统计学第四章习题答案解析贾俊平
- 格式:doc
- 大小:128.62 KB
- 文档页数:8
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
《统计学》第四版 第四章练习题答案众数:M o =1O;中位数:中位数位置=n+1/2=5.5 , M e =10 ;平均数:(2) Q L 位置=n/4=2.5, Q L =4+7/2=5.5 ; Q u 位置=3n/4=7.5 , Q u =12(4) 4.2 和 M O =23。
将原始数据排序后,计算中位数的位置为:中位数位置=n+1/2=13,第13个位置上的数值为23,所以中位数为 M e =23(2)Q L 位置=n/4=6.25, Q L ==19 ; Q u 位置=3n/4=18.75,Q u =26.5茎 叶 频数 5 5 1 6 6 7 8 3 71 3 4 8 85(3)第一种排队方式: 离散程度大于第二种排队方式。
(4 )选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方 式。
_ Z X i4.4 ( 1)X8223/30=274.14.1 ( 1 ) 二X i X =n96.9,6 102' (X i-X ) _156.4 42n -1, 9由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
(1)从表中数据可以看出,年龄出现频数最多的是 19和23,故有个众数,即 M O =19(3)⑶平均数-A =600/25=24,标准差—(XLX)\ n —1210626.6525-1n(4) 偏态系数SK=1.08,峰态系数K=0.77(5) 分析:从众数、中位数和平均数来看,网民年龄在 23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数 1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
(1)茎叶图如下: 大于 4.3 —2'(X 一 X ) 4.080.714nn -1■ 8由于两种排队方式的平均数不同,所以用离散系数进行比较。
(2) X 二一^ =63/9=7, S = ■■n中位数位置=n+1/2=15.5 , M e=272+273/2=272.5(2) Q L位置=n/4=7.5, Q L==(258+261)/2=259.5 ; Q u 位置=3n/4=22.5 , Q u=(284+291)/2=287.5' (^-X ^ /3002-7 = 21.17 I n —1 \ 30—12100 +3000 +15004.5 (1)甲企业的平均成本=总成本/总产量=-2100 3000---- + ----- 15 20乙企业的平均成本=总成本/总产量=3255150015006255=18.293255 1500 1500 342____ + _____ + _____152030原因:尽管两个企业的单位成本相同, 但单位成本较低的产品在乙企业的产量中所占比重较 大,因此拉低了总平均成本。
第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:(1)(2)(3)(4)说明汽车销售分部的特征答:10名销售人员的在5月份销售的汽车数量较为集中。
4.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()l g 25l g ()1.3981115.64l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。
第四章 统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求:(1)计算汽车销售量的众数、中位数与平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics汽车销售数量 10 Missing0 Mean 9、60 Median 10、00Mode10 Std 、 Deviation 4、169 Percentiles25 6、25 50 10、00 75单位:周岁19 15 29 25 24 23 21 38 22 18 30 20 19 19 16 23 27 22 34 24 41 20 3117 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布与累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6、25,因此Q1=19,Q3位置=3×25/4=18、75,因此Q3=27,或者,由于25与27都只有一个,因此Q3也可等于25+0、75×2=26、5。
(3)计算平均数与标准差;Mean=24、00;Std、Deviation=6、652(4)计算偏态系数与峰态系数:Skewness=1、080;Kurtosis=0、773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6、652、呈右偏分布。
如需瞧清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4、3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图::一种就是所有颐客都进入一个等待队列:另—种就是顾客在三千业务窗口处列队3排等待。
第四章、参数估计1.简述评价估计量好坏的标准答:评价估计量好坏的标准主要有:无偏性、有效性和相合性。
设总体参数θ的估计量有1ˆθ和2ˆθ,如果()1ˆE θθ=,称1ˆθ是无偏估计量;如果1ˆθ和2ˆθ是无偏估计量,且()1ˆD θ小于()2ˆD θ,则1ˆθ比2ˆθ更有效;如果当样本容量n →∞,1ˆθθ→,则1ˆθ是相合估计量。
2.说明区间估计的基本原理答:总体参数的区间估计是在一定的置信水平下,根据样本统计量的抽样分布计算出用样本统计量加减抽样误差表示的估计区间,使该区间包含总体参数的概率为置信水平。
置信水平反映估计的可信度,而区间的长度反映估计的精确度。
3.解释置信水平为95%的置信区间的含义答:总体参数是固定的,未知的,置信区间是一个随机区间。
置信水平为95%的置信区间的含义是指,在相同条件下多次抽样下,在所有构造的置信区间里大约有95%包含总体参数的真值。
4.简述样本容量与置信水平、总体方差、允许误差的关系答:以估计总体均值时样本容量的确定公式为例:()22/22z n E ασ= 样本容量与置信水平成正比、与总体方差成正比、与允许误差成反比。
练习题:●1.解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25,(1)样本均值的抽样标准差σ5=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2Z 6×0.7906=1.5496。
●2.解:(1)已假定总体标准差为σ=15元,则样本均值的抽样标准误差为x σ15=2.1429(2)已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E=α/2Z 6×2.1429=4.2000。
(3)已知样本均值为x =120元,置信水平1-α=95%,得 α/2Z =1.96,这时总体均值的置信区间为±α/2x Z 0±4.2=124.2115.8 可知,如果样本均值为120元,总体均值95%的置信区间为(115.8,124.2)元。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第4章数据的概括性度量4.1考点归纳【知识框架】【考点提示】(1)集中趋势、离散趋势的度量指标,包括每个指标的含义、计算公式、特点、意义、适用范围(选择题、简答题、计算题考点);(2)众数、中位数和平均数三个指标的特点和应用场合,偏态分布下三个指标的关系(选择题、简答题、计算题考点);(3)分布形状的测度指标:偏态系数和峰态系数的数值含义(选择题、简答题考点)。
(4)标准分数的计算公式及应用(选择题、简答题、计算题考点);(5)经验法则、切比雪夫不等式的具体应用(选择题考点)。
【核心考点】考点一:集中趋势的度量表4-1集中趋势度量指标【注意】不同偏态程度的分布中集中趋势度量指标的关系:①对称分布中,众数、中位数和平均数相等;②左偏分布中,数据存在极小值,拉动平均数向极小值一方靠,而众数和中位数不受极值的影响,有_x<M e<M o;③右偏分布中,数据存在极大值,必然拉动平均数向极大值一方靠,因此M o<M e<_x。
【知识拓展】不同的教材分位数的计算公式不同,除了表中的计算公式,一种比较精确的计算公式:下四分位数Q L的位置=(n+1)/4,上四分位数Q U的位置=(3n+1)/4。
【真题精选】假定标志值所对应的权数都缩小1/10,则算术平均数()。
[浙江财经大学2019研]A.不变B.无法判断C.缩小百分之一D.扩大十倍【答案】A【解析】假设标志值为x,其对应的权数为f,则算术平均数为_x=∑xf/∑f;若各权数都缩小1/10,则新的算术平均数为110110xf xf x x f f '===∑∑∑∑考点二:离散程度的度量数据的离散程度反映了各变量值远离其中心值的程度,离散程度越小,代表性就越好。
表4-2离散程度的度量指标【注意】①表中方差和标准差的计算公式均为样本数据的方差和标准差。
若为总体数据,则分母应为n。
②标准差系数,也称变异系数或离散系数。
③表中平均差、样本方差、样本标准差仅给出了未分组数据的计算公式,分组数据的计算公式实质是等于未分组数据的计算公式,会运用即可。
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
第四章 答案1.A2.B3.D4.A5.C6.B7.B8.A9.C 10.C11.B 12.B 13.A 14.D 15.A 16.D 17.B 18.D 19.D 20.C21.D 22.D 23.A 24.A 25.A 二、填空题1.在比较两个测试指标差异大小时,用 离散系数 统计量度量较合适。
差异性最大的技术指标是 传球偏差 。
2. 某组数据分布的偏度系数为正时,该数据的众数、中位数、均值的大小关系是_ 众数<中位数<均值 。
3. 对某班级所授英语课程进行期末考试,并对100个学生的成绩进行分析,成绩均值为75,标准差为5。
那么有_95____名学生的考试成绩在65-85之间。
4. 一家公司在招收职员时,首先要通过两项能力测试。
在A 项测试中,其平均分数是100分,标准差是15分;在B 项测试中,其平均分数是400分,标准差是50分。
一位应试者在A 项测试中得了115分,在B 项测试中得了425分,与平均分相比,该位应试者更为理想的能力测试是____A______。
5. 对分类数据进行集中趋势侧度,其适用的测度值是__众数____。
6.对比率的数据求其平均,适用的测度值是__几何平均数__________.7.众数、中位数、上四分位数、下四分位数、总体均值的符号可分别表示为μL u e Q Q M M 0。
8. 数据分布的偏斜程度较大时,用来反映数据集中趋势的测度值应该选择__众数或中位数。
9. 总体方差、样本方差、总体标准差、样本标准差的符号可以分别表示为s s σσ22。
10. A 、B 两个班英语期末成绩的标准差分别为8,9;A 班的平均成绩为70,B 班的平均成绩为72,请问成绩差异较大的班是_B____。
11. 一项关于大学生体重状况的研究发现,男生的平均体重为60kg,标准差为5kg ;女生的平均体重为50kg,标准差为5kg 。
请问男生的体重差异_ 小于____女生的体重差异(大于、小于、等于),男生中有_ 68%___%的人体重在55kg 到65kg 之间。
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(贾俊平第八版)课后思考题及答案第一章:统计学基本概念和方法思考题1:什么是统计学?统计学的研究对象是什么?统计学是从观察数据的现象和规律出发,运用数理统计方法进行概括、分析和推断的科学。
统计学研究的对象是数据的概括和整体行为特征,即基本统计量和统计分布。
答案:统计学是一门应用数学的学科,其研究范围包括数据的收集、整理、描述、分析和推断等方面。
统计学通过运用数理统计方法,帮助我们从观察到的数据中发现其中的规律和趋势,从而对现象和问题作出合理的判断和推断。
统计学的研究对象主要包括两个方面。
一方面,统计学关注数据的概括和整体行为特征,例如对数据集的中心趋势(平均数、中位数)和离散程度(标准差、方差)进行描述和分析,这些统计量可以帮助我们对数据进行概括和比较。
另一方面,统计学研究数据的统计分布,即数据的分布形状和特征,例如正态分布、偏态分布等,这些分布有助于我们根据数据的特点进行进一步的推断和推测。
第二章:统计学的数据描述思考题2:试举例说明数据分为哪些类型?数据分为定性数据和定量数据两种类型。
答案:数据可以分为定性数据和定量数据两种类型。
定性数据是指不能用数字表示的数据,其特征主要是描述性的,例如性别、喜好等。
定性数据通常采用文字或符号进行记录和表达。
定量数据是指可以用数字表示的数据,其特征主要是数量性的,例如身高、体重等。
定量数据可以进行数学运算和统计分析。
举例来说,一个学生调查问卷中的“性别”以及“对某个电影的评价(好、中、差)”是属于定性数据;而问卷中的“年龄”和“观看该电影的次数”则是属于定量数据。
第三章:概率与概率分布思考题3:什么是概率?请以一个例子来解释。
概率是指某个事件发生的可能性。
它在统计学中用于描述随机现象的规律性和不确定性。
答案:概率是描述某个事件发生的可能性的数值。
概率可以从0到1之间的任何一个数值,其中0表示不可能发生,1表示肯定会发生。
举个例子来说明,假设有一个标准的骰子,每个面上有1到6的数字。
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别姆鞘中褪荩嵌允挛锝蟹掷嗟慕峁荼硐治啾穑梦淖掷幢硎觯唬ǘㄐ允荩┧承蚴荩褐荒芄橛谀骋挥行蚶啾鸬姆鞘中褪荨K彩怯欣啾鸬模庑├啾鹗怯行虻摹#渴荩┦敌褪荩喊词殖叨炔饬康墓鄄熘担浣峁硐治咛宓氖怠?统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同 1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
1.8 统计应用实例人口普查,商场的名意调查等。
统计学课后习题答案-(第四版)-贾俊平《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑n x x i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12(3)2.494.1561)(2==-=∑-n i s x x(4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77 (5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1)茎叶图如下:(2)==∑n x x i63/9=7,714.0808.41)(2==-=∑-n i s x x(3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 21>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑n x x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5 (2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5 (3)17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.50单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数: ()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客。
得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟。
第二种排队方式的等待时间(单位:分钟)如下:5.5 6.6 6.7 6.8 7.1 7.3 7.4 7.8 7.8要求:(1)画出第二种排队方式等待时间的茎叶图。
第二种排队方式的等待时间(单位:分钟) Stem-and-Leaf PlotFrequency Stem & Leaf1.00 Extremes (=<5.5)3.00 6 . 6783.00 7 . 1342.00 7 . 88Stem width: 1.00Each leaf: 1 case(s)(2)计算第二种排队时间的平均数和标准差。
Mean7Std. Deviation0.714143Variance0.51(3)比较两种排队方式等待时间的离散程度。
第二种排队方式的离散程度小。
(4)如果让你选择一种排队方式,你会选择哪—种?试说明理由。
选择第二种,均值小,离散程度小。
4.4 某百货公司6月份各天的销售额数据如下:单位:万元257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295要求:(1)计算该百货公司日销售额的平均数和中位数。
(2)按定义公式计算四分位数。
(3)计算日销售额的标准差。
解:Statistics30Missing 0 Mean 274.1000Median 272.5000Std. Deviation 21.17472Percentiles 25 260.250050 272.500075 291.2500的产品多,乙的低成本的产品多。
(1)计算120家企业利润额的平均数和标准差。
(2)计算分布的偏态系数和峰态系数。
解:Statistics120Missing 0Mean 426.6667Std. Deviation 116.48445Skewness 0.208Std. Error of Skewness 0.221Kurtosis -0.625Std. Error of Kurtosis 0.4384.7 为研究少年儿童的成长发育状况,某研究所的一位调查人员在某城市抽取100名7~17岁的少年儿童作为样本,另一位调查人员则抽取了1 000名7~17岁的少年儿童作为样本。
请回答下面的问题,并解释其原因。
(1)两位调查人员所得到的样本的平均身高是否相同?如果不同,哪组样本的平均身高较大?(2)两位调查人员所得到的样本的标准差是否相同?如果不同,哪组样本的标准差较大?(3)两位调查人员得到这l 100名少年儿童身高的最高者或最低者的机会是否相同?如果不同,哪位调查研究人员的机会较大?解:(1)不一定相同,无法判断哪一个更高,但可以判断,样本量大的更接近于总体平均身高。
(2)不一定相同,样本量少的标准差大的可能性大。
(3)机会不相同,样本量大的得到最高者和最低者的身高的机会大。
4.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg。
请回答下面的问题:(1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。
(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。
都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。
(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。
(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间? 计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。
4.9 一家公司在招收职员时,首先要通过两项能力测试。
在A项测试中,其平均分数是100分,标准差是15分;在B项测试中,其平均分数是400分,标准差是50分。
一位应试者在A项测试中得了115分,在B项测试中得了425分。
与平均分数相比,该应试者哪一项测试更为理想?解:应用标准分数来考虑问题,该应试者标准分数高的测试理想。
Z A=x xs-=11510015-=1;Z B=x xs-=42540050-=0.5因此,A项测试结果理想。
4.10 一条产品生产线平均每天的产量为3 700件,标准差为50件。
如果某一天的产量低于或高于平均产量,并落人士2个标准差的范围之外,就认为该生产线“失去控制”。
下面(1)如果比较成年组和幼儿组的身高差异,你会采用什么样的统计量?为什么?均值不相等,用离散系数衡量身高差异。
(2)4.12 一种产品需要人工组装,现有三种可供选择的组装方法。
为检验哪种方法更好,随机抽取15个工人,让他们分别用三种方法组装。
下面是15个工人分别用三种方法在相同的时间内组装的产品数量:要求:(1)你准备采用什么方法来评价组装方法的优劣?均值不相等,用离散系数衡量身高差异。
(2)如果让你选择一种方法,你会作出怎样的选择?试说明理由。
解:对比均值和离散系数的方法,选择均值大,离散程度小的。
方法A方法B方法C平均165.6平均128.7333333平均125.5333333标准差2.131397932标准差1.751190072标准差2.774029217离散系数: V A=0.01287076,V B= 0.013603237,V C= 0.022097949均值A方法最大,同时A的离散系数也最小,因此选择A方法。
4.13 在金融证券领域,一项投资的预期收益率的变化通常用该项投资的风险来衡量。
预期收益率的变化越小,投资风险越低;预期收益率的变化越大,投资风险就越高。
下面的两个直方图,分别反映了200种商业类股票和200种高科技类股票的收益率分布。
在股票市场上,高收益率往往伴随着高风险。
但投资于哪类股票,往往与投资者的类型有一定关系。
(1)你认为该用什么样的统计量来反映投资的风险?标准差或者离散系数。
(2)如果选择风险小的股票进行投资,应该选择商业类股票还是高科技类股票?选择离散系数小的股票,则选择商业股票。
(3)如果进行股票投资,你会选择商业类股票还是高科技类股票?考虑高收益,则选择高科技股票;考虑风险,则选择商业股票。