坐标系与参数方程二轮复习专题练习(四)含答案新人教版高中数学名师一点通
- 格式:doc
- 大小:199.50 KB
- 文档页数:7
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.若θ∈[0,2 ],则椭圆x 2+2y 2-22x cos θ+4y sin θ=0的中心的轨迹是( )(汇编上海理,7)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.直线2,34x lt y t =-+⎧⎨=+⎩(t 为参数,l 为常数)恒过定点 ▲ . 3.已知点(m ,n)在椭圆8x 2+3y 2=24上,则2m +4的取值范围是____________. 评卷人得分 三、解答题4.(选修4—4:坐标系与参数方程)已知曲线C 的参数方程为2cos 2sin x t y t=⎧⎨=⎩(t 为参数),曲线C 在点(13),处的切线为l .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.5.选修4—4:坐标系与参数方程已知曲线1C 的极坐标方程为cos 13πρθ⎛⎫-=- ⎪⎝⎭,曲线2C 的极坐标方程为22cos 4πρθ⎛⎫=- ⎪⎝⎭,判断两曲线的位置关系.6.已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l 的参数方程为3,1x t y t ⎧=-⎪⎨=+⎪⎩(t 为参数,t ∈R).试在曲线C 上求一点M ,使它到直线l 的距离最大.7.在直角坐标系xoy 中,直线l 的参数方程为23,2252x t y t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)。
在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=。
(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为(3,5),求||||PA PB +。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.在极坐标系中,圆心坐标是),(πa (0>a ),半径为a 的圆的极坐标方程是…( )A .θρcos 2a -=(232πθπ<≤). B .θρcos a =(πθ<≤0). C .θρsin 2a -=(232πθπ<≤). D .θρsin a =(πθ<≤0).第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.在平面直角坐标系xoy 中,以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点(1,3)-化为极坐标为_______________.3.(理)已知两曲线的参数方程分别为5cos sin x y θθ⎧=⎪⎨=⎪⎩(0≤θ <π)和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,则它们的交点坐标为 . (文)若(02x ∈π),,则函数sin cos y x x x =-的单调递增区间是 . 评卷人得分 三、解答题4.已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. (汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—4;坐标系与参数方程5.(理)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧ x =2cos α, y =2+2sin α.(α为参数),M 是C 1上的动点,P 点满足OM OP 2=,P 点的轨迹为曲线C 2.(Ⅰ)求C 2的参数方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |值.(本题满分14分) (文)设.ln 2)(x x k kx x f --=(Ⅰ)若0)2(='f ,求过点(2,)2(f )的直线方程;(Ⅱ)若)(x f 在其定义域内为单调增函数,求k 的取值范围.6.将参数方程1(e e )cos 21(e e )sin 2t t t t x y θθ--⎧=+⎪⎨⎪=-⎩,,(θ为参数,t 为常数)化为普通方程(结果可保留e ).7.已知(,)P x y 是椭圆2214x y +=上的点,求2M x y =+的取值范围.8.已知圆锥曲线C 的极坐标方程为θθρ2cos 1sin 8+=,以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线C 的直角坐标方程,并求焦点到准线的距离。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )(汇编上海理,14)A .⎪⎩⎪⎨⎧==-2121t y t xB .⎪⎩⎪⎨⎧==||1||t y t xC .⎩⎨⎧==t y tx sec cosD .⎩⎨⎧==ty tx cot tan第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知过曲线3cos,(4sin x y θθθ=⎧⎨=⎩为参数,0)θπ≤≤上一点P 与原点O 的直线OP 的倾斜角为4π,则点P 的极坐标为 . 3.在直角坐标系xOy 中,椭圆C 的参数方程为cos sin x a y b θθ=⎧⎨=⎩()0a b ϕ>>为参数,.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为2sin 42m πρθ⎛⎫+= ⎪⎝⎭()m 为非零常数与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为___________.(汇编年高考湖北卷(理))评卷人得分三、解答题4.(理)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α, y =2+2sin α.(α为参数),M 是C 1上的动点,P 点满足OM OP 2=,P 点的轨迹为曲线C 2. (Ⅰ)求C 2的参数方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |值.(本题满分14分) (文)设.ln 2)(x x kkx x f --=(Ⅰ)若0)2(='f ,求过点(2,)2(f )的直线方程; (Ⅱ)若)(x f 在其定义域内为单调增函数,求k 的取值范围.5.求经过极点9(0,0),(6,),(62,)24O A B ππ三点的圆的极坐标方程.6.1O 圆和2O 圆的极坐标方程分别为4cos 4sin ρθρθ==-,. (1)把1O 圆和2O 圆的极坐标方程化为直角坐标方程; (2)求经过1O 圆,2O 圆交点的直线的直角坐标方程.7.已知某圆的极坐标方程为:ρ2-42ρcos(θ-4π)+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.8.已知动圆P 过点1(0,)4F 且与直线14y =-相切. (1)求点P 的轨迹C 的方程;(2)过点F 作一条直线交轨迹C 于,A B 两点,轨迹C 在,A B 两点处的切线相交于点N ,M 为线段AB 的中点,求证:MN x ⊥轴. (江苏省徐州市汇编届高三第一次调研考试)(本小题满分10分)[来源:Z§xx§]9.已知直线l 的参数方程:12x t y t=⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:)4sin(22πθρ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;O F xy··P 第22题(2)判断直线l和圆C的位置关系.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.ABC解析:D解析:由已知xy=1可知x、y同号且不为零,而A、B、C选项中尽管都满足xy=1,但x、y的取值范围与已知不同.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.;3.6 3评卷人得分三、解答题4.5.6.7.解:(1)x 2+y 2-4x -4y +6=0;22cos 22sin x y αα⎧=+⎪⎨=+⎪⎩6分(2)x +y =4+2sin (4πα+) 最大值6,最小值 2 4分 8.9.消去参数t ,得直线l 的普通方程为12+=x y …………………………………2分)4(sin 22πθρ+=即)cos (sin 2θθρ+=,两边同乘以ρ得)cos sin (22θρθρρ+=,2)1()1(22=-+-x x …………………………………6分 (2)圆心C 到直线l 的距离255212|112|22<=++-=d , 所以直线l和⊙C相交. …………………………………10分。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x 的两个焦点坐标是( ) A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1)D .(7,-1),(-1,-1)(汇编全国理,7)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.已知过曲线3cos ,(4sin x y θθθ=⎧⎨=⎩为参数,0)θπ≤≤上一点P 与原点O 的直线OP 的倾斜角为4π,则点P 的极坐标为 . 3.曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.(汇编上海理,8) 评卷人得分 三、解答题4.已知曲线C 1的参数方程为45cos 55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). (汇编年高考新课标1(理))选修4—4:坐标系与参数方程5.在平面直角坐标系xoy 中,判断曲线C:为参数)θθθ(s in c os 2⎩⎨⎧==y x 与直线⎩⎨⎧-=+=ty t x l 121:(t 为参数)是否有公共点,并证明你的结论6.已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=. ⑴将直线l 的极坐标方程化为直角坐标方程;⑵设点P 在曲线C 上,求P 点到直线l 距离的最小值.7.求曲线C 1:⎩⎨⎧x =2t 2+1,y =2t t 2+1.被直线l :y =x -12所截得的线段长.8.若两条曲线的极坐标方程分别为1=ρ与⎪⎭⎫ ⎝⎛+=3cos 2πθρ,它们相交于B A ,两点,求线段AB 的长.9.在平面直角坐标系xOy 中,动圆2228cos 6sin 7cos 80x y x y θθθ+--++=(q ÎR )的圆心为00(,)P x y ,求002x y -的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.AC解析:B解析:可得a =3,b =5,c =4,椭圆在新坐标系中的焦点坐标为(0,±4),在原坐标系中的焦点坐标为(3,3),(3,-5),故选B.评述:本题重点考查椭圆的参数方程、坐标轴的平移等基本知识点,考查数形结合的能力.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.;3.(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x+1)该曲线为抛物线y2=4x 分别向左,向上平移一个单位得来.解析:(0,1)解析:将参数方程化为普通方程:(y -1)2=4(x +1)该曲线为抛物线y 2=4x 分别向左,向上平移一个单位得来. 评卷人得分 三、解答题4.将45cos 55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=, 即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得, 28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=;(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π.5.6.解:⑴2120x y --= ------4分⑵设P (3cos ,2sin )θθ, ∴3cos 4sin 125d θθ--=55cos()125θϕ=+-(其中,34cos ,sin )55ϕϕ== 当cos()1θϕ+=时,m i n 755d =,∴P 点到直线l 的距离的最小值为755。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.若θ∈[0,2 ],则椭圆x 2+2y 2-22x cos θ+4y sin θ=0的中心的轨迹是( )(汇编上海理,7)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.把参数方程⎩⎨⎧+==1cos sin ααy x (α是参数)化为普通方程,结果是 .(汇编上海,15)3.若直线3x+4y+m=0与圆 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞(福建卷14)评卷人得分 三、解答题4.已知直线l 的极坐标方程是cos sin 10ρθρθ+-=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,在曲线1cos :sin x C y θθθ=-+⎧⎨=⎩(为参数)上求一点,使它到直线l 的距离最小,并求出该点坐标和最小距离.5.在平面直角坐标系xoy 中,椭圆C 的参数方程为⎩⎨⎧==θθsin cos 3y x ,其中θ为参数.以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为63)3cos(2=+πθρ.求椭圆C 上的点到直线l 距离的最大值和最小值.6.已知12O O 和的极坐标方程分别是2cos 2sin a ρθρθ==和(a 是常数).(1)分别将两个圆的极坐标方程化为直角坐标方程;(2)若两个圆的圆心距为5,a 求的值。
7.已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=. ⑴将直线l 的极坐标方程化为直角坐标方程;⑵设点P 在曲线C 上,求P 点到直线l 距离的最小值.8.已知圆M 的极坐标方程为242cos()604πρρθ--+=,求ρ的最大值9.在平面直角坐标系xOy 中,已知点(1 2)A -,在曲线22 2 x pt y pt ⎧=⎪⎨=⎪⎩,(t 为参数,p 为正常数),求p 的值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.C解析:D解析:把已知方程化为标准方程,得2)cos 2(2θ-x +(y +sin θ)2=1. ∴椭圆中心的坐标是(2cos θ,-sin θ).其轨迹方程是⎩⎨⎧-==θθsin cos 2y x θ∈[0,2π]. 即22x +y 2=1(0≤x ≤2,-1≤y ≤0). 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.x2+(y -1)2=13. 评卷人得分 三、解答题4.5.解:直线l 的普通方程为:0633=--y x ,设椭圆C 上的点到直线l 距离为d .263)4sin(62|63sin 3cos 3|+-=--=πθθθd ∴当1)4sin(=-πθ时,62m a x =d ,当1)4s in(-=-πθ时,6m i n =d . 6. 7.解:⑴2120x y --= ------4分 ⑵设P (3cos ,2sin )θθ, ∴3cos 4sin 125d θθ--=55cos()125θϕ=+-(其中,34cos ,sin )55ϕϕ== 当cos()1θϕ+=时,m i n 755d =,∴P 点到直线l 的距离的最小值为755。
2017届高三数学二轮复习坐标系与参数方程课时巩固过关练理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届高三数学二轮复习坐标系与参数方程课时巩固过关练理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届高三数学二轮复习坐标系与参数方程课时巩固过关练理新人教版的全部内容。
课时巩固过关练二十一坐标系与参数方程(建议用时:30分钟)1.(2016·全国卷Ⅱ)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25。
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程.(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l 的斜率.【解析】(1)整理圆的方程得x2+y2+12x+11=0,由可知圆C的极坐标方程为ρ2+12ρcosθ+11=0.(2)由题意可得直线过原点且斜率存在.记直线的斜率为k,则直线的方程为kx-y=0,由垂径定理及点到直线距离公式知:=,即=,整理得k2=,则k=±.【加固训练】(2016·合肥二模)在直角坐标系xOy中,曲线C:(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m.(1)若m=0,判断直线l与曲线C的位置关系。
(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围。
【解析】(1)曲线C的直角坐标方程为:(x—1)2+(y-1)2=2,是一个圆;直线l的直角坐标方程为:x+y=0,圆心C到直线l的距离d===r,所以直线l与圆C相切.(2)由已知可得:圆心C到直线l的距离d=≤,解得-1≤m≤5.2。
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一、选择题
1.直线l的参数方程是
x=1+2t
()
y=2-t
t R
⎧
∈
⎨
⎩
,则l的方向向量是d可以是【答】
(C)
(A)(1,2) (B)(2,1) (C)(-2,1) (D)(1,-2)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人得分
二、填空题
2.在直角坐标系xOy中,椭圆C的参数方程为
cos
sin
x a
y b
θ
θ
=
⎧
⎨
=
⎩
()0
a b
ϕ>>
为参数,.
在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x 的两个焦点坐标是( )A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1)D .(7,-1),(-1,-1)(汇编全国理,7)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知曲线C 的极坐标方程是4cos ρθ=,那么它的直角坐标方程是 ▲ .3. 已知椭圆的参数方程为4cos ,5sin ,x y θθ=⎧⎨=⎩(R θ∈),则该椭圆的焦距为 . 评卷人得分三、解答题4.(选修4—4:坐标系与参数方程)已知曲线C 的参数方程为2cos 2sin x t y t=⎧⎨=⎩(t 为参数),曲线C 在点(13),处的切线为l .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.5.在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.(1)求点P 的轨迹方程;(2)设R 为l 上任意一点,试求RP 的最小值.6.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为(2,)4π,直线的极坐标方程为cos()4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))坐标系与参数方程:7.在平面直角坐标系xOy 中,已知(0 1)A ,,(0 1)B -,,( 0)C t ,,()3 0D t,,其中0t ≠.设直线AC 与 BD 的交点为P ,求动点P 的轨迹的参数方程(以t 为参数)及普通方程.8.已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 1:cos()224ρθπ+=与曲线C 2:24,4x t y t ⎧=⎨=⎩(t ∈R )交于A 、B 两点.求证:OA ⊥OB .9.若两条曲线的极坐标方程分别为1=ρ与⎪⎭⎫ ⎝⎛+=3cos 2πθρ,它们相交于B A ,两点,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.AC 解析:B解析:可得a =3,b =5,c =4,椭圆在新坐标系中的焦点坐标为(0,±4),在原坐标系中的焦点坐标为(3,3),(3,-5),故选B.评述:本题重点考查椭圆的参数方程、坐标轴的平移等基本知识点,考查数形结合的能力.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.; 3.理:6; 评卷人得分三、解答题4. 解:由题意,得曲线C :224x y +=,∴切线为l 的斜率33k =-, ∴切线为l 的方程为:33(1)3y x -=--,即340x y +-=, ∴切线为l的极坐标方程:s in ()26πρθ+=.…………………………………………………………… 10分 5.(1)θρc os 3=;(2) 1min =RP . 6.解:(Ⅰ)由点(2,)4A π在直线cos()4a πρθ-=上,可得2a =所以直线的方程可化为cos sin 2ρθρθ+= 从而直线的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+= 所以圆心为(1,0),半径1r = 以为圆心到直线的距离212d =<,所以直线与圆相交 7.直线AC 的方程为1x y t +=,①直线BD 的方程为13x y t-=,② ………2分由①②解得,动点P 的轨迹的参数方程为2226 33 3t x t t y t ⎧=⎪+⎨-⎪=+⎩,(t 为参数,且0t ≠), ………6分将263t x t =+平方得222236(3)t x t =+, ③ 将2233t y t -=+平方得()()2222233t y t-=+, ④ ………8分由③④得,221(0)3x y x +=≠. ………10分(注:普通方程由①②直接消参可得.漏写“0x ≠”扣1分.)8.曲线1C 的直角坐标方程4x y -=,曲线2C 的直角坐标方程是抛物线24y x =,…4分设11(,)A x y ,22(,)B x y ,将这两个方程联立,消去x ,得212416016y y y y --=⇒=-,421=+y y .……………………………………6分016)(42)4)(4(212121212121=+++=+++=+∴y y y y y y y y y y x x .…………8分∴0OA OB ⋅=,∴OB OA ⊥.………………………………………………………10分9.选修4-4(坐标系与参数方程)解:由1ρ=得221x y +=, ………………………………………………2分又22cos()cos 3sin ,cos 3sin 3πρθθθρρθρθ=+=-∴=-2230x y x y ∴+-+=, (4)分由2222130x y x y x y ⎧+=⎪⎨+-+=⎪⎩得13(1,0),(,)22A B --, …………………………… 8分 221310322AB ⎛⎫⎛⎫∴=+++= ⎪ ⎪ ⎪⎝⎭⎝⎭. ……………………………………………………10分。
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.参数方程⎩⎨⎧=-=θθθ2sin sin cos y x (θ为参数)的普通方程是_______.)11(12≤≤--=y y x ;3.在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++= 相切,求实数a 的值。
评卷人得分 三、解答题4.已知曲线:C θθsin 3cos 3{==y x ,直线:l 31)s in 3c os 2=-θθρ(. (1)将直线l 的极坐标方程化为直角坐标方程;(2)设点P 在曲线C 上,求P 点到直线l 的距离的最小值.(本小题满分13分)5.选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为22cos ,()2sin x y a a a =+⎧⎨=⎩为参数,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求:(1)圆的直角坐标方程;(2)圆的极坐标方程.6.已知圆C 的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.7.在平面直角坐标系xoy中,求圆C 的参数方程为1cos (sin x r y r θθθ=-+⎧⎨=⎩为参数r>0),以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()2 2.4πρθ+=若直线l 与圆C 相切,求r 的值。
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为
( ) A .=0()cos=2R θρρ∈和 B .=()cos=22R π
θρρ∈和
C .=()cos=12R πθρρ∈和
D .=0()cos=1R θρρ∈和(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题。