为坐标原点,文是否存在实数m,使OM⊥ON,若存在,求出m的值若不存在,请说明理由.【考点】直线与圆的位置关系.【分析】设出M,N的坐标,根据OM⊥ON可推断出•=0,把M,N坐标代入求得关系式,把直线方程与圆的方程联立消去y,利用韦达定理表示出x M+x N和x M•x N,利用直线方程求得y M•y NN的表达式,最后联立方程求得m,利用判别式验证成立,答案可得.【解答】解:设点M(x M,y M),N(x N,y N)当OM⊥OM时,K oM•K ON=﹣1⇒x M x N+y M y N=0(1)又直线与圆相交于P、Q⇒的根是M、N坐标⇒是方程5x2﹣x+m﹣9=0的两根有:x M+x N=,x M•x N=,又M、N在直线2x+y﹣3=0上,则y M•y N=(3﹣2x M)•(3﹣2x N)=9﹣6(x M+x N)+4x M•x N,∴+﹣6×+9=0,解得:m=,且检验△>O成立,故存在m=,使OM⊥ON.20.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.【考点】众数、中位数、平均数;古典概型及其概率计算公式.【分析】(Ⅰ)根据“数学与逻辑”科目中成绩等级为B的考生人数,结合样本容量=频数÷频率得出该考场考生人数,再利用频率和为1求出等级为A的频率,从而得到该考场考生中“阅读与表达”科目中成绩等级为A 的人数.(Ⅱ)利用平均数公式即可计算该考场考生“数学与逻辑”科目的平均分.(Ⅲ)通过列举的方法计算出选出的2人所有可能的情况及这两人的两科成绩等级均为A的情况;利用古典概型概率公式求出随机抽取两人进行访谈,这两人的两科成绩等级均为A的概率.【解答】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×[1×(40×0.2)+2×(40×0.1)+3×(40×0.375)+4×(40×0.25)+5×(40×0.075)]=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,则P(B)=.21.已知圆O的方程为x2+y2=1,直线l1过点A(3,0),且与圆O相切.(1)求直线l1的方程;(2)设圆O与x轴相交于P,Q两点,M是圆O上异于P,Q的任意一点,过点A且与x轴垂直的直线为l2,直线PM交直线l2于点P′,直线QM交直线l2于点Q′.求证:以P′Q′为直径的圆C总经过定点,并求出定点坐标.【考点】直线和圆的方程的应用.【分析】(1)由已知中直线l1过点A(3,0),我们可以设出直线的点斜式方程,化为一般式方程后,代入点到直线距离公式,根据直线与圆相切,圆心到直线的距离等于半径,可以求出k值,进而得到直线l1的方程;(2)由已知我们易求出P,Q两个点的坐标,设出M点的坐标,我们可以得到点P′与Q′的坐标(含参数),进而得到以P′Q′为直径的圆的方程,根据圆的方程即可判断结论.【解答】解:(1)由题意,可设直线l1的方程为y=k(x﹣3),即kx﹣y﹣3k=0…又点O(0,0)到直线l1的距离为,解得,所以直线l1的方程为,即或…(2)对于圆O的方程x2+y2=1,令x=±1,即P(﹣1,0),Q(1,0).又直线l2方程为x=3,设M(s,t),则直线PM方程为.解方程组,得,同理可得:.…所以圆C的圆心C的坐标为,半径长为,又点M(s,t)在圆上,又s2+t2=1.故圆心C为,半径长.所以圆C的方程为,…即=0即,又s2+t2=1故圆C的方程为,令y=0,则(x﹣3)2=8,所以圆C经过定点,y=0,则x=,所以圆C经过定点且定点坐标为。
山东省潍坊一中高一上学期数学期中质检注意事项:第I卷、第Ⅱ卷满分150分。
第I卷为选择题,将答案直接涂在答题卡上;第Ⅱ卷为非选择题,用黑色签字笔规范书写到答题卡的相应位置。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则A. B. C. D.【答案】A【解析】【分析】化简集合M,N,然后利用交集概念及运算得到结果.【详解】由题意可知:M={﹣1,0,1},N={0,1,2,3},∴{0,1}故选:A【点睛】本题考查了交集的概念及运算,考查了描述法,属于基础题.2.已知集合,则下列式子表示不正确的是()A. B. C. D.【答案】B【解析】由知,A,C,D选项正确,B选项错误,因为集合与集合关系不是属于关系,故选B.3.函数的定义域为A. B. C. D.【答案】A【解析】【分析】由根式内部的代数式大于等于0,分母中根式内部的代数式大于0联立不等式组求解.【详解】由,解得﹣2<x≤0.∴函数的定义域为.故选:A.【点睛】本题考查函数的定义域及其求法,考查指数不等式的解法,是基础题.4.函数的图像必经过点A. B. C. D.【答案】D【解析】【分析】利用a0=1即可得出必过的定点.【详解】令x=3,则y=a0+3=4.∴函数的图象必经过点(3,4).故选:D.【点睛】本题主要考查指数函数的单调性与特殊点,属于基础题.A. B. C. D.【答案】B【解析】【分析】令f(x)=,求出选项中的端点函数值,从而由根的存在性定理判断根的位置.【详解】由上表可知,令f(x)=,则f(﹣1)≈0.37﹣0.5<0,f(0)=1﹣1.5<0,f(1)≈2.72﹣2.5>0,f(2)≈7.39﹣3.5>0,f(3)≈20.09﹣4.5>0.故f(0)f(1)<0,∴方程的一个根所在的区间是故选:B.【点睛】本题考查零点判定定理的应用,二分法求方程近似解的步骤,属于基础题.6.下列各组函数是同一函数的是①与;②与;③与;④与A. ②③B. ①③C. ③④D. ①④【答案】C【解析】【分析】①与定义域相同,但是对应法则不同;②f(x)=x与g(x)对应法则不同,不是同一函数;③f(x)=x0与定义域相同,对应法则相同,是同一函数;④f(x)=x2﹣x﹣1与g(t)=t2﹣t﹣1.函数与用什么字母表示无关,只与定义域和对应法则有关.【详解】解:①与的定义域是{x:x≤0};而x,对应法则不相同,故这两个函数不是同一函数;②f(x)=x与的定义域都是R,|x|,这两个函数的定义域相同,对应法则不相同,故这两个函数不是同一函数;③f(x)=x0=1的定义域是{x:x≠0},而=1的定义域是{x:x≠0},故这两个函数是同一函数;④f(x)=x2﹣x﹣1与g(t)=t2﹣t﹣1,定义域与对应法则相同,是同一函数.故选:C.【点睛】判断两个函数是否为同一函数的关键是要看定义域和对应法则,只有两者完全一致才能说明这两个函数是同一函数.属基础题.7.函数在上的最大值与最小值的差为2,则A. B. C. D.【答案】B【解析】【分析】根据y=a x(a>0,且a≠1)在区间[1,2]上为单调函数,且最值差为2,列出方程求出a的值.【详解】y=a x(a>0,且a≠1)在区间[1,2]上为单调函数,且y=a x(a>0,且a≠1)在区间[1,2]上最大值与最小值的差为2,即|a﹣a2|=2,所以a﹣a2=2或a﹣a2=﹣2;即a2﹣a+2=0或a2﹣a﹣2=0,解得a=2或a=﹣1(不合题意,舍去);所以a=2.故选:B【点睛】本题考查的知识点是指数函数单调性的应用,熟练掌握指数函数的图象与性质是解答的关键.8.已知定义在上的函数,其图像如图所示,若关于的方程有三个实根,则实数的取值范围是A. B. C. D.【答案】C 【解析】 【分析】 关于的方程有三个实根,即函数与的图象有三个不同的交点,数形结合即可得到答案.【详解】关于的方程有三个实根,即函数与的图象有三个不同的交点,由函数的图象可得: 当t ∈时,函数与的图象有三个不同的交点,故选:C .【点睛】函数零点的求解与判断 (1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间上是连续不断的曲线,且,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 9.已知分别是定义在上的偶函数和奇函数,且,则A. B. C. D.【答案】D 【解析】 【分析】将原代数式中的x 替换成﹣x ,再结合着f (x )和g (x )的奇偶性可得f (x )+g (x ),再令x =1即可. 【详解】由f (x )﹣g (x )=,将所有x 替换成﹣x ,得f (﹣x )﹣g (﹣x )=﹣x 3+x 2,根据f (x )=f (﹣x ),g (﹣x )=﹣g (x ),得 f (x )+g (x )=﹣x 3+x 2,再令x =1,计算得,f (1)+g (1)=﹣1. 故选:D .【点睛】本题考查了函数奇偶性的应用,利用定义得到f(x)+g(x)=﹣x3+x2是解题的关键。
2018-2019学年山东省青岛二中高一(下)期中数学试卷试题数:23,总分:481.(单选题,3分)下列命题正确的是()A.若 a>b,则a2>b2B.若a>b,则 ac>bcC.若a>b,则a3>b3D.若a>b,则1a <1b2.(单选题,3分)设直线a,b是空间中两条不同的直线,平面α,β是空间中两个不同的平面,则下列说法正确的是()A.若a || α,b || α,则a || bB.若a || b,b || α,则a || αC.若a || α,α || β,则a || βD.若α || β,a⊂α,则a || β3.(单选题,3分)等腰直角三角形,直角边长为√2.以斜边所在直线为旋转轴,将该直角三角形旋转一周所得几何的体积是()A. π3B. 2π3C.πD. 4π34.(单选题,3分)△ABC的三个内角A,B,C的对边分别是a,b,c.已知b=2√3,B=π6,c=6,则A=()A. π6B. π2C. π6或π2D. π3或π25.(单选题,3分)一个等差数列共有13项,奇数项之和为91,则这个数列的中间项为()A.10B.11C.12D.136.(单选题,3分)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=√26,b=7,A=π4,则△ABC的形状可能是()A.锐角三角形B.钝角三角形C.钝角或锐角三角形D.锐角、钝角或直角三角形7.(单选题,3分)等差数列{a n},{b n}的前n项和分别为S n,T n,且S nT n =2n+13n+5,则a5b5=()A. 38B. 23C. 1116 D. 19328.(单选题,3分)设a>0,b>0,若3是3a与9b的等比中项,则1a +2b的最小值为()A. 92B.3C. 32+√2D.49.(单选题,3分)已知函数f(x)=x2+mx+4,若f(x)>0对任意实数x∈(0,4)恒成立,则实数m的取值范围是()A.[-4,+∞)B.(-4,+∞)C.(-∞,-4]D.(-∞,-4)10.(单选题,3分)若等差数列{a n}单调递减,a2,a4为函数f(x)=x2-8x+12的两个零点,则数列{a n}的前n项和S n取得最大值时,正整数n的值为()A.3B.4C.4或5D.5或611.(单选题,3分)在《九章算术》中,底面是直角三角形的直棱柱成为“堑堵”.某个“堑堵”的高为2,且该“堑堵”的外接球表面积为12π,则该“堑堵”的表面积的最大值为()A. 4+4√2B. 12+4√2C. 16+4√2D. 20+4√212.(单选题,3分)已知数列{a n}的前n项和S n=n2,数列{b n}满足b n=log a a n+1a n (0<a<1),T n是数列{b n}的前n项和,若M n=12log a a n+1,则T n与M n的大小关系是()A.T n≥M nB.T n>M nC.T n<M nD.T n≤M n13.(填空题,3分)已知等比数列{a n}的前n项和S n=2t•3n−1−43,则t=___ .14.(填空题,3分)已知函数a>1,b>12,若实数(a-1)(2b-1)=1,则a+2b的最小值为___ .15.(填空题,3分)在△ABC中,A=π6,A的角平分线AD交BC于点D,若AB=√2,AC=√6,则AD=___ .16.(填空题,3分)如图所示,在正方体ABCD-A1B1C1D1中,点M是棱CD的中点,动点N 在体对角线A1C上(点N与点A1,C不重合),则平面AMN可能经过该正方体的顶点是___ .(写出满足条件的所有顶点)17.(问答题,0分)证明:对任意实数x∈(-3,+∞),不等式√x+3−√x+5<√x+4−√x+6恒成立.18.(问答题,0分)在△ABC中,角A,B,C所对的边分别是a,b,c,且csin2B+bsin(A+B)=0.(1)求角B;,求a+c.(2)若b=7,△ABC的面积为15√3419.(问答题,0分)已知数列{a n}的前n项和S n满足nS n+1-(n+1)S n+n(n+1)=0,且a1=10.求数列{|a n|}的前n项和.20.(问答题,0分)在正方体ABCD-A1B1C1D1中,点M为棱AA1的中点.问:在棱A1D1上是否存在点N,使得C1N || 面B1MC?若存在,请说明点N的位置;若不存在,请说明理由.,且21.(问答题,0分)已知S n是数列{a n}的前n项和,当n≥2时,S n+2=S n+1+S n−12S1=0,a2=4.(1)求数列{a n}的通项公式;(2)等比数列{b n}满足b2a2=b3a3=1,求数列{a n•b n}的前n项和T n.22.(问答题,0分)已知数列{a n}的前n项和S n满足√S n+1=√S n+1,且a1=1.(1)求数列{a n}的通项公式;,且数列{b n}的前n项和T n满足6T n<t2−2t对任意正整数n恒成立,(2)设b n=1a n a n+1求实数t 的取值范围;(3)设 c n =(34)n •a n+1 ,问:是否存在正整数m ,使得c m ≥c n 对一切正整数n 恒成立?若存在,请求出实数m 的值;若不存在,请说明理由.23.(问答题,0分)在数列{a n }中,a 1=2,a 2=6.当n≥2时,a n+1+a n-1=2a n +2.若[x]表示不超过x 的最大整数,求[2019a 1 + 2019a 2 + 2019a 3 +…+ 2019a 2019 ]的值.2018-2019学年山东省青岛二中高一(下)期中数学试卷参考答案与试题解析试题数:23,总分:481.(单选题,3分)下列命题正确的是()A.若 a>b,则a2>b2B.若a>b,则 ac>bcC.若a>b,则a3>b3D.若a>b,则1a <1b【正确答案】:C【解析】:a=-4,b=-5时,A命题不成立,c<0时,B不成立,而a=3,b=-5时,D不成立,从而只能选C.【解答】:解:A.a>b得不出a2>b2,比如-4>-5,得出(-4)2<(-5)2,∴该命题错误;B.a>b得不出ac>bc,c小于0时,由a>b得出ac<bc,∴该命题错误;C.a>b可以得出a3>b3,∵f(x)=x3是增函数,∴该命题正确;D.a>b得不出1a <1b,如3>-5,得出13>−15,∴该命题错误.故选:C.【点评】:考查不等式的性质,清楚函数f(x)=x3的单调性.2.(单选题,3分)设直线a,b是空间中两条不同的直线,平面α,β是空间中两个不同的平面,则下列说法正确的是()A.若a || α,b || α,则a || bB.若a || b,b || α,则a || αC.若a || α,α || β,则a || βD.若α || β,a⊂α,则a || β【正确答案】:D【解析】:在A中,a与b相交、平行或异面;在B中,a || α或a⊂α;在C中,a || β或a⊂β;在D中,由面面平行的性质定理得a || β.【解答】:解:由直线a,b是空间中两条不同的直线,平面α,β是空间中两个不同的平面,知:在A中,若a || α,b || α,则a与b相交、平行或异面,故A错误;在B中,若a || b,b || α,则a || α或a⊂α,故B错误;在C中,若a || α,α || β,则a || β或a⊂β,故C错误;在D中,若α || β,a⊂α,则由面面平行的性质定理得a || β,故D正确.故选:D.【点评】:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.3.(单选题,3分)等腰直角三角形,直角边长为√2.以斜边所在直线为旋转轴,将该直角三角形旋转一周所得几何的体积是()A. π3B. 2π3C.πD. 4π3【正确答案】:B【解析】:画出图形,根据圆锥的体积公式直接计算即可.【解答】:解:如图为等腰直角三角形旋转而成的旋转体.V=2× 13•s•ℎ = 2×13×π×1 = 23π,故选:B.【点评】:本题考查圆锥的体积公式,考查空间想象能力以及计算能力.是基础题.4.(单选题,3分)△ABC的三个内角A,B,C的对边分别是a,b,c.已知b=2√3,B=π6,c=6,则A=()A. π6B. π2C. π6或π2D. π3或π2【正确答案】:C【解析】:由正弦定理可得,bsinB = csinC,可求sinC,然后结合大边对大角可求C,进而可求A.【解答】:解:∵B= π6,b=2 √3,c=6,由正弦定理可得,bsinB = csinC,∴sinC= c•sinBb = √32,∵b<c,∴C>B= π6,∴C= π3或2π3,A=π-B-C= π2或π6;故选:C.【点评】:本题主要考查正弦定理在求解三角形中的应用,解题中大边对大角是确定C取值的关键.5.(单选题,3分)一个等差数列共有13项,奇数项之和为91,则这个数列的中间项为()A.10B.11C.12D.13【正确答案】:D【解析】:利用等差数列的通项公式及其性质即可得出.【解答】:解:由题意可得:a1+a3+a5+a7+a9+a11+a13=91,∴7a7=91,解得a7=13,故选:D.【点评】:本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于基础题.6.(单选题,3分)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=√26,b=7,A=π4,则△ABC的形状可能是()A.锐角三角形B.钝角三角形C.钝角或锐角三角形D.锐角、钝角或直角三角形【正确答案】:C【解析】:由已知结合正弦定理及三角形的大边对大角即可判断.【解答】:解:因为a=√26,b=7,A=π4,√26√2 2=7sinB,所以sinB= 7√1326,因为b>a,所以B>A= π4,故B可能为锐角,也可能为钝角.故选:C.【点评】:本题主要考查了正弦定理在判断三角形形状中的应用,属于基础试题.7.(单选题,3分)等差数列{a n},{b n}的前n项和分别为S n,T n,且S nT n =2n+13n+5,则a5b5=()A. 38B. 23C. 1116D. 1932【正确答案】:D【解析】:利用等差数列的性质可得:a5b5 =9(a1+a9)29(b1+b9)2= S9T9,即可得出.【解答】:解:a5b5 =9(a1+a9)29(b1+b9)2= S9T9= 2×9+13×9+5= 1932,故选:D.【点评】:本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于基础题.8.(单选题,3分)设a>0,b>0,若3是3a与9b的等比中项,则1a +2b的最小值为()A. 92B.3C. 32+√2D.4【正确答案】:C【解析】:由已知结合等比数列的性质求出a+2b=2.然后利用基本不等式可求.【解答】:解:由题意可得,3a•9b=9即a+2b=2,则1a +2b=(1a+2b)(a+b)× 12= 12(3+ba+2ab)≥12(3+2√2).当且仅当ba =2ab且a+b=2时取等号.故选:C.【点评】:本题主要考查了等比数列的性质及利用乘1法配凑基本不等式的应用条件求解最值,属于中档试题.9.(单选题,3分)已知函数f(x)=x2+mx+4,若f(x)>0对任意实数x∈(0,4)恒成立,则实数m的取值范围是()A.[-4,+∞)B.(-4,+∞)C.(-∞,-4]D.(-∞,-4)【正确答案】:B【解析】:由题意可得x2+mx+4>0对任意实数x∈(0,4)恒成立,由参数分离和基本不等式可得最小值,即可得到所求范围.【解答】:解:若f (x )>0对任意实数x∈(0,4)恒成立, 即x 2+mx+4>0对任意实数x∈(0,4)恒成立, 可得-m <x+ 4x在x∈(0,4)恒成立,设g (x )=x+ 4x ,x∈(0,4),由x+ 4x ≥2 √x •4x =4,当且仅当x=2∈(0,4)时取得等号, 即有g (x )的最小值为4, 可得-m <4,即m >-4, 故选:B .【点评】:本题考查含参二次不等式恒成立问题解法,注意运用转化思想和基本不等式,考查化简运算能力和推理能力,属于中档题.10.(单选题,3分)若等差数列{a n }单调递减,a 2,a 4为函数f (x )=x 2-8x+12的两个零点,则数列{a n }的前n 项和S n 取得最大值时,正整数n 的值为( ) A.3 B.4 C.4或5 D.5或6【正确答案】:C【解析】:先解出两个零点,再利用等差数列的通项公式,求出数列为0的项,即可推出结果.【解答】:解:因为a 2,a 4为函数f (x )=x 2-8x+12的两个零点,则 {a 2+a 4=8a 2a 4=12, ,等差数列{a n }单调递减, 解得: {a 2=6a 4=2.所以公差为-2,首项为8, 所以a n =8-2(n-1)=10-2n . 令10-2n=0,解得,n=5,所以数列{a n }的前n 项和S n 取得最大值时,正整数n 的值为4或5. 故选:C .【点评】:本题考查知识点函数的零点,等差数列的通项公式;等差数列的性质,考查分析问题解决问题的能力,11.(单选题,3分)在《九章算术》中,底面是直角三角形的直棱柱成为“堑堵”.某个“堑堵”的高为2,且该“堑堵”的外接球表面积为12π,则该“堑堵”的表面积的最大值为()A. 4+4√2B. 12+4√2C. 16+4√2D. 20+4√2【正确答案】:B【解析】:由已知求得底面斜边长,写出棱柱表面积,换元后利用函数的单调性求最值.【解答】:解:由该“堑堵”的外接球表面积为12π,得4π×(√AB 2+42)2=12π,解得AB= 2√2.∴该“堑堵”的表面积S=2(AC+BC)+ 2×12AC×BC+4√2 =2(AC+BC)+AC•BC+4 √2.令AC+BC=x(2√2<x≤4),则AC•BC= x 2−82.∴S=2x+ x2−82+4√2 = 12x2+2x−4+4√2.函数在(2 √2,4]上为增函数,则当x=4时,S取得最大值为12+ 4√2.故选:B.【点评】:本题考查棱柱、棱锥、棱台的侧面积与表面积,考查函数与方程思想的应用,训练了利用换元法求最值,是中档题.12.(单选题,3分)已知数列{a n}的前n项和S n=n2,数列{b n}满足b n=log a a n+1a n (0<a<1),T n是数列{b n}的前n项和,若M n=12log a a n+1,则T n与M n的大小关系是()A.T n≥M nB.T n >M nC.T n <M nD.T n ≤M n 【正确答案】:C【解析】:数列{a n }的前n 项和 S n =n 2 ,n≥2时,a n =S n -S n-1,n=1时,a 1=S 1=1,可得a n =2n-1. a n +1a n = 2n 2n−1 .A n = a 1+1a 1 • a 2+1a 2 •…• a n +1a n,通过放缩可得:A n < √2n +1 .进而得出结论.【解答】:解:数列{a n }的前n 项和 S n =n 2 ,n≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1. n=1时,a 1=S 1=1,对于上式成立. ∴a n =2n-1,a n +1a n = 2n2n−1. A n =a 1+1a 1 • a 2+1a 2 •…• a n +1a n = 21 × 43 × 65 ×…× 2n 2n−1 > 32 × 54 ×…× 2n+12n = 1A n×(2n+1). ∴A n > √2n +1 . 数列{b n }满足 b n =log a a n +1a n(0<a <1) , T n =log a (a 1+1a 1 • a 2+1a 2 •…• a n +1a n)< log a √2n +1 = 12 log a a n+1=M n .∴T n <M n . 故选:C .【点评】:本题考查了数列递推关系、放缩法、不等式的性质、对数运算性质,考查了推理能力与计算能力,属于中档题.13.(填空题,3分)已知等比数列{a n }的前n 项和 S n =2t •3n−1−43,则t=___ . 【正确答案】:[1]2【解析】:由已知结合等比数列的求和公式, 2t 3 = 43 ,可求.【解答】:解:因为q≠1,S n = a 1(1−q n )1−q = a 11−q−a11−q •q n ,结合等比数列和的特点可知, S n =2t •3n−1−43 中, 2t 3 = 43 , 故t=2. 故答案为:2.【点评】:本题主要考查了等比数列的求和公式的简单应用,属于基础试题.14.(填空题,3分)已知函数a >1, b >12 ,若实数(a-1)(2b-1)=1,则a+2b 的最小值为___ .【正确答案】:[1]4【解析】:由a >1, b >12 ,(a-1)(2b-1)=1,则a+2b=(a-1)+(2b-1)+2 ≥2√(a −1)(2b −1)+2 =4,求出结果.【解答】:解:由a >1, b >12 ,(a-1)(2b-1)=1,则a+2b=(a-1)+(2b-1)+2 ≥2√(a −1)(2b −1)+2 =4,当且仅当a=2b=2时,取等号, 故a+2b 的最小值为4, 故答案为:4.【点评】:本题考查基本不等式的应用,解题的关键是对式子进行恰当的变形,基础题. 15.(填空题,3分)在△ABC 中, A =π6 ,A 的角平分线AD 交BC 于点D ,若 AB =√2 , AC =√6 ,则AD=___ . 【正确答案】:[1] √3【解析】:在△ABC 中,由余弦定理可解得 BC =√2 ,由此可知△ABC 为等腰三角形,且AB=BC ,则 C =π6,B =2π3,再在△ACD 中运用正弦定理即可求得AD 的值.【解答】:解:在△ABC 中,由余弦定理有, BC 2=AB 2+AC 2−2AB •AC •cosA =2+6−2×√2×√6×√32=2 ,∴ BC =√2 ,∴△ABC 为等腰三角形,且AB=BC , ∴ C =π6,B =2π3, ∴ ∠ADC =12A +B =π12+2π3=3π4 , 在△ACD 中,由正弦定理有, ACsin∠ADC =ADsinC , ∴ AD =√6×12√22=√3 .故答案为: √3 .【点评】:本题考查正余弦定理在解三角形中的运用,考查计算能力,属于基础题.16.(填空题,3分)如图所示,在正方体ABCD-A1B1C1D1中,点M是棱CD的中点,动点N在体对角线A1C上(点N与点A1,C不重合),则平面AMN可能经过该正方体的顶点是___ .(写出满足条件的所有顶点)【正确答案】:[1]C1,B1,D1,A1【解析】:如图所示,取A1B1的中点G,连接AG,C1G.可得四边形AMC1G是平行四边形.经过平移C1G可得:平面AMN可能经过该正方体的顶点.【解答】:解:如图所示,取A1B1的中点G,连接AG,C1G.则四边形AMC1G是平行四边形.经过平移C1G可得:平面AMN可能经过该正方体的顶点是C1,B1,D1,A1.故答案为:C1,B1,D1,A1.【点评】:本题考查了正方体的性质、平行四边形与点共面,考查了推理能力与空间想象能力,属于基础题.17.(问答题,0分)证明:对任意实数x∈(-3,+∞),不等式√x+3−√x+5<√x+4−√x+6恒成立.【正确答案】:【解析】:根据题意,利用分析法证明不等式恒成立即可.【解答】:证明:要证明x∈(-3,+∞)时,不等式√x+3−√x+5<√x+4−√x+6恒成立,只需证√x+3 + √x+6<√x+4 + √x+5恒成立;即证x+3+2 √(x+3)(x+6) +x+6<x+4+2 √(x+4)(x+5) +x+5恒成立,即证√(x+3)(x+6)<√(x+4)(x+5)恒成立,即证(x+3)(x+6)<(x+4)(x+5)恒成立,化简得18<20,显然该不等式恒成立;所以x∈(-3,+∞)时,不等式√x+3−√x+5<√x+4−√x+6恒成立.【点评】:本题考查了利用分析法证明不等式恒成立问题,是基础题.18.(问答题,0分)在△ABC中,角A,B,C所对的边分别是a,b,c,且csin2B+bsin(A+B)=0.(1)求角B;,求a+c.(2)若b=7,△ABC的面积为15√34【正确答案】:【解析】:(1)由已知结合正弦定理化简可求cosB,进而可求B;(2)由面积公式可解得ac=15,① 由余弦定理,可得a2+c2+ac=49,即(a+c)2=-ac+49,③ 将① 代入③ 即可解得a+c的值.【解答】:解:(1)∵csin2B+bsin(A+B)=0,由正弦定理可得,sinCsin2B+sinBsin(A+B)=0,化简可得,2sinCsinBcosB+sinBsinC=0,∵sinBsinC≠0,∴cosB=- 12,∵B∈(0,π),∴B= 2π3,(2)b=7,B= 2π3,由面积公式可得:12acsinB= 15√34,即ac=15,①由余弦定理,可得:a2+c2-2accosB=b2,即a2+c2+ac=49 ② ,由② 变形可得:(a+c)2=-ac+49,③将① 代入③ 可得(a+c)2=64,故解得:a+c=8.【点评】:本题主要考查了正弦定理,三角形内角和定理,余弦定理,三角形面积公式的综合应用,考查了计算能力,属于中档题.19.(问答题,0分)已知数列{a n}的前n项和S n满足nS n+1-(n+1)S n+n(n+1)=0,且a1=10.求数列{|a n|}的前n项和.【正确答案】:【解析】:nS n+1-(n+1)S n+n(n+1)=0,变形为S n+1n+1 - S nn=-1,利用等差数列的通项公式可得S nn,S n,再利用n≥2时,a n=S n-S n-1,可得a n,利用a n≥0,对n分类讨论,去掉绝对值符号,利用等差数列的求和公式即可得出.【解答】:解:nS n+1-(n+1)S n+n(n+1)=0,∴ S n+1n+1 - S nn=-1,∴数列{ S nn}是等差数列,公差为-1.∵a1=10,S11=10.∴ S nn=10-(n-1)=11-n,∴S n=11n-n2,∴n≥2时,a n=S n-S n-1=11n-n2-[11(n-1)-(n-1)2]=12-2n,n=1时也成立.∴a n=12-2n,令a n=12-2n≥0,解得n≤6.∴n≤6时,数列{|a n|}的前n项和T n=10+8+……+(12-2n)= n(10+12−2n)2=n(11-n)=11n-n2.n≥7时,数列{|a n|}的前n项和T n=6×5+2+4+……+(2n-12)=30+ (n−6)(2+2n−12)2=30+(n-6)(n-5)=n2-11n+60.综上可得:T n= {11n−n2,1≤n≤6n2−11n+60,n≥7.【点评】:本题考查了等差数列的通项公式求和公式、分类讨论、绝对值,考查了推理能力与计算能力,属于中档题.20.(问答题,0分)在正方体ABCD-A1B1C1D1中,点M为棱AA1的中点.问:在棱A1D1上是否存在点N,使得C1N || 面B1MC?若存在,请说明点N的位置;若不存在,请说明理由.【正确答案】:【解析】:取DD1中点P,A1D1中点N,连结C1P,NP,则NP || B1C,PC1 || MB1,从而平面PNC1 || 平面 CB1M,由此推导出在棱A1D1上存在中点N,使得C1N || 面B1MC.【解答】:解:在棱A1D1上存在中点N,使得C1N || 面B1MC.理由如下:取DD1中点P,A1D1中点N,连结C1P,NP,∵在正方体ABCD-A1B1C1D1中,点M为棱AA1的中点.∴NP || B1C,PC1 || MB1,∵NP∩PC1=P,B1C∩MB1=B2,∴平面PNC1 || 平面 CB1M,∵C1N⊂平面PNC1,∴C1N || 面B1MC.【点评】:本题考查满足线面平行的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.(问答题,0分)已知S n是数列{a n}的前n项和,当n≥2时,S n+2=S n+1+S n−1,且2S1=0,a2=4.(1)求数列{a n}的通项公式;(2)等比数列{b n}满足b2a2=b3a3=1,求数列{a n•b n}的前n项和T n.【正确答案】:,且S1=0,a2=4.可得2S n+4=S n+1+S n-1,【解析】:(1)当n≥2时,S n+2=S n+1+S n−12可得a n+4=a n+1,利用等差数列的通项公式可得a n.(2)设等比数列{b n}的公比为q,满足b2a2=b3a3=1,可得4b1q=8b1q2=1,解得:q,b1.可得b n,a n•b n.利用错位相减法即可得出.,且S1=0,a2=4.【解答】:解:(1)当n≥2时,S n+2=S n+1+S n−12∴2S n+4=S n+1+S n-1,∴a n+4=a n+1,即a n+1-a n=4,a2-a1=4.∴数列{a n}为等差数列,公差为4,首项为0.∴a n=4(n-1).(2)解:设等比数列{b n}的公比为q,满足b2a2=b3a3=1,∴4b1q=8b1q2=1,=b1.解得:q= 12∴b n= (12)n.∴a n•b n= n−12n−2.∴数列{a n•b n}的前n项和T n=0+1+ 22 + 322+ 423+……+ n−12n−2.∴ 1 2 T n=0+ 12+ 222+……+ n−22n−2+ n−12n−1,∴ 1 2 T n=1+ 12+ 122+……+ 12n−2- n−12n−1= 1−(12)n−11−12- n−12n−1,∴T n=4- n+12n−2.【点评】:本题考查了等差数列与等比数列的通项公式、求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.22.(问答题,0分)已知数列{a n}的前n项和S n满足√S n+1=√S n+1,且a1=1.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,且数列{b n}的前n项和T n满足6T n<t2−2t对任意正整数n恒成立,求实数t的取值范围;(3)设c n=(34)n•a n+1,问:是否存在正整数m,使得c m≥c n对一切正整数n恒成立?若存在,请求出实数m的值;若不存在,请说明理由.【正确答案】:【解析】:(1)数列{a n}的前n项和S n满足√S n+1=√S n+1,且a1=1. √S n+1 - √S n =1,利用等差数列的通项公式可得:S n.n≥2时,a n=S n-S n-1.n=1时,a1=S1,可得a n.(2)b n=1a n a n+1 = 1(2n−1)(2n+1)= 12(12n−1- 12n+1),利用裂项求和可得:数列{b n}的前n项和T n,根据单调性可得T n的最值情况,再根据满足6T n<t2−2t对任意正整数n恒成立,即可得出实数t的取值范围.(3)设c n=(34)n•a n+1 = (34)n•(2n+1),通过作差可得其单调性,即可得出结论.【解答】:解:(1)数列{a n}的前n项和S n满足√S n+1=√S n+1,且a1=1.∴ √S n+1 - √S n =1,√S1 =1.∴数列{ √S n }是等差数列,首项与公差都为1.∴ √S n =1+n-1=n ,∴S n =n 2.n≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.n=1时,a 1=S 1=1,对于上式成立.∴a n =2n-1.(2) b n =1a n a n+1= 1(2n−1)(2n+1) = 12 ( 12n−1 - 12n+1 ), ∴数列{b n }的前n 项和T n = 12 (1- 13 + 13 - 15 +……+ 12n−1 - 12n+1 )= 12 (1- 12n+1 )< 12 ,∵满足 6T n <t 2−2t 对任意正整数n 恒成立,∴6× 12 ≤t 2-2t ,解得:t≥2或t≤-1.∴实数t 的取值范围是t≥2或t≤-1.(3)设 c n =(34)n •a n+1 = (34)n •(2n+1), c n+1-c n = (34)n+1 (2n+3)- (34)n •(2n+1)= (34)n • 5−2n 4 ,可得:c 1<c 2<c 3>c 4>…….∴存在正整数m=3,使得c m ≥c n 对一切正整数n 恒成立.【点评】:本题考查了数列递推关系、等差数列的通项公式、裂项求和方法、数列的单调性、作差法,考查了推理能力与计算能力,属于中档题.23.(问答题,0分)在数列{a n }中,a 1=2,a 2=6.当n≥2时,a n+1+a n-1=2a n +2.若[x]表示不超过x 的最大整数,求[2019a 1 + 2019a 2 + 2019a 3 +…+ 2019a 2019]的值.【正确答案】:【解析】:首项利用关系式的变换利用叠加法的应用求出数列的通项公式,进一步利用取整的应用求出结果.【解答】:解:数列{a n }中,a 1=2,a 2=6.当n≥2时,a n+1+a n-1=2a n +2.所以(a n+1-a n )-(a n -a n-1)=2,利用叠加法的应用,整理得a n+1-a n =a 2-a 1+2(n-1),所以a n =2+4+6+…+2n=n (n+1).则 1a n =1n −1n+1 , 若[x]表示不超过x 的最大整数,所以[2019a 1 + 2019a 2 + 2019a 3 +…+ 2019a 2019 ]= 2019×[1−12+12−13+⋯+12019−12020] = 2019×(1−12020)=2019−20192020 ∈(2018,2019).所以[2019a 1 + 2019a 2 + 2019a 3 +…+ 2019a 2019 ]的整数值为2018.【点评】:本题考查的知识要点:叠加法的应用,信息题型的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.。
山东省烟台市2018-2019学年高一下学期期中数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.sin1140=( )A.2B.12C. D.12-2.若点(1,1)P 为圆2240x y x +-=的弦AB 的中点,则弦AB 所在直线的方程为( ) A.20x y +-= B.0x y -= C.20x y -+=D.22(1)5x y +-=3.某全日制大学共有学生5600人,其中专科生有1300人,本科生有3000人,研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取( )人. A. 65,150,65 B. 30,150,100 C. 93,94,93 D. 80,120,804.圆22(1)5x y +-=与直线120mx y m -+-=的位置关系( ) A.相切B.相离C.相交D.不能确定5.若角θ满足sin |sin |cos |cos |1θθθθ+=-,则θ是( ) A.第一象限的角 B.第二象限的角 C.第三象限的角D.第四象限的角6.已知x 与y 之间的一组数据如下表,根据表中提供的数据,求出y 关于x 的线性回归方程为ŷ=0.8x +0.5 ,那么t 的值为( )A. 5B. 6C. 7D. 87.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( )A. B.5D.48.某副食品店对某月的前11天内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数和方差(结果保留一位小数)分别是)( )A.45,45.3B.45,46.4C.47,45.3D.47,46.49.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A.至少有1件次品与至多有1件正品B.至少有1件次品与都是正品C.至少有1件次品与至少有1件正品D.恰有1件次品与恰有2件正品10.若从集合A ={−2,1,2}中随机取一个数a ,从集合B ={−1,1,3}中随机取一个数b ,则直线ax−y +b =0一定..经过第四象限的概率为( ) A. 29B. 13C. 49D. 59第II 卷(非选择题)二、填空题11.甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则甲获胜的概率是_____12.在半径为10米的圆形弯道中,120°角所对应的弯道长为 米.13.一袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则1只红球和1只黄球的概率为__________,2只球颜色相同的概率为________.14.若直线y x b =+与方程x =b 的取值范围为______,若恰有两个不同的交点,则实数b 的取值范围为_________.三、解答题15.已知角θ的终边与单位圆221x y +=在第一象限交于点P ,且点P 的坐标为(3,5)y . (1)求tan θ的值;(2)求22sin (2)cos (4)sin cos πθπθθθ+-+的值.16.已知点(2,2),(2,6),(4,2)A B C ----,点P 在圆22:4E x y +=上运动.(1)求过点C 且被圆E 截得的弦长为(2)求222||||||PA PB PC ++的最值.17.从某校参加期中考试的高一学生中随机抽取100名得到这100名学生语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[80,90),[90,100),[100,110),[110,120),[120,130].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数; (3)已知学生A 的语文成绩为123分,现从成绩在[120,130]中的学生中随机抽取2人参加演讲赛,求学生A 被抽中的概率.18.已知点(4,0),(2,0)A B -,动点P 满足||2||PA PB =. (1)求点P 的轨迹C 的方程;(2)求经过点(2,2)M -以及曲线C 与224x y +=交点的圆的方程.19.已知一工厂生产了某种产品700件,该工厂需要对这些产品的性能进行检测现决定利用随机数表法从中抽取100件产品进行抽样检测,将700件产品按001,002,…,700进行编号(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;(下面摘取了随机数表的第7~9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 (2)检测结果分为优等、合格、不合格三个等级,抽取的100件产品的安全性能和环保性能的检测结果如下表(横向和纵向分别表示安全性能和环保性能): (i )若在该样本中,产品环保性能是优等的概率为34%,求,m n 的值;(ii )若12,8m n ≥≥,求在安全性能不合格的产品中,环保性能为优等的件数比不合格的件数少的概率.20.已知的顶点坐标分别是,的外接圆为. (1)求圆M 的方程;(2)在圆M 上是否存在点P ,使得22||||4PA PB -=?若存在,求点P 的个数:若不存在,说明理由;(3)在圆M 上是否存在点Q ,使得22||||12QA QC +=?若存在,求点Q 的个数:若不存在,说明理由.四、新添加的题型21.设MP 、OM 和AT 分别是角1718π的正弦、余弦和正切线,则以下不等式正确的是( )A.MP AT OM <<B.OM AT MP <<C.0OM AT <<D.0AT OM <<22.已知3log ,0()2,0x x x f x x >⎧=⎨≤⎩,角α的终边经过点,则下列结论正确的是( )A.(cos )1f α=-B.(sin )1f α=C.1((cos ))2f f α=D.((sin ))2f f α=23.已知圆2221:C x y r +=和圆2222:()()(0)C x a y b r r -+-=>交于不同的两点1122(,),(,)A x y B x y ,则下列结论正确的是( )A.1212,y x a y x b ++==B.2211220ax by a b +++= C.2222220ax by a b +--=D.1212()()0a x x b y y -+-=参考答案1.A【解析】1.利用诱导公式化简即可求值.()3sin1140sin 60+3360=sin 60︒=⨯=. 故选:A. 2.B【解析】2.根据圆心和弦的中点的连线与弦所在的直线垂直,求出弦所在直线的斜率,再代入点斜式化为一般式.2240x y x +-=化为标准方程为()22-24x y +=.∵()1,1P 为圆()22-24x y +=的弦AB 的中点,∴圆心与点P 确定的直线斜率为01121k -==--, ∴弦AB 所在直线的斜率为1,∴弦AB 所在直线的方程为11y x -=-,即0x y -=. 故选:B. 3.A【解析】3.每个个体被抽到的概率为2805600=120,∴专科生被抽的人数是120×1300=65,本科生要抽取120×3000=150,研究生要抽取120×1300=65. 4.C【解析】4.把直线的方程变形为点斜式,观察得到直线过一个定点,易判定点在圆内,从而明确直线与圆的位置关系.直线120mx y m -+-=即()12y m x -=-即直线过()21,点,把()21,点代入圆的方程有405+<,所以点()21,在圆的内部,过()21,点的直线一定和圆相交.故选:C. 5.C【解析】5.根据同角的三角函数关系得出sin 0θ<且cos 0θ<,由此判断θ是第几象限角. 角θ满足sin |sin |cos |cos |1θθθθ+=-,22sin cos 1θθ∴--=-,sin 0cos 0θθ<⎧∴⎨<⎩, θ∴是第三象限角.故选:C. 6.B【解析】6.由线性回归方程过样本中心(x̅,y ̅),通过表中数据计算求解即可. 根据表中数据计算得:x̅=2+4+6+84=5,y ̅=3+4+5+t 4=12+t 4, 将(x̅,y ̅)代入y ̂=0.8x +0.5,可得12+t4=0.8×5+0.5,解得t =6.故选B. 7.A【解析】7.设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解.设切线长为d ,则2222(2)51(2)24d m m =++-=++, min d ∴=故选:A. 8.B【解析】8.根据茎叶图中数据及中位数,方差的概念进行计算可得答案. 由题中茎叶图共有11个数据,所以中位数为45,平均数为3132344445454747485050=4311++++++++++,求得方差为()()()()()()()()(222222223143324334434443454345434743474348411-+-+-+-+-+-+-+-+-46.4. 故选:B. 9.D【解析】9.根据对立事件和互斥事件的定义,依次判断每个选项得到答案.A 、至少有1件次品与至多有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件.B 、至少有1件次品与都是正品是对立事件,故不满足条件.C 、至少有1件次品与至少有1件正品不互斥,它们都包括了“一件正品与一件次品”的情况,故不满足条件.D 、恰有1件次品与恰有2件正是互斥事件,但不是对立事件,因为除此之外还有“两件都是次品”的情况,故满足条件. 故选:D. 10.D【解析】10.由题意,利用列举法求得基本事件(a,b)的总数,再列举出所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式,即可求解. 由题意,从集合A={−2,1,2}中随机取一个数a ,从集合B ={−1,1,3}中随机取一个数b ,得到(a,b)的取值的所有可能了结果共有:(−2,−1),(−2,1),(−2,3),(1,−1),(1,1),(1,3),(2,−1),(2,1),(2,3),共计9种结果, 由直线ax−y +b =0,即y =ax +b ,其中当{a ≥0b ≥0时,直线不过第四象限,共有(1,1),(1,3),(2,1),(2,3),共计4种, 所以当直线ax −y +b =0一定..经过第四象限时,共有5中情况, 所以概率为P =59,故选D.11.【解析】11.试题因为甲获胜与两个人和棋或乙获胜对立,所以甲获胜概1111236--=,应填16. 12.203π【解析】12.弯道长是半径为10,圆心角为0120即23π弧度所对的弧长。
2018-2019学年山东省潍坊市高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.设集合A={x∈N|-2<x<2}的真子集的个数是()A. 8B. 7C. 4D. 32.下列函数中,既是奇函数又是增函数的是()A. B. C. D.3.已知f(x)=,则f[f(2)]=()A. 5B.C.D. 24.a=40.9、b=80.48、c=()-1.5的大小关系是()A. B. C. D.5.已知函数f(x+1)=2x-3,若f(m)=4,则m的值为()A. B. C. D.6.函数f(x)=a x-(a>0,a≠1)的图象可能是()A. B.C. D.7.设f(x)是(-∞,+∞)上的减函数,则()A. B. C. D.8.下列变化过程中,变量之间不是函数关系的为()A. 地球绕太阳公转的过程中,二者间的距离与时间的关系B. 在银行,给定本金和利率后,活期存款的利息与存款天数的关系C. 某地区玉米的亩产量与灌溉次数的关系D. 近年来,中国高速铁路迅猛发展,中国高铁年运营里程与年份的关系9.已知实数a,b满足等式2017a=2018b,下列关系式不可能成立的是()A. B. C. D.10.一次社会实践活动中,数学应用调研小组在某厂办公室看到该厂5年来某种产品的总产量y与时间x(年)的函数图象(如图),以下给出了关于该产品生产状况的几点判断:①前三年的年产量逐步增加;②前三年的年产量逐步减少;③后两年的年产量与第三年的年产量相同;④后两年均没有生产.其中正确判断的序号是()A. ①③B. ②④C. ①④D. ②③11.已知函数f(x)=,若函数g(x)=f(x)-m恰有一个零点,则实数m的取值范围是()A. B.C. ,D. ,12.已知f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(4)=()A. 10B. 2C. 0D. 4二、填空题(本大题共4小题,共20.0分)13.计算(2)×(3)=______.14.如图所示,图中的阴影部分可用集合U,A,B,C表示为______.15.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=______.16.已知函数f(x)=(t>0)的最大值为M,最小值为N,且M+N=4,则实数t的值为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=+的定义域为集合M.(1)求集合M;(2)若集合N={x|2a-1≤x≤a+1},且M∩N={2},求N.18.已知函数f(x)=(a∈R).(1)若f(x)为奇函数,求实数a的值;(2)当a=0时,判断函数f(x)的单调性,并用定义证明.19.已知四个函数f(x)=2x,g(x)=()x,h(x)=3x,p(x)=()x,若y=f(x),y=g(x)的图象如图所示.(1)请在如图坐标系中画出y=h(x),y=p(x)的图象,并根据这四个函数的图象抽象出指数函数具有哪些性质?(2)举出在实际情境能够抽象出指数函数的一个实例并说明理由.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图①;投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图②.(注:收益与投资额单位:万元)(Ⅰ)分别写出两种产品的一年收益与投资额的函数关系;(Ⅱ)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?21.已知函数f(x)是定义在R上的增函数,且满足f(x+y)=f(x)•f(y),且f(2)=.(1)求f(4)的值;(2)当x∈[,]时,f(kx2)<2f(2x-5)恒成立,求实数k的取值范围.22.对于区间[a,b](a<b),若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x),x∈[a,b]的值域是[a,b],则称区间[a,b]为函数f(x)的“保值”区间.(1)求函数y=x2的所有“保值”区间;(2)函数y=x2+m(m≠0)是否存在“保值”区间?若存在,求出m的取值范围;若不存在,说明理由.答案和解析1.【答案】D【解析】解:∵集合A={x∈N|-2<x<2}={0,1},∴集合A的真子集的个数是:22-1=3.故选:D.先求出集合A={0,1},由此能求出集合A的真子集的个数.本题考查集合的真子集的个数的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.2.【答案】D【解析】解:根据题意,依次分析选项:对于A,y=是奇函数但不是增函数,不符合题意;对于B,y=x-1,不是奇函数,不符合题意;对于C,y=-x2,为偶函数不是奇函数,不符合题意;对于D,y=2x是正比例函数,既是奇函数又是增函数,符合题意;故选:D.根据题意,依次分析选项中函数的奇偶性以及单调性,综合即可得答案.本题考查函数奇偶性、单调性的判定,关键是掌握常见函数的奇偶性、单调性,属于基础题.3.【答案】D【解析】解:f(2)=-2×2+3=-1,所以f[f(2)]=f(-1)=(-1)2+1=2.故选D.根据所给解析式先求f(2),再求f[f(2)].本题考查分段函数求值问题,属基础题,关键看清所给自变量的值所在范围.4.【答案】D【解析】解:∵a=40.9=21.8,b=80.48=21.44,c==21.5,∵y=2x为单调增函数,而1.8>1.5>1.44,∴a>c>b.故选:D.利用有理指数幂的运算性质将a,b,c均化为2x的形式,利用y=2x的单调性即可得答案.本题考查不等关系与不等式,考查有理数指数幂的化简求值,属于中档题.5.【答案】B【解析】解:∵函数f(x+1)=2x-3,f(m)=4由2x-3=4,得x=,∴m=x+1=.故选:B.由2x-3=4,得x=,再由m=x+1,能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.6.【答案】D【解析】解:当0<a<1时,函数f(x)=a x-,为减函数,当a>1时,函数f(x)=a x-,为增函数,且当x=-1时f(-1)=0,即函数恒经过点(-1,0),故选:D.先判断函数的单调性,再判断函数恒经过点(-1,0),问题得以解决.本题主要考查了函数的图象和性质,求出函数恒经过点是关键,属于基础题.7.【答案】D【解析】解:f(x)是(-∞,+∞)上的减函数,当a>0时,a<2a,f(a)>f(2a),当a≤0时,a≥2a,f(a)≤f(2a),故A错误;当a=0,则a2=a,则f(a2)=f(a),故B错误;当a=0,a2+a=a,则f(a2+a)=f(a),故C错误;由a2+1>a,则f(a2+1)<f(a).故选:D.采用排除法,根据a的取值范围,根据导数与函数单调性的关系,即可求得答案.本题考查导数与函数的单调性的关系,属于基础题.8.【答案】C【解析】解:根据函数的定义得:某地区玉米的亩产量与灌溉次数的关系不是函数关系,故选:C.根据函数的定义对各个选项分别判断即可.本题考查了函数的定义,考查对应关系,是一道基础题.9.【答案】A【解析】解:分别画出y=2017x,y=2018x,实数a,b满足等式2017a=2018b,可得:a>b>0,a<b<0,a=b=1.而0<a<b成立.故选:A.分别画出y=2017x,y=2018x,根据实数a,b满足等式2017a=2018b,即可得出.本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】解:由该厂5年来某种产品的总产量y与时间x(年)的函数图象,得:前三年的年产量逐步减少,故①错误,②正确;后两年均没有生产,故③错误,④正确.故选:B.利用该厂5年来某种产品的总产量y与时间x(年)的函数图象直接求解.本题考查命题真假的判断,考查该厂5年来某种产品的总产量y与时间x(年)的函数图象的性质等基础知识,考查数形结合思想,是基础题.11.【答案】D【解析】解:令g(x)=0得f(x)=m,作出y=f(x)的函数图象如图所示:由图象可知当m<0或m≥1时,f(x)=m只有一解.故选:D.作出f(x)的函数图象,根据图象判断m的值.本题考查了函数的零点与函数图象的关系,属于中档题.12.【答案】C【解析】解:∵f(x)是定义域为R的奇函数,满足f(1-x)=f(1+x),∴f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),∵f(1)=2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(0)+f(-1)+f(0)=0.故选:C.推导出f(2+x)=f(1-(x+1))=f(-x)=-f(x),f(x+4)=-f(x+2)=f(x),从而f(1)+f (2)+f(3)+f(4)=f(1)+f(0)+f(-1)+f(0),由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.13.【答案】1【解析】解:(2)×(3)===.故答案为:1.化带分数为假分数,再由有理指数幂的运算性质化简求值.本题考查有理指数幂的运算性质,是基础的计算题.14.【答案】(A∩B)∩(∁U C)【解析】解:如图所示,图中的阴影部分可用集合U,A,B,C表示为:(A∩B)∩(∁U C).故答案为:(A∩B)∩(∁U C).利用维恩图直接求解.本题考查集合的交集的求法,考查维恩图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.15.【答案】1【解析】解:由f(x)-g(x)=x3+x2+1,将所有x替换成-x,得f(-x)-g(-x)=-x3+x2+1,∵f(x),g(x)分别是定义在R上的偶函数和奇函数,∴f(x)=f(-x),g(-x)=-g(x),即f(x)+g(x)=-x3+x2+1,再令x=1,得f(1)+g(1)=1.故答案为:1.将原代数式中的x替换成-x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x=1即可.本题考查利用函数奇偶性求值,本题中也可以将原代数式中的x直接令其等于-1也可以得到计算结果,属于基础题.16.【答案】2【解析】解:由题意,f(x)==+t,显然函数g(x)=是奇函数,∵函数f(x)最大值为M,最小值为N,且M+N=4,∴M-t=-(N-t),即2t=M+N=4,∴t=2,故答案为:2.由题意f(x)=t+g(x),其中g(x)是奇函数,从而2t=4,即可求出实数t的值.本题考查函数的最大值、最小值,考查函数是奇偶性,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)要使函数f(x)=有意义,则需;解得-3<x≤2;∴函数f(x)的定义域M=(-3,2];(2)∵M∩N={2},且M=(-3,2];∴2∈N;∴ ;解得;∴ ,.【解析】(1)要使得函数f(x)有意义,则需满足,从而求出M=(-3,2];(2)根据M∩N={2},便可得出2∈N,从而得出2a-1=2,求出a即可得出集合N.考查函数定义域的概念及求法,指数函数的单调性,交集的概念,元素与集合的关系.18.【答案】解:(1)函数f(x)的定义域是R,且f(-x)==,由y=f(x)是奇函数,得对任意的x都有f(x)=-f(-x),故=-,得2x(a-1)=1-a,解得:a=1;(2)由a=0得:f(x)=1-,任取x1,x2∈R,设x1<x2,则f(x2)-f(x1)=-=,∵y=2x在R递增且x1<x2,∴ ->0,又(+1)(+1)>0,故f(x2)-f(x1)>0即f(x2)>f(x1),故f(x)在R递增.【解析】(1)根据函数的奇偶性的定义求出a的值即可;(2)根据函数的单调性的定义证明即可.本题考查了函数的奇偶性和函数的单调性问题,考查单调性的证明,是一道中档题.19.【答案】解:(1)画出y=h(x),y=p(x)的图象如图所示:4个函数都是y=a x(a>0,a≠1)的形式,它们的性质有:①定义域为R;②值域为(0,+∞);③都过定点(0,1);④当a>1时,函数在定义域内单调递增,0<a<1时,函数在定义域内单调递减;⑤a>1时,若x<0,则0<y<1,若x>0,则y>1.0<a<1时,若x>0,则0<y<1,若x<0,则y>1;⑥对于函数y=a x(a>0,a≠1),y=b x(b>0,b≠1),当a>b>1时,若x<0,则0<a x<b x<1;若x=0,则a x=b x=1;若x>0,则a x>b x>1.当0<a<b<1时,若x<0,则a x>b x>1;若x=0,则a x=b x=1;若x>0,则0<a x<b x <1.(2)举例:原来有一个细胞,细胞分裂的规则是细胞由一个分裂成2个,则经过x次分裂,细胞个数y,则y=2x,是一个指数函数.【解析】(1)根据指数函数的图象性质,得出结论.(2)举细胞分裂的例子,抽象出指数函数的一个实例.本题主要考查指数函数的性质,指数函数的应用,属于中档题.20.【答案】解:(Ⅰ)f(x)=k1x,g(x)=k2,∴f(1)==k1,g(1)=k2=,∴f(x)=x(x≥0),g(x)=(x≥0)(Ⅱ)设:投资债券类产品x万元,则股票类投资为20-x万元.y=f(x)+g(20-x)=+(0≤x≤20)令t=,则y==-(t-2)2+3所以当t=2,即x=16万元时,收益最大,y max=3万元.【解析】(Ⅰ)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(Ⅱ)由(Ⅰ)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x 万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.21.【答案】解:(1)令x=y=2,得:f(2+2)=f(2)•f(2),即f(4)═2(2)2f(2x-5)=f(4),f(2x-5)=f(2x-1)所以f(kx2)<2f(2x-5)化为:f(kx2)<f(2x-1),因为函数f(x)是定义在R上的增函数,所以kx2<2x-1在x∈[,]时恒成立,即k<在x∈[,]时恒成立,令y===-()2+1,x∈[,],∈[,],y有最小值为0.所以,k<0.【解析】(1)利用赋值法,x=y=2求解即可.(2)利用已知条件化简不等式为f(kx2)<f(2x-1),利用函数的单调性,分离变量,通过二次函数的性质求解闭区间上的最值即可.本题考查函数与方程的应用,函数的单调性以及二次函数的性质的应用,考查转化思想以及计算能力.22.【答案】解:(1)因为函数y=x2的值域是[0,+∞),且y=x2在[a,b]的值域是[a,b],所以[a,b]⊆[0,+∞),所以a≥0,从而函数y=x2在区间[a,b]上单调递增,或故有解得或又a<b,所以所以函数y=x2的“保值”区间为[0,1].…(3分)(2)若函数y=x2+m(m≠0)存在“保值”区间,则有:①若a<b≤0,此时函数y=x2+m在区间[a,b]上单调递减,所以消去m得a2-b2=b-a,整理得(a-b)(a+b+1)=0.因为a<b,所以a+b+1=0,即a=-b-1.又所以<.因为<,所以<.…(6分)②若b>a≥0,此时函数y=x2+m在区间[a,b]上单调递增,所以消去m得a2-b2=a-b,整理得(a-b)(a+b-1)=0.因为a<b,所以a+b-1=0,即b=1-a.又所以<.因为<,所以<.因为m≠0,所以<<.…(9分)综合①、②得,函数y=x2+m(m≠0)存在“保值”区间,此时m的取值范围是,,.…(10分)【解析】(1)由已知中保值”区间的定义,结合函数y=x2的值域是[0,+∞),我们可得[a,b]⊆[0,+∞),从而函数y=x2在区间[a,b]上单调递增,则,结合a<b即可得到函数y=x2的“保值”区间.(2)根据已知中保值”区间的定义,我们分函数y=x2+m在区间[a,b]上单调递减,和函数y=x2+m在区间[a,b]上单调递增,两种情况分类讨论,最后综合讨论结果,即可得到答案.本题考查的知识点是函数单调性,函数的值,其中正确理解新定义的含义,并根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为数学熟悉的数学模型是解答本题的关键.。