VIMS2002 Internat ional Symposium
- 格式:pdf
- 大小:276.00 KB
- 文档页数:6
vim的配置⽂件及常⽤的快捷键⼀些最简单的配置,即在.vimrc中可以写⼊的配置:⾸先,说明⼀点,在.vimrc⽂件中,可以⽤“ 把⼀⾏的配置注销掉。
set nocompatible “关闭 vi 兼容模式;其中 compatilble 英⽂意思就是兼容set nobackup “覆盖⽂件时,不备份;其中 backup 英⽂意思就是备份的意思syntax on “ ⾃动语法⾼亮; syntax表⽰语法的意思;set number “ 显⽰⾏号;set cursorline ” 突显当前的⾏;其中cursor 英语就是光标的意思(在打开状态栏的前提下有作⽤);set ruler “ 打开状态栏标尺;set tabstop=8 “ 表⽰tab键长度为8;set smartindent “set smartindent :为C程序提供⾃动缩进set cindent “ 可以⾃动缩进;其中 incent 表⽰缩进的意思;以上两⾏都是编程⽤的c⾃动缩进1.设置(软)制表符宽度为4set tabstop=4set softtabstop=42.设置缩进的空格数为4set shiftwidth=43.设置⾃动缩进:即每⾏的缩进值与上⼀⾏相等;使⽤ noautoindent 取消设置:set autoindent4.使⽤ C/C++ 语⾔的⾃动缩进⽅式set cindent5.设置C/C++语⾔的具体缩进⽅式(以我的windows风格为例):set cinoptions={0,1s,t0,n-2,p2s,(03s,=.5s,>1s,=1s,:1s6.显⽰⾏号set nu7.显⽰标尺set ruler8.将搜索内容反⽩set hlsearch9.可以删除任意值set backspace=2⼀些简单的快捷键说明:vimtutor 是⼀个很好的 vim 学习⽂档,在命令⾏直接输⼊ vimtutor 即可。
⽤ A 在⼀⾏的末尾添加;删除相关的按键:x删除光标处的⼀个字母;⼀个简短的动作列表:dw - 从当前光标当前位置直到下⼀个单词起始处(包括与下⼀单词间的空格),也可以为d2w,d3w;de - 与上⾯相同,但是(不包括与下⼀个单词间的空格),也可以d2e,d3w;d$ - 删除从当前光标当前位置直到当前⾏末。
手把手教你把Vim改装成一个IDE编程环境(图文)Email: lazy.fox.wu#Homepage: /wooinLinux下编程一直被诟病的一点是: 没有一个好用的IDE, 但是听说Linux牛人, 黑客之类的也都不用IDE. 但是对我等从Windows平台转移过来的Coder来说, 一个好用的IDE是何等的重要啊, 估计很多人就是卡在这个门槛上了, "工欲善其事, 必先利其器"嘛, 我想如果有一个很好用的IDE, 那些Linux牛人也会欢迎的. 这都是劳动人民的美好愿望罢了, 我今天教大家把gvim改装成一个简易IDE, 说它"简易"是界面上看起来"简易", 但功能绝对不比一个好的IDE差, 该有的功能都有, 不该有的功能也有, 你就自己没事偷着乐吧, 下面我开始介绍今天的工作了.本文会教你:1. 中文帮助手册的安装2. vim编程常用命令3. 语法高亮4. 在程序中跳来跳去: Ctags 的使用5. 教你高效地浏览源码-- 插件: TagList6. 文件浏览器和窗口管理器-- 插件: WinManager7. Cscope 的使用8. QuickFix 窗口9. 快速浏览和操作Buffer -- 插件: MiniBufExplorer10. c/h文件间相互切换-- 插件: A11. 在工程中查找-- 插件: Grep12. 高亮的书签-- 插件: VisualMark13. 自动补全14. 加速你的补全-- 插件: SuperTab本文不会教你:1. 如何使用vim. 本文不会从零开始教你如何使用vim, 如果你是第一次接触vim,建议你先看看其他的vim入门的教程, 或者在shell下输入命令: vimtutor,这是一个简单的入门教程.2. 编程技巧.3. vim脚本的编写.我的工作环境是: Fedora Core 5gvim是自己编译的7.0, 如果你还没有安装gvim, 请看我的这篇文章<在Redhat Linux 9中编译和配置gvim 7.0>由于本人一直从事C语言工作, 所以下面这些例子都是在C语言程序中演示的, 其他语言的没有试过, 如果有朋友在别的语言下有问题, 可以跟我讨论一些, 我会尽量帮助你们的.本文用的示范源码是vim7.1的源码, 可以在下载到源码包:vim-7.1.tar.bz2, 你也可以不用下载, 就用你自己程序的源码, 关系不大的. 我把源码解压在我的home目录下: ~/vim71下面对文中的一些名字定义一下:1. 文中用到的一些用<>括起来的符号比如<C-T>, <C-S-A>, 之类的, 你可以用下面的命令看看解释::help keycodes2. 文中说的一些路径, 比如:~/.vim/plugin~/.vim/doc~/.vim/syntax如果你没有, 就自己创建.3. 文中说到的.vimrc文件都是指~/.vimrc先给大家看张图片, 我是vim的界面, 解解馋先^_^vim自带的帮助手册是英文的, 对平时编程的人来说没有多大阅读困难, 何况还有"星级译王"呢, 可偏偏有一帮人将其翻译成了中文, 可偏偏我又挡不住诱惑将它安装了, 唉.......又痛失一个学习英文的好机会, 下不为例.大家看看我的中文帮助界面吧:建议先看看帮助手册中的下面章节, 其中有关tags文件的部分你可以先跳过, 在后面的章节中会讲到, 到时候你在回来看看, 就觉得很简单了::help usr_29:help usr_30写程序没有语法高亮将是一件多么痛苦的事情啊, 幸亏vim的作者是个程序员(如果不是, 那可NB大了), 提供了语法高亮功能, 在上面的图片中大家也可以看到那些注释, 关键字, 字符串等, 都用不同颜色显示出来了, 要做到这样, 首先要在你的~/.vimrc 文件中增加下面几句话:syntax enablesyntax on再重新启动vim, 并打开一个c程序文件, 是不是觉得眼前突然色彩缤纷了起来...如果你不喜欢这个配色方案你可以在"编辑->配色方案"(gvim)中选择一个你满意的配色方案, 然后在~/.vimrc文件中增加下面这句:desert是我喜欢的配色方案, 你可以改成你的. 如果菜单中的配色方案你还不满意(你也太花了吧), 没关系, 在 上跟你一样的人很多, 他们做了各种各样的颜色主题, 你可以下载下来一个一个的试, 多地可以看到你眼花. 如果这样你还不满意(你还真是XXXX), 没关系, vim的作者早想到会有你这种人了, 你可以创建你自己的颜色主题, 把下面的这篇文档好好学习一些一下吧:更炫的语法高亮:你可能会发现很多东西没有高亮起来, 比如运算符号, 各种括号, 函数名, 自定义类型等, 但是看上面的图片, 我的运算符号和函数名都加亮了^_^, 想知道为什么吗? 哇哈哈哈哈.... 让我来教你吧 ...主要的思路是新建一个语法文件, 在文件中定义你要高亮的东东, 想高亮什么就高亮什么, 用vim就是这么自信. 所谓的语法文件就是vim用来高亮各种源文件的一个脚本, vim靠这个脚本的描述来使文件中的不同文本显示不同的颜色, 比如C语言的语法文件放在类似于这样的一个路径中:/usr/share/vim/vim64/syntax/c.vim其他语言的语法文件也可以在这个路径中找到, 你的也许不在这个路径中, 不管它, 在你自己的HOME下新建一个语法文件, 新建一个空文件:~/.vim/syntax/c.vim在其中加入"========================================================" Highlight All Function"========================================================syn match cFunction "\<[a-zA-Z_][a-zA-Z_0-9]*\>[^()]*)("me=e-2syn match cFunction "\<[a-zA-Z_][a-zA-Z_0-9]*\>\s*("me=e-1hi cFunction gui=NONE guifg=#B5A1FF"========================================================" Highlight All Math Operator"========================================================" C math operatorssyn match cMathOperator display"[-+\*/%=]"" C pointer operatorssyn match cPointerOperator display"->\|\."" C logical operators - boolean resultssyn match cLogicalOperator display"[!<>]=\="syn match cLogicalOperator display"=="" C bit operatorssyn match cBinaryOperator display"\(&\||\|\^\|<<\|>>\)=\="syn match cBinaryOperator display"\~"syn match cBinaryOperatorError display"\~="" More C logical operators - highlight in preference to binarysyn match cLogicalOperator display"&&\|||"syn match cLogicalOperatorError display"\(&&\|||\)="" Math Operatorhi cMathOperator guifg=#3EFFE2hi cPointerOperator guifg=#3EFFE2hi cLogicalOperator guifg=#3EFFE2hi cBinaryOperator guifg=#3EFFE2hi cBinaryOperatorError guifg=#3EFFE2hi cLogicalOperator guifg=#3EFFE2hi cLogicalOperatorError guifg=#3EFFE2再打开你的C文件看看, 是不是又明亮了许多. 还有一个压箱底的要告诉你, 如果你自己增加了一个类型或者结构之类的, 怎么让它也象"int", "void"这样高亮起来呢? 再在上面的文件~/.vim/syntax/c.vim中添加下面的东东:这样你自己的类型My_Type_1, My_Type_2, My_Type_3就也可以向"int"一样高亮起来了, 这样的缺点是每增加一个类型, 就要手动在这里添加一下, 如果有人知道更简单的方法请一定一定要告诉我, 用下面的地址:哇, 这下可厉害了, Tag文件(标签文件)可是程序员的看家宝呀, 你可以不用它, 但你不能不知道它, 因为Linux内核源码都提供了"make tags"这个选项. 下面我们就来介绍Tag文件.tags文件是由ctags程序产生的一个索引文件, ctags程序其是叫"Exuberant Ctags", 是Unix上面ctags程序的替代品, 并且比它功能强大, 是大多数Linux发行版上默认的ctags程序. 那么tags文件是做什么用的呢? 如果你在读程序时看了一个函数调用, 或者一个变量, 或者一个宏等等, 你想知道它们的定义在哪儿, 怎么办呢? 用grep? 那会搜出很多不相干的地方. 现在流行用是的<C-]>, 谁用谁知道呀, 当光标在某个函数或变量上时, 按下"Ctrl+]", 光标会自动跳转到其定义处, 够厉害吧, 你不用再羡慕Visual Studio的程序员了, 开始羡慕我吧~_~.你现在先别急着去按<C-]>, 你按没用的, 要不要我干什么呀, 你现在要做的是查查你电脑里有没有ctags这个程序, 如果有, 是什么版本的, 如果是Ctags 5.5.4, 就象我一样, 你最好去装一个Ctags 5.6, 这个在后面的自动补全章节中会用到. 在这个网站: , 下载一个类似ctags-5.6.tar.gz 的文件下来(现在好像5.7版的也出来了, 不过我还没用过):用下面的命令解压安装:然后去你的源码目录, 如果你的源码是多层的目录, 就去最上层的目录, 在该目录下运行命令: ctags -R我现在以vim71 的源码目录做演示此时在/home/wooin/vim71目录下会生成一个tags 文件, 现在用vim打开/home/wooin/vim71/src/main.c再在vim中运行命令:该命令将tags文件加入到vim中来, 你也可以将这句话放到~/.vimrc中去, 如果你经常在这个工程编程的话.下面要开始真刀实枪的开干了, 如下图, 将光标放在setmouse()函数上(--- 图3 ---)此时按下<C-]>, 光标会自动跳到setmouse()函数的定义处, 见下图:(--- 图4 ---)如果此时你还想再跳回刚才的位置, 你还可以按<C-T>, 这样又跳回到setmouse()函数被调用的地方了, 变量, 结构, 宏, 等等, 都可以的, 赶快试试吧.....此时在回头学习一下第3节中说的vim手册吧:help usr_29不过还有一个小瑕疵, 你修改程序后, 比如增加了函数定义, 删除了变量定义, tags文件不能自动rebuild, 你必须手动再运行一下命令:使tags文件更新一下, 不过让人感到欣慰的是vim不用重新启动, 正在编写的程序也不用退出, 马上就可以又正确使用<C-]>和<C-T>了. 如果有人知道更简单的方法请一定一定要告诉我, 用下面的地址:在Windows平台上用过Source Insight看程序的人肯定很熟悉代码窗口左边那个Symbol窗口, 那里面列出了当前文件中的所有宏, 全局变量, 函数名等, 在查看代码时用这个窗口总揽全局, 切换位置相当方便, 今天告诉你一个vim的插件: Taglist, 可以同样实现这个功能.上一节已经告诉你ctags的用法了, ctags的基本原理是将程序程序中的一些关键字(比如:函数名, 变量名等)的名字, 位置等信息通过一个窗口告诉你, 如果你已经安装好taglist, 则可以用下面的命令看看taglist自带的帮助文件:下面是我翻译的其中的第一段"Overview", 供大家现了解一下taglist, 翻译的不好, 请指教:"Tab List"是一个用来浏览源代码的Vim插件, 这个插件可以让你高效地浏览各种不同语言编写的的源代码, "Tag List"有以下一些特点:* 在Vim的一个垂直或水平的分割窗口中显示一个文件中定义的tags(函数, 类, 结构,变量, 等)* 在GUI Vim中, 可以选择把tags显示在下拉菜单和弹出菜单中* 当你在多个源文件/缓冲区间切换时, taglist窗口会自动进行相应地更新.当你打开新文件时, 新文件中定义的tags会被添加到已经存在的文件列表中,并且所有文件中定义的tags会以文件名来分组显示* 当你在taglist窗口中选中一个tag名时, 源文件中的光标会自动跳转到该tag的定义处* 自动高亮当前的tag名* 按类型分组各tag, 并且将各组显示在一个可折叠的树形结构中* 可以显示tag的原始类型和作用域* 在taglist窗口可选择显示tag的原始类型替代tag名* tag列表可以按照tag名, 或者时间进行排序* 支持以下语言的源文件: Assembly, ASP, Awk, Beta, C,C++, C#, Cobol, Eiffel, Erlang, Fortran, HTML, Java, Javascript, Lisp,Lua, Make, Pascal, Perl, PHP, Python, Rexx, Ruby, Scheme, Shell, Slang,SML, Sql, TCL, Verilog, Vim and Yacc.* 可以很简单的扩展支持新的语言. 对新语言支持的修改也很简单.* 提供了一些函数, 可以用来在Vim的状态栏或者在窗口的标题栏显示当前的tag名* taglist中的文件和tags的列表可以在被保存和在vim会话间加载* 提供了一些用来取得tag名和原始类型的命令* 在控制台vim和GUI vim中都可以使用* 可以和winmanager插件一起使用. winmanager插件可以让你同时使用文件浏览器, 缓冲区浏览器和taglist插件, 就像一个IDE一样.* 可以在Unix和MS-Windows系统中使用首先请先在你的~/.vimrc文件中添加下面两句:let Tlist_Show_One_File=1let Tlist_Exit_OnlyWindow=1此时用vim打开一个c源文件试试:进入vim后用下面的命令打开taglist窗口, 如图5:(--- 图5 ---)左边的窗口就是前面介绍的TagList窗口, 其中列出了main.c文件中的tag, 并且按照"typedef", "variable", "function"等进行了分类. 将光标移到VimMain上, 如图中左边红色的方框, 按下回车后, 源程序会自动跳转到VimMain的定义处, 如图中右边的红色方框. 这就是TagList最基本也是最常用的操作. 再教你一个常用的操作, 你在浏览TagList窗口时, 如果还不想让源码跳转, 但是想看看tag在源码中完整的表达, 可以将光标移到你想要看的tag上, 如图中上边黄色的方框, 然后按下空格键, 在下面的命令栏中, 如图下边黄色的方框, 会显示该tag在源码中完整的写法, 而不会跳转到源码处.TagList插件我就介绍到这里, 其实它还有很多用法和设置, 我没法一一地教你了, 好在TagList有一份详细的帮助手册, 用下面的命令打开手册, 好好学习一下吧::help taglist.txt在图1中大家可以看到在图标2标识的地方是一个文件浏览器, 里面列出了当前目录中的文件, 可以通过这个浏览器来浏览工程中的源文件, 是不是越来越像常见的IDE了, 当光标停在某个文件或文件夹的时候, 按下回车, 可以打开该文件或文件夹.这个东东是怎么调出来的呢? 其实这个也是由插件实现的, 这个插件是netrw.vim, 只不过你不用下载和安装, 这个插件已经是标准的vim插件, 已经随vim一起安装进你的系统里了, 现在先简单演示一下, 进入"~/vim71"文件夹后运行vim, 然后在vim中运行命令::e ~/vim71你将在vim看到如下图所示的界面:(--- 图6 ---)我这里不是教你怎么用netrw.vim插件, 而是要教你通过WinManager插件来将TagList窗口和netrw窗口整合起来, 就像图1中的图标2和3组成的那个效果现在在你的~/.vimrc中增加下面两句let g:winManagerWindowLayout='FileExplorer|TagList'nmap wm :WMToggle<cr>然后重启vim, 打开~/vim71/src/main.c, 在normal状态下输入"wm", 你将看到图7的样子:(--- 图7 ---)其中左上边是netrw窗口, 左下边是TagList窗口, 当再次输入"wm"命令时这两个窗口又关闭了.WinManager的功能主要就是我介绍的这些, 但是它还有其他一些高级功能, 还可以支持其他几个插件, 如果你觉得我介绍的还不够你用, 建议你把它的帮助手册好好研究一下, 用下面的命令可以调出帮助手册:这下更厉害了, 用Cscope自己的话说- "你可以把它当做是超过频的ctags", 其功能和强大程度可见一斑吧, 关于它的介绍我就不详细说了, 如果你安装好了前文介绍的中文帮助手册, 用下面的命令看看介绍吧:我在这里简单摘抄一点, 供还在犹豫的朋友看看:Cscope 是一个交互式的屏幕下使用的工具,用来帮助你:* 无须在厚厚的程序清单中翻来翻去就可以认识一个C 程序的工作原理。
1封面________________||\//\//\/|\/|\|||////__///||/|||||///\__\///|||//||||||///___//|||//||||||/////\///|||///||||||/////////|||///||||||/////////||///||||||/////////|//||||||/////////|//||||||/////////|//|||||/////////|__//||||////////\__\/||||////////||||////////||||__///__///__//|__||\__\/\__\/\__\/\__\|用户手册作者:Bram Moolenaar翻译:ZhaoRuFei1版本:603.021slimzhao@2从该版本开始,该中文文档的主版本将与软件的版本保持一致1译者前言不要试图从本手册中去获取什么知识,使用Vim更多的是一种技能而不是一种知识,Vim的学习需要的更多的不是头脑而是双手,经常按书中的指示进行示例性的操作,在学习Vim众多精致的技巧时,不要贪图一下子全都掌握,最好是看一条技巧后,马上在编辑器上进行操作,这样在以后实际的编辑操作时你的手指就会建立一种自然的反应而不是由头脑来搜索该使用哪一条操作技巧.建议读者不动手来不读书.如果手边没有一个合适的Vim编辑器环境可供操练,那么建议读者还是不要在这里浪费时间.如果读者是在气温比较低的条件下阅读此书从而增加了你动手的惰性时,也请不要浪费时间,这会严重影响学习的效果.虽然本书鼓励读者多动手,但也绝非说一点不要动脑,相反,Vim中多达几百个的命名与操作方式有它自己的规律可循,在你的手指能对要完成的编辑任务条件反射之前,最好还是由头脑做一点辅助.经常总结自己最经常进行的操作.为这些操作找出最简练的办法来,在每学习一条新的操作之前与自己以前的编辑经验比较一下,找出节省你敲击键盘次数的捷径来.是提升Vim经验值的不二法门.其实,Vim与其它编辑器一个很大的区别在于,它可以完成复杂的编辑与格式化功能.在这些领域还少有软件能与它分庭抗礼,但是,与所有的灵活性的代价一样,你需要用自己的双手来实现它.这在事实上造成了用户在使用Vim过程中的几个自然阶段.一开始是notepad,word,edit垄断你的大脑,这些东西根深蒂固,挥之不去.Vim的使用对你而言是一场噩梦,它降低而不是提高了你的工作效率.对三种工作模式的不解甚至使你认为它是一个充满BUG或者至少是一个古怪的与当今友好用户界面设计严重脱节的软件.事实上,这些起初看起来古怪的特性是Vim(或者是vi)的作者和它的用户们在自己漫长的文字编辑和程序设计生涯中总结出来的最快速最实在的操作,在几乎等于计算机本身历史的成长期中,历经无数严厉苛刻的计算机用户的批评与检验,无用的特性或糟糕的设计在Vim用户群面前根本就没有生存的余地. Vim细心而谨慎的作者们也不允许自己精心设计的软件里有这样的东西.第二个阶段你开始熟悉一些基本的操作,这些操作足以应付你日常的工作,你使用这些操作时根本就不假思索.但这些阶段你仍然很少去碰Vim那晦涩的在线帮助文档.它在你心里只是notepad,edit一个勉强合格的替代品.第三个阶段,精益求精的你不满足于无休无止的简单操作,冗长而乏味,有没有更好的办法可以驭繁于简?于是,从UNIX参考手册上,从同事口中,你渐渐叩开:help xxx的大门.开始探索里面充满魔力的咒语.从杂耍般的带有表演性质的技巧开始,这些技巧令人眩目但少有实用性.不过这却是你拥有魔力的第一步.接下来,你开始认识到这些咒语背后的真经,开始偷偷修改一些奇怪的符号,于是,奇迹产生了,魔力不但仍然有效,而且真实地作用于你现实中的文字编辑生活.你在第二阶段由于熟练操作而尘封已久的大脑突然开始运作.但这个过程并非是达到某个临界状态后的一路坦途,不断的挫折,新的挑战,看似Mission Impossible的任务.永远伴随着任何一个人的任何一个学习过程.这是你使用Vim的最后一个阶段,也是最漫长最有挑战性同时也充满无数奇趣的阶段.这个阶段里你开始定制一些希奇古怪的颜色.开始以敲入i18n来输入internationalization,开始让Vim替你纠正经常把the误敲成teh的毛病,开始让Vim与系统里各种精悍而强大的兄弟工具进行合作,开始写越来越长的script,每一次的文本编辑体验都妙趣横生高潮跌起.你的头脑因为要用Vim完成高效的编辑而高度紧张.你开始在Vim邮件列表里提一些确实是问题的问题.也开始发现你在Vim里做了以前在SHELL里做的几乎一切事.事实上你已经成了一个无可救药的Vim骨灰级玩家.以上就是一个Vim用户的精神之旅.本文档仍在进一步完善中,原因有三,一为技术本身,译者虽在Vim的大量命令、选项中饱经浸染,但不敢妄言说了解Vim的方方面面,二为翻译,有些译法有些术语欠妥,我自己换个时间看感觉就不一样,此一时也,彼一时也;三为用L A T E X制作期间,又因L A T E X中对一些符号的特殊处理引入的错误.以我一己之力要字斟句酌实在难为,犹豫再三,还是拿出来献丑,把它放在众人的显微镜下,任何错误、翻译术语的建议、错别字可以email给slimzhao@下面是手册中关于这份文档的版权,我举双手双脚赞成.The Vim user manual and reference manual areCopyright(c)1988-2002by Bram Moolenaar.Thismaterial may be distributed only subject tothe terms and conditions set forth in the OpenPublication License,v1.0or later.The latestversion is presently available at:/openpub/People who contribute to the manuals must agreewith the above copyright notice.附录是由我翻译的几篇有关Vim的文章.slimzhao@2004/06/08关于0.2版0.2版与0.1版有如下改动:段首的缩进改为2个汉字的宽度,看起来更舒服一些(或更不舒服一些).修改了书签在Acrobat中显示出现乱码的问题.该问题在Acrobat Reader的版本5和版本6中均有不同程度的表现.第3章第4小节的第一行的===============此时使用命令”与===============中的命令应为%感谢钱震(qzhen@)提供修改建议和关于gbk2uni.exe的信息感谢CTex的所有制作人员和论坛的热心网友们关于6.3.0版1.为什么一下跳到6.3.0了?我最新得到的VIM是6.3,它的文档与我最初翻译所基于的6.1有少许不同.这使我萌生了将文档更新至最新版本的想法.那么,为何不让中文版与软件保持同步呢?2. 6.3.0与0.2版相比有如下改动:(A)0.1版与0.2版居然都缺了usr21.txt,usr22.txt,usr29.txt,usr45.txt这4个文件,这4个文件与其它文件是一并翻译完毕的,打包处理时竟漏掉了.(B)将文档中所有出现的示例性的代码,shell命令,屏显样例,都重新格式化,如下:ex command:au BufRead*.tip setf tip看起来更醒目一些.我把示例性的代码分为7类.一类是上面显示的这种,Vim中的命令行模式,标题是ex command,另外6种分别是:normal mode commandVim的normal模式命令,特点是没有冒号打头.如normal mode commandgg=Gshell command多数情况下为unix类系统下的shell命令,也可能是windows OS的DOSBOX中的命令.如:shell commandenv LANG=de_DE.ISO_8859-1vimDisplay对应于一个命令执行完之后的屏幕显示结果,或操作的某种中间状态.如:Display:!make|&tee/tmp/vim215953.errgcc-g-Wall-o prog main.c sub.cmain.c:In function'main':main.c:6:too many arguments to function'do_sub'main.c:At top level:main.c:10:parse error before'}'make:***[prog]Error12returned"main.c"11L,111C(3of6):too many arguments to function'do_sub'Hit ENTER or type command to continueList显示的是一系列列表值,如:Listr在Insert模式下按下回车时插入一个星号o在Normal模式下按"o"或"O"时插入一个星号c根据'textwidth'的设置自动为注释断行code,如:codewhile i<b{if a{b=c;}}url,如:URL/~mgk25/download/ucs-fonts.tar.gz(C)把混杂在汉字中的英文的默认字体改成了cmtt,即computer moderntypewriter,个人品味,比cmr(computer modern roman)好看.除了个别的情况,如显示Latex系统中的标志性建筑L A T E X时用的还是cmr,如果用cmtt就会是这样:L A T E X.中间那个A显得很萎缩.(D)文档内也加了超级链接,但只限于这份中文用户手册内部,如果指向参数手册的文档,则没有超级链接,目前这份中文文档只限于用户手册.另外指向外部的URL也能打开你的默认浏览器了.指向email地址的也会打开你的默认mail程序.(E)所有的双引号不再显示为‘‘...’’(L A T E X风格),也不是汉字中的“...”,而显示为最朴素的"...",同样,以前显示为’的字符,在该版本中显示为',这样的目的一是为了与原文档的风格更接近,再者也更悦目一些.而正反斜杠的显示为/hello\hi,粗粗壮壮,看上去很厚道。
VIM 编辑器VIM 和Emacs 是Linux 上最知名和最受程序员喜爱的两种编辑器。
VI追求的是快捷启动程序迅速,编辑文本高效,功能专注,而Emacs追求的是功能的丰富强大以及集成带来的方便,在Emacs里头可以发邮件,上新闻组,听mp3,浏览网页,玩游戏,几乎可以login—>emacs—〉logout了,VI和Emacs都是程序员的编辑器,相比而言,Emacs更是提供了一种程序员的生活氛围。
VIM引入了很多模式,主要的有如下几种:➢Normal mode 即通常所谓的命令模式,在此模式使用a、i、A、I、o、O等进入Insert mode➢Insert mode 即通常所谓的编辑模式,在此模式使用ESC进入Normal mode或者Ctrl—c临时进入Normal mode➢Command—line mode 命令行模式,在Normal mode下按冒号进入,按ESC取消执行命令或者回车执行命令,然后回到Normal mode。
➢Visual mode 即选择模式(注意跟用鼠标选择不同),用v,V,C—v或C-q进入➢Select mode 鼠标选择➢Replace mode 在Normal mode下按R进入,按ESC返回Normal mode,相当于Windows下命令行中按Insert键进入的覆盖模式1. 基本操作1) 移动光标(Normal mode)可以用下面的键来移动光标H (左), j (下),k (上),l (右)2) 删除(Normal mode)当你想删除一个字符时,把光标移动到它上面,然后按下x键,它就会消失。
dd命令会删除当前所在的一行内容。
dw 删除当前光标所在字符d$ 删除从当前光标所在位置到当前行结尾的所有内容d^ 删除从当前光标所在位置到行首的所有内容3) 合并行(Normal mode)使用J命令可以合并当前行和下一行4) 撤消和重做(Normal mode)按下u会撤消上一步的操作,U(大字)是一个特殊的撤消键,它会撤消在在最后编辑的行上所作的所有操作。
linuxvim操作笔记V1. 默认字符编码为utf8,打开使⽤gb2312编码的⽂件,中⽂全为乱码,如何恢复正常显⽰? 输⼊ edit ++enc=cp936V2. 如何在vim系统中执⾏命令?输⼊ !cmdV3. 使⽤vim直接打开并编辑.*gz⽂件,⽽⽆须解压,读取,编辑,再压缩.压缩⽂件的⽀持是通过pluginvim ls-lrR.txt.gzV4. 如何Vim⽀持语法加亮?⼀劳永逸的⽅法,在~/.vimrc中增加如下语句syntax on临时性的⽅法, 输⼊命令:syntax onV5. Vim如何在结构⽂档中快速切换,⽐如 C语⾔{ }块之间切换.输⼊在{}之间,输⼊%即可V6. 如何让Vim记下我的编辑状态,以便下次快速恢复⼯作?输⼊ :mksession file_name_your_sessionV7. 如何让Vim告诉你编辑⽂件的字节数,字数,当前位置信息?输⼊ g CTRL_GV8. 输⼊help,打开了帮助窗⼝,如何快速关闭?输⼊CTRL-W ,然后再输⼊CTRL-Q,或者输⼊CTRL-W qV9. 我要每天编辑⽇志,我不想去输⼊⽇期与时间,该怎么办?现要如这样的⽇期形式Mon Sep 19 23:19:03 CST 2005,简单,定义⼀个快捷键F2,在vim中做这样⼀个映射:map gg:read !dateV10. 如何使⽤Vim改变⽂本⽂件的编码?⽐如,原有1个⽂档为utf-8编码的,现在要将它改为cp936编码,可⽤如下指令:set fileencoding=cp936然后再保存⽂件:wV11. 如何将vim记住我的配置选项(⽐如默认的编码⽅式,⽂件类型等)?请将你的配置命令写到~/.vimrc配置脚本⽂件中V12. 如何查看当前编辑的C/C++源⽂件所有include⽂件路径?输⼊:checkpathV13. 如何保存全局的配置选现(对所有⽤户都可⽤)?先输⼊:version, 查看系统vimrc配置⽂件的值再编辑系统vimrc配置⽂件,加⼊你想要vim执⾏的命令V14. 如何快速复制Buffer中的⼀⾏⽂字?输⼊yy先记录到缓冲区, 移动光标到想要粘贴处,按pV15. 如何利⽤宏命令,⽣成数字顺序列表?1. Create the first list entry, make sure it starts with a number.2. qa - start recording into buffer ‘a’3. Y - yank the entry4. p - put a copy of the entry below the first one5. CTRL-A - increment the number6. q - stop recording7. @a - repeat the yank, put and increment timesV16. 如何实现⽂本的折叠(Fold)?⾃动Fold,假设你的⽂件是C源⽂件,输⼊:set foldmethod=indent:set foldenable⼿动Fold,选中你要折的⾏,在Normal模式下输⼊命令 zf当Fold创建后,移动光标到Fold所在⾏输⼊ zo, 打开相应的Foldzc, 关闭相应的FoldzM, 关闭⽂件中所有的FoldzR, 打开⽂件中所有的Foldza, ⾃动打开或关闭相应的FoldV17. 如何查看当前⽂件中的字,字符个数?输⼊g CTRL-G 即可,所有字节数按UTF-8的形式进⾏计数.V18. 如何在Visual模式下快速搜索当前选中的⽂字?为了不改变⽤户使⽤习惯,我们依然沿⽤*和#这两键vnoremap * y/“vnoremap # y?“注: 指令插⼊命名寄存器的内容V19. 如何在源代码中不同块/段落间来回跳跃?输⼊ { , 前进⾄上⼀段落输⼊ } , 前进⾄后⼀段落V20. 如何⽂本中的TAB转化为固定长度的空格?输⼊ :set expandtab输⼊ :set tabstop=4输⼊ :retabV21. vim中paste剪贴板中的数据如何让它不缩进,保持原格式?paste时,输⼊的⽂本⼤多会包含换⾏字符,还有⼀些特殊字符,vim会⾃动对⽂本缩进,并且⾃动换⾏等,为了避免这些智能选项的影响,可以把paste开关打开V22. 有趣的⼏个功能gg 到⽂件⾸gd 到变量声明gg=G 全篇⾃动缩进 , =G 单⾏缩进K(shift+k) mancrl+] 函数原型处 crl+t 回 ( ctags )ctl+p ⾃动补全( 编辑状态 ):X 加密保存( 要输⼊密码 )使⽤说明:以下的例⼦中 xxx 表⽰在命令模式下输⼊ xxx 并回车以下的例⼦中 :xxx 表⽰在扩展模式下输⼊ xxx 并回车⼩括号中的命令表⽰相关命令.在编辑模式或可视模式下输⼊的命令会另外注明.1. 查找/xxx(?xxx) 表⽰在整篇⽂档中搜索匹配xxx的字符串, / 表⽰向下查找, ? 表⽰向上查找.其中xxx可以是正规表达式,关于正规式就不多说了.⼀般来说是区分⼤⼩写的, 要想不区分⼤⼩写, 那得先输⼊:set ignorecase查找到以后, 再输⼊ n 查找下⼀个匹配处, 输⼊ N 反⽅向查找.*(#) 当光标停留在某个单词上时, 输⼊这条命令表⽰查找与该单词匹配的下(上)⼀个单词. 同样, 再输⼊ n 查找下⼀个匹配处, 输⼊ N 反⽅向查找.g*(g#) 此命令与上条命令相似, 只不过它不完全匹配光标所在处的单词, ⽽是匹配包含该单词的所有字符串.gd 本命令查找与光标所在单词相匹配的单词, 并将光标停留在⽂档的⾮注释段中第⼀次出现这个单词的地⽅.% 本命令查找与光标所在处相匹配的反括号, 包括 () [] {}f(F)x 本命令表⽰在光标所在⾏进⾏查找, 查找光标右(左)⽅第⼀个x字符.找到后:输⼊ ; 表⽰继续往下找输⼊ , 表⽰反⽅向查找2. 快速移动光标在 vi 中, 移动光标和编辑是两件事, 正因为区分开来, 所以可以很⽅便的进⾏光标定位和编辑. 因此能更快⼀点移动光标是很有⽤的.w(e) 移动光标到下⼀个单词.b 移动光标到上⼀个单词.0 移动光标到本⾏最开头.^ 移动光标到本⾏最开头的字符处.$ 移动光标到本⾏结尾处.H 移动光标到屏幕的⾸⾏.M 移动光标到屏幕的中间⼀⾏.L 移动光标到屏幕的尾⾏.gg 移动光标到⽂档⾸⾏.G 移动光标到⽂档尾⾏.c-f (即 ctrl 键与 f 键⼀同按下) 本命令即 page down.c-b (即 ctrl 键与 b 键⼀同按下, 后同) 本命令即 page up.” 此命令相当有⽤, 它移动光标到上⼀个标记处, ⽐如⽤ gd, * 等查找到某个单词后, 再输⼊此命令则回到上次停留的位置.‘. 此命令相当好使, 它移动光标到上⼀次的修改⾏.`. 此命令相当强⼤, 它移动光标到上⼀次的修改点.3. 拷贝, 删除与粘贴在 vi 中 y 表⽰拷贝, d 表⽰删除, p 表⽰粘贴. 其中拷贝与删除是与光标移动命令结合的, 看⼏个例⼦就能够明⽩了.yw 表⽰拷贝从当前光标到光标所在单词结尾的内容.dw 表⽰删除从当前光标到光标所在单词结尾的内容.y0 表⽰拷贝从当前光标到光标所在⾏⾸的内容.d0 表⽰删除从当前光标到光标所在⾏⾸的内容.y$ 表⽰拷贝从当前光标到光标所在⾏尾的内容.d$ 表⽰删除从当前光标到光标所在⾏尾的内容.yfa 表⽰拷贝从当前光标到光标后⾯的第⼀个a字符之间的内容.dfa 表⽰删除从当前光标到光标后⾯的第⼀个a字符之间的内容.特殊地:yy 表⽰拷贝光标所在⾏.dd 表⽰删除光标所在⾏.D 表⽰删除从当前光标到光标所在⾏尾的内容.关于拷贝, 删除和粘贴的复杂⽤法与寄存器有关, 可以⾃⾏查询.4. 数字与命令在 vi 中数字与命令结合往往表⽰重复进⾏此命令, 若在扩展模式的开头出现则表⽰⾏号定位. 如:5fx 表⽰查找光标后第 5 个 x 字符.5w(e) 移动光标到下五个单词.5yy 表⽰拷贝光标以下 5 ⾏.5dd 表⽰删除光标以下 5 ⾏.y2fa 表⽰拷贝从当前光标到光标后⾯的第⼆个a字符之间的内容.:12,24y 表⽰拷贝第12⾏到第24⾏之间的内容.:12,y 表⽰拷贝第12⾏到光标所在⾏之间的内容.:,24y 表⽰拷贝光标所在⾏到第24⾏之间的内容. 删除类似.5. 快速输⼊字符在 vi 中, 不要求你输⼊每⼀个字符, 可以有很多种⽅法快速输⼊⼀些字符.使⽤ linux/unix 的同学⼀定有⼀个经验, 在命令⾏下输⼊命令时敲⼊头⼏个字符再按TAB 系统就会⾃动将剩下的字符补齐, 假如有多个匹配则会打印出来. 这就是著名的命令补齐(其实windows中也有⽂件名补齐功能). vi 中有许多的字符串补齐命令, ⾮常⽅便.c-p(c-n) 在编辑模式中, 输⼊⼏个字符后再输⼊此命令则 vi 开始向上(下)搜索开头与其匹配的单词并补齐, 不断输⼊此命令则循环查找. 此命令会在所有在这个 vim 程序中打开的⽂件中进⾏匹配.c-x-l 在编辑模式中, 此命令快速补齐整⾏内容, 但是仅在本窗⼝中出现的⽂档中进⾏匹配.c-x-f 在编辑模式中, 这个命令表⽰补齐⽂件名. 如输⼊:/usr/local/tom 后再输⼊此命令则它会⾃动匹配出:/usr/local/tomcat/abbr 即缩写. 这是⼀个宏操作, 可以在编辑模式中⽤⼀个缩写代替另⼀个字符串. ⽐如编写java⽂件的常常输⼊ System.out.println, 这很是⿇烦, 所以应该⽤缩写来减少敲字. 可以这么做::abbr sprt System.out.println以后在输⼊sprt后再输⼊其他⾮字母符号, 它就会⾃动扩展为System.out.println6. 替换替换是 vi 的强项, 因为可以⽤正规表达式来匹配字符串.以下提供⼏个例⼦.:s/aa/bb/g 将光标所在⾏出现的所有包含 aa 的字符串中的 aa 替换为 bb:s/\/bb/g 将光标所在⾏出现的所有 aa 替换为 bb, 仅替换 aa 这个单词:%s/aa/bb/g 将⽂档中出现的所有包含 aa 的字符串中的 aa 替换为 bb:12,23s/aa/bb/g 将从12⾏到23⾏中出现的所有包含 aa 的字符串中的 aa 替换为 bb :12,23s/^/#/ 将从12⾏到23⾏的⾏⾸加⼊ # 字符:%s= *$== 将所有⾏尾多余的空格删除:g/^\s*$/d 将所有不包含字符(空格也不包含)的空⾏删除.7. 多⽂件编辑在⼀个 vim 程序中打开很多⽂件进⾏编辑是挺⽅便的.:sp(:vsp) ⽂件名 vim 将分割出⼀个横(纵)向窗⼝, 并在该窗⼝中打开新⽂件.从 vim6.0 开始, ⽂件名可以是⼀个⽬录的名称, 这样, vim 会把该⽬录打开并显⽰⽂件列表, 在⽂件名上按回车则在本窗⼝打开该⽂件, 若输⼊ O 则在新窗⼝中打开该⽂件, 输⼊ ? 可以看到帮助信息.:e ⽂件名 vim 将在原窗⼝中打开新的⽂件, 若旧⽂件编辑过, 会要求保存.c-w-w vim 分割了好⼏个窗⼝怎么办? 输⼊此命令可以将光标循环定位到各个窗⼝之中.:ls 此命令查看本 vim 程序已经打开了多少个⽂件, 在屏幕的最下⽅会显⽰出如下数据:1 %a “usevim.html” ⾏ 1622 # “xxxxxx.html” ⾏ 0其中:1 表⽰打开的⽂件序号, 这个序号很有⽤处.%a 表⽰⽂件代号, % 表⽰当前编辑的⽂件,# 表⽰上次编辑的⽂件“usevim.html” 表⽰⽂件名.⾏ 162 表⽰光标位置.:b 序号(代号) 此命令将指定序号(代号)的⽂件在本窗⼝打开, 其中的序号(代号)就是⽤ :ls 命令看到的.:set diff 此命令⽤于⽐较两个⽂件, 可以⽤:vsp filename命令打开另⼀个⽂件, 然后在每个⽂件窗⼝中输⼊此命令,就能看到效果了.8. 宏替换vi 不仅可以⽤ abbr 来替换⽂字, 也可以进⾏命令的宏定义. 有些命令输起来很费劲, 因此我把它们定义到 - 上, 这样就很⽅便了.这些配置可以预先写到 ~/.vimrc (windows 下为 $VIM/_vimrc) 中, 写进去的时候不⽤写前⾯的冒号.:nmap :nohls 取消被搜索字串的⾼亮:nmap w 命令模式下转移光标到不同窗⼝:imap 输⼊模式下运⾏:nmap :%s= *$== 删除所有⾏尾多余的空格.:imap 同上:java 中: (注, 这⾥为什么说 java 中, 因为以下定义对其他⽂件格式不起作⽤, 下⽂会说到如何实现这⼀点):nmap :comp javac:mak -d . %此命令⽤ javac 编译 java ⽂件, 它会⾃动将光标定位到出错点. 不过这需要定义⼀个 javac.vim ⽂件在 $VIM/compiler 下, 在 javac.vim ⾥⾯只有两⾏字:setlocal makeprg=javacsetlocal errorformat=%A%f:%l:\ %m,%-Z%p^,%-C%.%#:nmap :comp ant:mak此命令⽤ ant 编译 java ⽂件, 它会⾃动将光标定位到出错点. ⼀般来说, 安装vim 后已经有了compiler/ant.vim⽂件, 因此这个命令可以直接使⽤. 但是需要在当前⽬录下有 build.xml ⽂件, 当然还必须安装 ant 才⾏.:nmap :cl 此命令⽤于查看所有的编译错误.:imap:nmap :cc 此命令⽤于查看当前的编译错误.:imap:nmap :cn 此命令⽤于跳到下⼀个出错位置.:imap:nmap :cp 此命令⽤于跳到上⼀个出错位置.:imap:nmap :JavaBrowser此命令⽤于在窗⼝左部分割出⼀个新窗⼝, ⾥⾯的内容是 java 的资源树, 包括本⽂件中出现的类, 类的成员变量及成员⽅法, 就好像 JCreator 表现的那样.在这个窗⼝中输⼊ ? 会看到帮助. 嘿嘿, 很好⽤, 不过需要 ctags ⽀持.:imap9. TABTAB 就是制表符, 单独拿出来做⼀节是因为这个东西确实很有⽤.<< 输⼊此命令则光标所在⾏向左移动⼀个 tab.>> 输⼊此命令则光标所在⾏向右移动⼀个 tab.5>> 输⼊此命令则光标后 5 ⾏向右移动⼀个 tab.:12,24> 此命令将12⾏到14⾏的数据都向右移动⼀个 tab.:12,24>> 此命令将12⾏到14⾏的数据都向右移动两个 tab.那么如何定义 tab 的⼤⼩呢? 有⼈愿意使⽤ 8 个空格位, 有⼈⽤4个, 有的⽤2个.有的⼈希望 tab 完全⽤空格代替, 也有的⼈希望 tab 就是 tab. 没关系, vim 能帮助你.以下的设置⼀般也都先写⼊配置⽂件中, 免得⽼敲.:set shiftwidth=4 设置⾃动缩进 4 个空格, 当然要设⾃动缩进先.:set sts=4 即设置 softtabstop 为 4. 输⼊ tab 后就跳了 4 格.:set tabstop=4 实际的 tab 即为 4 个空格, ⽽不是缺省的 8 个.:set expandtab 在输⼊ tab 后, vim ⽤恰当的空格来填充这个 tab.10. autocmd这个命令⼗分的强⼤, 可以⽤这个命令实现对不同的⽂件格式应⽤不同的配置; 可以在新建⽂件时⾃动添加上版权声明等等. 这些命令⼀般定义在 ~/.vimrc 这样的配置⽂件⾥⾯. 由于他很强⼤, 所以我不能给出很具体的说明, 只能举⼏个例⼦, 详细的请看帮助. :autocmd! 删除所有之前的⾃动命令.autocmd FileType java source ~/.vim/files/java.vimautocmd FileType java source ~/.vim/files/jcommenter.vim以上两条命令让我在打开 java ⽂件时才应⽤后⾯提到的两个配置⽂件.autocmd BufNewFile *.java 0r ~/.vim/files/skeletons/java.skel以上这条命令让我在新建 java ⽂件时⾃动加⼊ java.skel ⽂件的内容.autocmd BufNewFile *.java normal gnp以上这条命令让我在新建 java ⽂件时⾃动运⾏ gnp 命令, 这个命令进⾏⼀些特殊化处理, ⽐如将新 java ⽂件中的 __date__ 替换成今天的⽇期什么的.11. 常⽤脚本在 你可以发现很多脚本(script), 这些脚本常常有让你意想不到的作⽤.我常⽤的有:jcommenter.vim ⾃动加⼊ javadoc 风格的注释.JBrowser.vim 类资源浏览. C, C++ 等可以⽤ Tlist还有许多有⽤的, ⽐如 checkstyle.vim 可以检验你的编程风格, jad.vim 可以直接反编译 .class ⽂件等等.12. 常⽤配置在~/.vimrc 配置⽂件中你常常需要⼀些个性化配置. ⽐如上⾯写的⼀些宏定义, ⼀些autocmd 定义等等. ⽐如:set suffixes=.bak,~,.o,.h,.info,.swp,.aux,.bbl,.blg,.dvi,.lof,.log,.lot,.ps,.toc这样在vim中打开⽂件时, 按 tab 键补齐⽂件名时它会忽略上述⽂件.set nu 显⽰⾏号set ai 设置⾃动缩进map Y y$ 让 Y 和 D ⼀样, 要不然 Y 的本意和 yy ⼀样.13. 其他还有许多有意思的命令, 记录在这⾥免得忘记.. 重复上次编辑命令.:g/^/exec “s/^/”.strpart(line(”.”).” “, 0, 4) 在⾏⾸插⼊⾏号:runtime! syntax/2html.vim 转换 txt 成 html, 会按照你的颜⾊配置来转。
Automatica38(2002)2159–2167/locate/automaticaBrief PaperNon-singular terminal sliding mode control of rigid manipulatorsYong Feng a,Xinghuo Yu b;∗,Zhihong Man ca Department of Electrical Engineering,Harbin Institute of Technology,Harbin150006,People’s Republic of Chinab School of Electrical and Computer Engineering,Royal Melbourne Institute of Technology University,GPO Box2476V Melbourne,Vic.3001,Australiac School of Computer Engineering,Nanyang Technological University,SingaporeReceived26June2001;received in revised form16June2002;accepted9July2002AbstractThis paper presents a global non-singular terminal sliding mode controller for rigid manipulators.A new terminal sliding mode manifold isÿrst proposed for the second-order system to enable the elimination of the singularity problem associated with conventional terminal sliding mode control.The time taken to reach the equilibrium point from any initial state is guaranteed to beÿnite time.The proposed terminal sliding mode controller is then applied to the control of n-link rigid manipulators.Simulation results are presented to validate the analysis.?2002Elsevier Science Ltd.All rights reserved.Keywords:Terminal sliding mode control;Singularity;Robotic manipulator;Robust control;Lyapunov stability1.IntroductionVariable structure systems(VSS)are well known for their robustness to system parameter variations and external disturbances(Slotine&Li,1991;Utkin,1992; Yurl&James,1988).VSS have been widely used in many applications,such as robots,aircrafts,DC and AC motors, power systems,process control and so on.An aspect of VSS that is of particular interest is the sliding mode control,which is designed to drive and constrain the system states to lie within a neighborhood of the pre-scribed switching manifolds that exhibit desired dynam-ics.When in the sliding mode,the closed-loopresp onse becomes totally insensitive to both internal parameter un-certainties and external disturbances.A characteristic of conventional VSS is that the convergence of the system states to the equilibrium point is usually asymptotical due to the asymptotical convergence of the linear switching manifolds that are commonly chosen.Recently,a terminal sliding mode(TSM)controller was developed(Man&Yu,1997;Yu&Man,1996;Wu,Yu,& This paper was not presented at any IFAC meeting.This paper was recommended for publication in revised form by Associate Editor Jurek Z.Sasiadek under the direction of Editor Mituhiko Araki.∗Corresponding author.E-mail addresses:yfeng@(Y.Feng),x.yu@.au(X.Yu).Man,1998).TSM has been used in the control of rigid ma-nipulators(Man et al.,1994;Tang,1998).The TSM con-cept is related to theÿnite time control(Haimo,1986; Bhat&Bernstein,1997).Compared with linear hyperplane-based sliding modes,TSM o ers some superior properties such as fast,ÿnite time convergence.This controller is par-ticularly useful for high precision control as it speeds up the rate of convergence near an equilibrium point.However,the existing TSM controller design methods still have a singu-larity problem.An initial discussion to avoid the singularity in TSM control systems was presented(Wu et al.,1998). In this paper,a global non-singular terminal sliding mode (NTSM)controller is presented for a class of nonlinear dy-namical systems with parameter uncertainties and external disturbances.A new NTSM manifold is proposed to over-come the singularity problem.The time taken to reach the manifold from any initial state and the time taken to reach the equilibrium point in the sliding mode can be guaran-teed to beÿnite time.The proposed NTSM controller is then applied to the control of n-degree-of-freedom rigid ma-nipulators.Simulation results are presented to validate the analysis.2.Conventional terminal sliding mode controlThe basic principle of TSM control can be brie y sum-marized as follows:consider a second-order uncertain0005-1098/02/$-see front matter?2002Elsevier Science Ltd.All rights reserved. PII:S0005-1098(02)00147-42160Y.Feng et al./Automatica 38(2002)2159–2167nonlinear dynamical system ˙x 1=x 2;˙x 2=f (x )+g (x )+b (x )u;(1)where x =[x 1;x 2]T is the system state vector,f (x )and b (x )=0are smooth nonlinear functions of x ,and g (x )represents the uncertainties and disturbances satisfying g (x ) 6l g where l g ¿0,and u is the scalar control in-put.The conventional TSM is described by the following ÿrst-order terminal sliding variables =x 2+ÿx q=p1;(2)where ÿ0is a design constant,and p and q are positive odd integers,which satisfy the following condition:p ¿q:(3)The su cient condition for the existence of TSM is 12d d ts 2¡−Á|s |;(4)where Á¿0is a constant.For system (1),a commonly used control design isu =−b −1(x ) f (x )+ÿq px q=p −11x 2+(l g +Á)sgn(s );(5)which ensures that TSM occurs.It is clear that if s (0)=0,the system states will reach the sliding mode s =0within the ÿnite time t r ,which satisÿes t r 6|s (0)|Á:(6)When the sliding mode s =0is reached,the system dy-namics is determined by the following nonlinear di erential equation:x 2+ÿx q=p 1=˙x 1+ÿx q=p1=0;(7)where x 1=0is the terminal attractor of the system (7).The ÿnite time t s that is taken to travel from x 1(t r )=0to x 1(t s +t r )=0is given byt s =−ÿ−1x 1(t r )d x 1x q=p 1=p ÿ(p −q )|x 1(t r )|1−q=p :(8)This means that,in the TSM manifold (7),both the system states x 1and x 2converge to zero in ÿnite time.It can be seen in the TSM control (5)that the secondterm containing x q=p −11x 2may cause a singularity to occur if x 2=0when x 1=0.This situation does not occur inthe ideal sliding mode because when s =0;x 2=−ÿx q=p1hence as long as q ¡p ¡2q ,i.e.1¡p=q ¡2,the term x q=p −11x 2is equivalent to x (2q −p )=p 1which is non-singular.The singularity problem may occur in the reaching phase when there is insu cient control to ensure that x 2=0while x 1=0.The TSM controller (5)cannot guarantee a bounded controlsignal for the case of x 2=0when x 1=0before the system states reach the TSM s =0.Furthermore,the singularity may also occur even after the sliding mode s =0is reached since,due to computation errors and uncertain factors,the system states cannot be guaranteed to always remain in the sliding mode especially near the equilibrium point (x 1=0;x 2=0),and the case of x 2=0while x 1=0may occur from time to time.This underlines the importance of addressing the singularity problem in conventional TSM systems.3.Non-singular terminal sliding mode controlIn order to overcome the singularity problem in the con-ventional TSM systems,several methods have been pro-posed.For example,one approach is to switch the sliding mode between TSM and linear hyperplane based sliding mode (Man &Yu,1997).Another approach is to transfer the trajectory to a pre-speciÿed open region where TSM control is not singular (Wu et al.,1998).These methods are adopting indirect approaches to avoid the singularity.In this paper,a simple NTSM is proposed,which is able to avoid this problem completely.The proposed NTSM model is de-scribed as follows:s =x 1+1ÿx p=q 2;(9)where ÿ;p and q have been deÿned in (2).One can easilysee that when s =0,the NTSM (9)is equivalent to (2)so that the time taken to reach the equilibrium point x 1=0when in the sliding mode is the same as in (8).Note that in using (9)the derivative of s along the system dynamics does not result in terms with negative (fractional)powers.This can be seen in the following theorem about the NTSM control.Theorem 1.For system (1)with the NTSM (9),if the control is designed asu =−b −1(x ) f (x )+ÿq px 2−p=q2+(l g +Á)sgn(s );(10)where 1¡p=q ¡2;Á¿0,then the NTSM manifold (9)will be reached in ÿnite time.Furthermore ,the states x 1and x 2will converge to zero in ÿnite time .Proof.For the NTSM (9),its derivative along the system dynamics (1)is ˙s =˙x 1+1ÿp q x p=q −12˙x 2=x 2+1ÿp q x p=q −12˙x 2=x 2+1ÿp q x p=q −12(f (x )+g (x )+b (x )u )Y.Feng et al./Automatica38(2002)2159–21672161=x2+1ÿpqx p=q−12g(x)−ÿqpx2−p=q2−(l g+Á)sgn(s)=1ÿpqx p=q−12(g(x)−(l g+Á)sgn(s))thens˙s=1ÿpqx p=q−12(g(x)s−(l g+Á)sgn(s)s)6−1ÿpqÁx p=q−12|s|:Since p and q are positive odd integers and1¡p=q¡2,there is x p=q−12¿0for x2=0.Let (x2)=(1=ÿ)(p=q)Áx p=q−12.Then it hass˙s6− (x2)|s|(x2)¿0for x2=0:(11)Therefore,for the case x2=0,the condition for Lya-punov stability is satisÿed.The system states can reach the sliding mode s=0withinÿnite ing the following ar-guments can easily prove this:substituting the control(10) into system(1)yields˙x2=−ÿqpx2−p=q2+g(x)−(l g+Á)sgn(s):Then,for x2=0,it is obtained˙x2=g(x)−(l g+Á)sgn(s):For both s¿0and s¡0,it is obtained˙x26−Áand ˙x2¿Á,respectively,showing that x2=0is not an attractor.It also means that there exists a vicinity of x2=0such that for a small ¿0such that|x2|¡ ,there are˙x26−Áfor s¿0 and˙x2¿Áfor s¡0,respectively.Therefore,the crossing of the trajectory from the boundary of the vicinity x2= to x2=− for s¿0,and from x2=− to x2= for s¡0occurs inÿnite time.For other regions where|x2|¿ ,it can be easily concluded from(11)that the switching line s=0can be reached inÿnite time since we have˙x26−Áfor s¿0 and˙x2¿Áfor s¡0.The phase plane plot of the system is shown in Fig.1.Therefore,it is concluded that the sliding mode s=0can be reached from anywhere in the phase plane inÿnite time.Once the switching line is reached,one can easily see that NTSM(9)is equivalent to the TSM(2),so the time taken to reach the equilibrium point x1=0in the sliding mode is the same as in(8).Therefore,the NTSM manifold(9)can be reached inÿnite time.The states in the sliding mode will reach zero inÿnite time.This completes the proof.Remark1.It should be noted that the NTSM control(10) is always non-singular in the state space since1¡p=q¡2.Remark2.In order to eliminate chattering,a saturation function sat can be used to replace the sign function sgn.The1Fig.1.The phase plot of the system.relationshipbetween the steady-state errors of the NTSM system and the width of the layer surrounding the NTSM manifold s(t)=0is given by(Feng,Han,Stonier,&Man, 2000;Feng,Yu,&Man,2001)|s(t)|6’⇒|x(t)|6’and|x(t)|6(2ÿ’)q=p for t→∞:(12)4.Non-singular terminal sliding mode control for rigid manipulatorsIn this section,a non-singular terminal sliding mode con-trol is designed for the rigid n-link robot manipulatorM(q) q+C(q;˙q)+g(q)= (t)+d(t);(13) where q(t)is the n×1vector of joint angular position,M(q) the n×n symmetric positive deÿnite inertia matrix,C(q;˙q) the n×1vector containing Coriolis and centrifugal forces, g(q)the n×1gravitational torque,and (t)n×1vector of applied joint torques that are actually the control inputs,and d(t)n×1bounded input disturbances vector.It is assumed that rigid robotic manipulators have uncertainties,i.e.:M(q)=M0(q)+ M(q);C(q;˙q)=C0(q;˙q)+ C(q;˙q);g(q)=g0(q)+ g(q);where M0(q);C0(q;˙q)and g0(q)are the estimated terms; M(q); C(q;˙q)and g(q)are uncertain terms.Then, the dynamic equation of the manipulator can be written in the following form:M0(q) q+C0(q;˙q)+g0(q)= (t)+ (t)(14)2162Y.Feng et al./Automatica 38(2002)2159–2167with(t )=− M (q ) q − C (q ;˙q )q − g (q ):(15)The following assumptions are made about the robot dy-namics: M (q ) ¡ 0;(16) C (q ;˙q ) ¡ÿ0+ÿ1 q +ÿ2 ˙q 2;(17) g (q ) ¡ 0+ 1 q ;(18) (t ) ¡ 0+ 1 q + 2 ˙q 2;(19) (t ) ¡b 0+b 1 q +b 2 ˙q 2;(20)where 0;ÿ0;ÿ1;ÿ2; 0; 1; 0; 1; 2;b 0;b 1;b 2are positivenumbers.Suppose that q r is the desired input of the robot mani-pulator and ˙q r is the derivative of q r .Deÿne ”(t )=q −q r ;˙”(t )=˙q −˙q r ;e (t )=[”T (t )˙”T (t )]T .Then,the error equation of the rigid robotic manipulator can be obtained as follows:˙e (t )=Ae +B ;(21)whereA = 0I 00 ;B =0I;=M −10(q )(−C 0(q ;˙q )−g 0(q )−M 0(q ) q r + (t )+ (t )):It can be observed that the error dynamics (21)is of form (13).The NTSM control strategy developed in Section 3can be applied.The result is summarized in the following theorem.Before proceeding further,the notation of the frac-tional power of vectors is introduced.For a variable vector z ∈R n ,the fractional power of vectors is deÿned asz q=p =(z q=p 1;z q=p 2;:::;z q=p n )T;˙z q=p =(˙z q=p 1;˙z q=p 2;:::;˙zq=p n )T:Theorem 2.For the rigid n -link manipulator (14),if the NTSM manifold is chosen as s =”+C 1˙”p=q ;(22)where C 1=diag [c 11;:::;c 1n ]is a design matrix ,and the NTSM control is designed as follows ,then the system tracking error ”(t )will converge to zero in ÿnite time . = 0+u 0+u 1;(23)where0=C 0(q ;˙q )+g 0(q )+M 0(q ) q r ;(24)u 0=−q pM 0(q )C −11˙”2−p=q;(25)u 1=−q p [s T C 1diag (˙”p=q −1)M −10(q )]T s T C 1diag (˙”p=q −1)M −10(q )×[ s C 1diag (˙”p=q −1)M −10(q ) (b 0+b 1 q+b 2 ˙q 2)];(26)where b 0;b 1;b 2are supposed to be known parameters as in (20).Proof.Consider the following Lyapunov functionV =12s Ts :Di erentiating V with respect to time,and substituting (23)–(26)into it yields˙V =s T ˙s =s T ˙”+p qC 1diag (˙”p=q −1) ”=s T ˙”+p q C 1diag (˙”p=q −1)M −10(q )(u 1(t )+u 0(t ))+ (t ))=s T p q C 1diag (˙”p=q −1)M −10(q )(u 1(t )+ (t )) =−p qs C 1diag (˙”p=q −1)M −10(q ) ×(b 0+b 1 q +b 2 ˙q 2)+p qs T C 1diag (˙”p=q −1)M −10(q ) (t )6−p qs C 1diag (˙”p=q −1)M −10(q ) ×(b 0+b 1 q +b 2 ˙q 2)+p qs C 1diag (˙”p=q −1)M −10(q ) (t ) =−p qC 1diag (˙”p=q −1)M −10(q ) ×(b 0+b 1 q +b 2 ˙q 2− (t ) ) s that is˙V 6−Á(t ) s ¡0for s =0;(27)where Á(t )=p qC 1diag (˙”p=q −1)M −10(q ) ×{(b 0+b 1 q +b 2 q 2)− (t ) }¿0:Therefore,according to the Lyapunov stability criterion,the NTSM manifold s (t )in (22)converges to zero in ÿ-nite time.On the other hand,if s =”+C 1˙”p=q =0are reached as shown in Theorem 1,then the output trackingY.Feng et al./Automatica38(2002)2159–21672163 error of the robot manipulator”(t)=q−q r will convergeto zero inÿnite time.This completes the proof.Remark3.The NTSM control proposed in Theorem2solves the control of the rigid n-link manipulator,that repre-sents a special class of problems.The method proposed canbe extended to a class of n-order(n¿2)nonlinear dynam-ical systems,that represents a broader class of problems:˙x1=f1(x1;x2);˙x2=f2(x1;x2)+g(x1;x2)+B(x1;x2)u;(28)where x1=(x11;x12;:::;x1n)T∈R n;x2=(x21;x22;:::;x2n)T∈R n;f1and f2are smooth vector functions and g rep-resents the uncertainties and disturbances satisfyingg(x1;x2) 6l g where l g¿0;B is a non-singular ma-trix and u=(u1;u2;:::;u n)T∈R n is the control vector.It is further assumed that(x1;x2)=(0;0)if and only if(x1;˙x1)=(0;0).Note that many practical dynamical sys-tems satisfy this condition,for example,the mechanicalsystems.Robotic systems are certainly a special case of(28).Actually,the robotic system(14)is not in the form of(28),but it can be transformed to such form by the coordi-nates change.So,the proposed algorithm in the paper can beapplied to any plant,which can be transformed to(28).TheNTSM for system(28)can be designed as follows.Chooses=x1+ ˙x p=q1;(29)where =diag( 1;:::; n);( i¿0)for i=1;:::;n,and˙x p=q1is represented as˙x p=q1=(x p1=q111;:::;x p n=q n1n)T:If the NTSM control is designed as in(30),then the high-order nonlinear dynamical systems(28)will converge to the NTSM and the equilibrium point inÿnite time,re-spectively,u=−@f1@x2B(x1;x2)−1l g@f1@x2+Áss+@f1@x1f1(x1;x2)+@f1@x2f2(x1;x2)+ −1 −1diag(x2−p1=q q11;:::;x2−p n=q n1n);(30)where =diag(p1=q1;:::;p n=q n);p i and q i are positive odd integers and q i¡p i¡2q i for i=1;:::;n.5.Simulation studiesThe section presents two studies:one is the comparison study of performance between NTSM and TSM,and the other an application to a robot control problem.-0.0500.050.10.150.20.250.3-0.4-0.20.20.40.60.81.0x1x2Fig.2.Phase plot of NTSM system.parison studyIn order to analyze the e ectiveness of the NTSM control proposed and to compare NTSM with TSM,consider the simple second-order dynamical system below:˙x1=x2;˙x2=0:1sin20t+u:(31) The NTSM and TSM are chosen as follows:s NTSM=x1+x5=32;s TSM=x2+x3=51:Three control approaches are adopted:NTSM control, TSM control,and indirect NTSM control.The NTSM con-trol is designed according to(10)and NTSM(9),and TSM control is designed according to(5)and TSM(2).The in-direct NTSM control is designed in the same way as TSM, with only one di erence,that is when|x1|¡ ,let p=q, and is selected as0.001(Man&Yu,1997).Three sys-tems achieve the same terminal sliding mode behavior.So, only the phase plane response of the NTSM control system is provided,as shown in Fig.2.The control signals for the three kinds of systems are shown in Figs.3–5.It can be ob-viously seen some valuable facts.No singularity occurs at all in the case of NTSM control.When the trajectory crosses the x1=0axis,singularity occurs in the case of TSM con-trol.For the indirect NTSM control,although singularity is avoided by switching from the TSM to linear sliding mode, the e ect of the singularity can be seen,especially when decreases to zero.However when is relatively large, the sliding mode of the system is switching between TSM and the linear plane based sliding mode,and the advantage of TSM system is lost.Therefore,from the results of the above simulations,the occurrence of singularity problem in the TSM system,the drawback of the indirect NTSM,and the e ectiveness of the NTSM in avoiding singularity,are observed,respectively.2164Y.Feng et al./Automatica 38(2002)2159–21670.51.0 1.52.02.5-8-7-6-5-4-3-2-1012time (sec.)uFig.3.Control signal of NTSM system.0.51.0 1.52.02.5-90-80-70-60-50-40-30-20-10010time(sec.)uFig.4.Control signal of TSM system.5.2.Control of a robotA simulation with a two-link rigid robot manipulator (seeFig.6)is performed for the purpose of evaluating the perfor-mance of the proposed NTSM control scheme.The dynamic equation of the manipulator model in Fig.6is given by a 11(q 2)a 12(q 2)a 12(q 2)a 22q 1 q 2 +−ÿ12(q 2)˙q 21−2ÿ12(q 2)˙q 1˙q 2ÿ12(q 2)˙q 22+ 1(q 1;q 2)g 2(q 1;q 2)g =1 2;(32)0.51.0 1.52.02.5-8-7-6-5-4-3-2-1012time(sec.)uFig.5.Control signal of indirect TSMsystem.Fig.6.Two-link robot manipulator model.wherea 11(q 2)=(m 1+m 2)r 21+m 2r 22+2m 2r 1r 2cos(q 2)+J 1;a 12(q 2)=m 2r 22+m 2r 1r 2cos(q 2);a 22=m 2r 22+J 2;ÿ12(q 2)=m 2r 1r 2sin(q 2);1(q 1;q 2)=((m 1+m 2)r 1cos(q 2)+m 2r 2cos(q 1+q 2)); 2(q 1;q 2)=m 2r 2cos(q 1+q 2):The parameter values are r 1=1m ;r 2=0:8m ;J 1=5kg m ;J 2=5kg m ;m 1=0:5kg ;m 2=1:5kg.The desired reference signals are given by q r 1=1:25−(7=5)e −t +(7=20)e −4t ;q r 2=1:25+e −t −(1=4)e −4t :The initial values of the system are selected as q 1(0)=1:0;q 2(0)=1:5;˙q 1(0)=0:0;˙q 2(0)=0:0:Y.Feng et al./Automatica 38(2002)2159–216721650123456789100.20.40.60.81.01.21.41.6time(sec)O u t p u t t r a c k i n g o f j o i n t 1( r a d )Fig.7.Output tracking of joint 1using a boundary layer.123456789101.21.31.41.51.61.71.81.92.0time(sec)O u t p u t t r a c k i n g o f j o i n t 2( r a d )Fig.8.Output tracking of joint 2using a boundary layer.The nominal values of m 1and m 2are assumed to be ˆm 1=0:4kg ;ˆm 2=1:2kg :The boundary parameters of system uncertainties in (20)are assumed to be b 0=9:5;b 1=2:2;b 2=2:8:Suppose the tracking error and the 1st tracking error are tobe |˜q i |60:001and |˙˜q i |60:024;i =1,2,where ˜q i =q i −q riand ˙˜q i =˙q i −˙q ri ;i =1,ing the above performance index,it can be determined the parameters of NTSM manifolds.According to (12),it is obtained that |˜q i |6’i ;i =1;2:Let ’i =0:001;i =1;2(33)012345678910-15-10-5051015202530time(sec)C o n t r o l i n p u t o f j o i n t 1( N m )Fig.9.Control of joint 1using a boundary layer.12345678910-14-12-10-8-6-4024time(sec)C o n t r o l i n p u t o f j o i n t 2 (N m )Fig.10.Control of joint 2using a boundary layer.the tracking error of the system |˜q i |can be guaranteed.Onthe other hand,according to (12),it is obtained that |˙˜q i |6(2ÿ’i )q=p ;i =1;2:Let(2ÿ’i )q=p 60:024;i =1;2;thenq p6log 0:024log(2ÿ’i );i =1;2:(34)For simplicity,let ÿi =1;i =1;2.Then from (34),it is obtained thatq p 6log 0:024log(2×1×0:001)=0:60015;i =1;2:(35)2166Y.Feng et al./Automatica 38(2002)2159–2167-0.100.10.20.30.40.50.60.70.80.9-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.100.1e1(t)(rad)d e 1/d t (r a d /s )Fig.11.Phase plot of tracking error of joint 1.-0.5-0.4-0.3-0.2-0.10.100.20.30.40.50.6e2(t)(rad)d e 2/d t (r a d /s )Fig.12.Phase plot of tracking error of joint 2.Let qp=0:6:Now,the parameters of the TSM can be obtained as:q =3;p =5(there are many other options as well).Finally,the NTSM models are obtained as follows:s 1=˜q 1+˙˜q 5=31=0;s 2=˜q 2+˙˜q 5=32=0:In order to eliminate the chattering,the boundary layermethod is adopted (Slotine &Li,1991)in the NTSM con-trol.The simulation results are shown in Figs.7–12.Figs.7and 8show the output tracking of joints 1and 2.Figs.9and 10depict the control signals of joints 1and 2,respec-tively.Figs.11and 12show the phase plot of tracking error of joints 1and 2,respectively.One can easily see that the system states track the desired reference signals.First,theoutput tracking errors of the system reach the terminal slid-ing mode manifold s =0in ÿnite time,then they converge to zero along s =0in ÿnite time.It can be clearly seen that neither singularity nor chattering occurs in the two control signals.6.ConclusionsIn this paper,a global non-singular TSM controller for a second-order nonlinear dynamic systems with parameter uncertainties and external disturbances has been proposed.The time taken to reach the manifold from any initial sys-tem states and the time taken to reach the equilibrium point in the sliding mode have been proved to be ÿnite.The new terminal sliding mode manifold proposed can enable the elimination of the singularity problem associated with con-ventional terminal sliding mode control.The global NSTM controller proposed has been used for the control design of an n -degree-of-freedom rigid manipulator.Simulation results are presented to validate the analysis.The proposed controller can be easily applied to practical control of robots as given the advances of microprocessors,the vari-ables with fractional power can be easily built into control algorithms.ReferencesBhat,S.P.,&Bernstein, D.S.(1997).Finite-time stability of homogeneous systems.Proceedings of American control conference (pp.2513–2514).Feng,Y.,Han,F.,Yu,X.,Stonier,D.,&Man,Z.(2000).Tracking precision analysis of terminal sliding mode control systems with saturation functions.In X.Yu,J.-X.Xu (Eds.),Advances in variable structure systems :Analysis,integration and applications (pp.325–334).Singapore:World Scientiÿc.Feng,Y.,Yu,X.,&Man,Z.(2001).Non singular terminal sliding mode control and its applications to robot manipulators.Proceedings of 2001IEEE international symposium on circuits and systems ,Vol.III (pp.545–548).Sydney,May 2001.Haimo,V.T.(1986).Finite time controllers.SIAM Journal of Control and Optimization ,24(4),760–770.Man,Z.,Paplinski,A.P.,&Wu,H.(1994).A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators.IEEE Transactions on Automatic Control ,39(12),2464–2469.Man,Z.,&Yu,X.(1997).Terminal sliding mode control of mimo linear systems.IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications ,44(11),1065–1070.Slotine,J.E.,&Li,W.(1991).Applied non-linear control .Englewood Cli s,NJ:Prentice-Hall.Tang,Y.(1998).Terminal sliding mode control for rigid robots.Automatica ,34(1),51–56.Utkin,V.I.(1992).Sliding modes in control optimization .Berlin,Heidelberg:Springer.Wu,Y.,Yu,X.,&Man,Z.(1998).Terminal sliding mode control design for uncertain dynamic systems.Systems and Control Letters ,34,281–288.Yu,X.,&Man,Z.(1996).Model reference adaptive control systems with terminal sliding modes.International Journal of Control ,64(6),1165–1176.Yurl,B.S.,&James,M.B.(1988).Continuous sliding mode control.Proceedings of American Control Conference (pp.562–563).Y.Feng et al./Automatica 38(2002)2159–21672167Yong Feng received the B.S.degree from the Department of Control Engineering in 1982,and M.S.degree from the Depart-ment of Electrical Engineering in 1985and Ph.D.degree from the Department of Con-trol Engineering in 1991,in Harbin Insti-tute of Technology,China,respectively.He has been with the Department of Electri-cal Engineering,Harbin Institute of Tech-nology since 1985,and is currently a Pro-fessor.He was a visiting scholar in the Faculty of Informatics and Communication,Australia,from May 2000to November 2001.He has authored and co-authored over 50journal and conference papers.He has published 3books.He has completed over 10research projects,including process control,arc welding robot,climbing wall robot,CNC system,a direct drive motor and its control system,the electronics and simulation of CCD digital camera,and so on.His current research interests are nonlinear control systems,sampled data systems,robot control,digital camera modelling andsimulation.Xinghuo Yu received B.Sc.(EEE)and M.Sc.(EEE)from the University of Sci-ence and Technology of China in 1982and 1984respectively,and Ph.D.degree from South-East University,China in 1987.From 1987to 1989,he was Research Fellow with Institute of Automation,Chi-nese Academy of Sciences,Beijing,China.From 1989to 1991,he was a Postdoctoral Fellow with the Applied Mathematics De-partment,University of Adelaide,Australia.From 1991to 2002,he was with CentralQueensland University,Rockhampton,Australia where he was Lecturer,Senior Lecturer,Associate Professor then Professor of Intelligent Sys-tems and the Associate Dean (Research)of the Faculty of Informatics and Communication.Since March 2002,he has been with the School of Electrical and Computer Engineering at Royal Melbourne Institute of Technology,Australia,where he is a Professor,Director of Software and Networks,and Deputy Head of School.He has also held Visiting Profes-sor positions in City University of Hong Kong and Bogazici University(Turkey).He has recently been conferred as Honorary Professor of Cen-tral Queensland University.He is Guest Professor of Harbin Institute of Technology (China),Huazhong University of Science and Technology (China),and Southeast University (China).Professor Yu’s research inter-ests include sliding mode and nonlinear control,chaos and chaos control,soft computing and applications.He has published over 200refereed pa-pers in technical journals,books and conference proceedings.He has also coedited four research books “Complex Systems:Mechanism of Adapta-tion”(IOS Press,1994),“Advances in Variable Structure Systems:Anal-ysis,Integration and Applications”(World Scientiÿc,2001),“Variable Structure Systems:Towards the 21st Century”(Springer-Verlag,2002),“Transforming Regional Economies and Communities with Information Technology”(Greenwood,2002).Prof.Yu serves as an Associate Editor of IEEE Trans Circuits and Systems Part I and is on the Editorial Board of International Journal of Applied Mathematics and Computer Science.He was General Chair of the 6th IEEE International Workshopon Variable Structure Systems held in December 2000on the Gold Coast,Australia.He was the sole recipient of the 1995Central Queensland University Vice Chancellor’s Award forResearch.Zhihong Man received the B.E.degree from Shanghai Jiaotong University,China,the M.S.degree from the Chinese Academy of Sciences,and the Ph.D.from the Uni-versity of Melbourne,Australia,all in electrical and electronic engineering,in 1982,1986and 1993,respectively.From 1994to 1996,he was a Lecturer in the Department of Computer and Commu-nication Engineering,Edith Cowan Uni-versity,Australia.From 1996to 2000,he was a Lecturer and then a SeniorLecturer in the Department of Electrical Engineering,the University of Tasmania,Australia.In 2001,he was a Visiting Senior Fellow in the School of Computer Engineering,Nanyang Technological University,Singapore.Since 2002,he has been an Associate Professor of Computer Engineering at Nanyang Technological University.His research interests are in robotics,fuzzy logic control,neural networks,sliding mode control and adaptive signal processing.He has published more than 120journal and conference papers in these areas.。
Clinical Nutrition(2003)22(4):415–421r2003Elsevier Ltd.All rights reserved.doi:10.1016/S0261-5614(03)00098-0SPECIAL ARTICLEESPEN Guidelines for Nutrition Screening2002J.KONDRUP,n S.P.ALLISON,y M.ELIA,z B.VELLAS,z M.PLAUTH yn Rigshospitalet University Hospital Copenhagen,Denmark,y Queen’s Medical Centre,Nottingham,UK,z University of Southampton, Southampton,UK,z University Hospital Centre,T oulouse,France,y Community Hospital Dessau,Germany(Correspondence to:JK, Nutrition Unit^5711,Rigshospitalet University,9Blegdamsvej,2100Copenhagen,Denmark)AbstractöAim:T o provide guidelines for nutrition risk screening applicable to di¡erent settings(community,hospital, elderly)based on published and validated evidence available until June2002.Note:These guidelines deliberately make reference to the year2002in their title to indicate that this version is based on the evidence available until2002and that they need to be updated and adapted to current state of knowledge in the future. In order to reach this goal the Education and Clinical Practice Committee invites and welcomes all criticism and sugges-tions(button for mail to ECPC chairman).r2003Elsevier Ltd.All rights reserved.Key words:Nutritional Assessment;malnutrition;hos-pital;communityBackgroundAbout30%of all patients in hospital are under-nourished.A large part of these patients are under-nourished when admitted to hospital and in the majority of these,undernutrition develops further while in hospital(1).This can be prevented if special attention is paid to their nutritional care.Other features of the patient’s primary disease are screened routinely and treated(e.g.dehydration,blood pressure,fever),and it is unacceptable that nutritional problems causing significant clinical risk are not identified.Neglect is also beginning to have medico-legal consequences,since an increasing number of cases of nutritional neglect are being brought to the courts.There is every reason, therefore,for hospitals and healthcare organizations to adopt a minimum set of standards in this area. However,the lack of a widely accepted screening system which will detect patients who might benefit clinically from nutritional support is commonly seen as a major limiting factor to improvement.It is the purpose of this document to give simple guidelines as to how undernutrition,or risk for develop-ment of undernutrition,can be detected,by proposing a set of standards which are practicable for general use in patients and clients within present healthcare resources. Purpose of screeningThe purpose of nutritional screening is to predict the probability of a better or worse outcome due to nutritional factors,and whether nutritional treatmentis likely to influence this.Outcome from treatment may be assessed in a number of ways:1.Improvement or at least prevention of deteriorationin mental and physical function2.Reduced number or severity of complications ofdisease or its treatment.3.Accelerated recovery from disease and shortenedconvalescence.4.Reduced consumption of resources, e.g.length ofhospital stay and other prescriptions.The nutritional impairment identified by screening should therefore be relevant to these aims and outcomes and may vary according to circumstances,e.g.age or type of illness.In the community,undernutrition,with or without chronic disease,may be the primary factor determining the mental or physical function of an individual,whereas in hospital or in a nursing home, disease factors assume a greater importance with disease-associated undernutrition assuming an important albeit secondary role.Screening in the community can therefore be focused primarily on nutritional variables based on the results of semi-starvation studies such as those of Ancel Keys and his colleagues in1950(2).In hospitals,other aspects of disease need to be considered in combination with purely nutritional measurements in order to deter-mine whether nutritional support is likely to be beneficial.Randomized controlled trials of nutritional support in particular disease groups may therefore provide important evidence on which to base our criteria of nutritional risk.Methodological considerationsThe usefulness of screening tools can be evaluated by a number of methods.The predictive validity is of major importance,i.e.that the individual identified to beat 415risk by the method is likely to obtain a health benefit from the intervention arising from the results of the screening.This can be obtained in various ways,as described for the individual screening tools below.The screening tool must also have a high degree of content validity,i.e.considered to include all relevant components of the problem it is meant to solve.This is usually achieved by involving representatives of those who are going to use it in the process of designing the tool.It must additionally have a high reliability,i.e little inter-observer variation.It must also be practical, i.e.those who are going to use the tool mustfind it rapid,simple and intuitively purposeful.It should not contain redundant information,rmation about vomiting or dysphagia is unnecessary when dietary intake is part of the screening.The etiology of reduced dietary intake belongs to asssessment(see below)or is incorporated into the nutrition care plan.Several other aspects of evaluating screening tools are described in an analysis of44nutritional screening tools(3). Finally,a screening tool should be linked to specified protocols for action, e.g.referral of those screened at risk to an expert for more detailed assessment and care plans.Screening leads to nutritional careHospital and healthcare organizations should have a policy and a specific set of protocols for identifying patients at nutritional risk,leading to appropriate nutritional care plans:an estimate of energy and protein requirements including posssible allowance for weight gain,followed by prescription of food,oral supple-ments,tube feeding or parenteral nutrition,or a combination of these.It is suggested that the following course of action be adopted.1.Screening This is a rapid and simple processconducted by admitting staff or community health-care teams.All patients should be screened on admission to hospital or other institutions.The outcome of screening must be linked to defined courses of action:a.The patient is not at risk,but may need to bere-screened at specified intervals,e.g.weeklyduring hospital stay.b.The patient is at risk and a nutrition plan isworked out by the staff.c.The patient is at risk,but metabolic orfunctional problems prevent a standard planbeing carried out.d.There is doubt as whether the patient is at risk.In the two latter cases,referral should be made to an expert for more detailed assessment.2.Assessment.This is a detailed examination ofmetabolic,nutritional or functional variables by an expert clinician,dietitian or nutrition nurse.It isa longer process than screening which leads to anappropriate care plan considering indications, possible side-effects,and,in some cases,special feeding techniques.It is based,like all diagnosis, upon a full history,examination and,where appropriate,laboratory investigations.It will in-clude the evaluation or measurement of the func-tional consequences of undernutrition,such as muscle weakness,fatigue and depression.It involves consideration of drugs that the patient is taking and which may be contributing to the symptoms,and of personal habits such as eating patterns and alcohol intake.It includes gastrointestinal assessment, including dentition,swallowing,bowel function, etc.It necessitates an understanding of the inter-pretation of laboratory tests,e.g.plasma albumin which is more likely to be a measure of disease severity than of malnutrition per se.Calcium, magnesium and zinc levels may be important,and in some cases laboratory measurement of micro-nutrient levels may be appropriate.3.Monitoring and outcome.A process of monitoringand defining outcome should be in place.The effectiveness of the care plan should be monitored by defined measurements and observations,such as recording of dietary intake,body weight and function,and a schedule for detecting possible side-effects.This may lead to alterations in treatment during the natural history of the patient’s condition.munication.Results of screening,assessmentand nutrition care plans should be communicated to other healthcare professionals when the patient is transferred,either back into the community or to another institution.When patients are transferred from the community to hospital or vice versa,it is important that the nutritional data and future care plans be communicated.5.Audit.If this process is carried out in a systematicway,it will allow audit of outcomes which may inform future policy decisions.Although this document will focus mainly on the process of screening,this cannot be considered in isolation and must be linked to the pathway of care described above.Components of nutritional screeningScreening tools are designed to detect protein and energy undernutrition,and/or to predict whether under-nutrition is likely to develop/worsen under the present and future conditions of the patient/client.Therefore, screening tools embody the following four main principles:1.What is the condition now?Height and weight allowcalculation of body mass index(BMI).Normal range 20–25,obesity430,borderline underweight18.5–20, undernutrition o18.5.In cases where it is not possible416ESPENGUIDELIN ESto obtain height and weight,e.g.in severely ill patients,a useful surrogate may be mid-arm circumference,measured with a tape around the upper arm midway between the acromion and the olecranon.This can be related to centiles of tables for that particular population,age and sex.1BMI may be less useful in growing children and adolescents,and in the very elderly.Nevertheless,the BMI provides the best generally accepted measure of weight for height.2.Is the condition stable?Recent weight loss is obtainedfrom the patient’s history,or,even better,from previous measurements in medical records.More than5%involuntary weight loss over3months,is usually regarded as significant.This may reveal undernutrition which was not discovered by1.,e.g.weight loss in obesity,and may also predict further nutritional deterioration depending on3and4.3.Will the condition get worse?This question may beanswered by asking whether food intake has been decreased up to the time of screening,and if so by approximately how much and for how long.Con-firmatory measurements can be made of the patient’s food intake in hospital or by food diary.If these are found to be less than the patient’s requirements with normal intake,then further weight loss is likely.4.Will the disease process accelerate nutritional deteriora-tion?In addition to decreasing appetite,the disease process may increase nutritional requirements due to the stress metabolism associated with severe disease(e.g.major surgery,sepsis,multitrauma),causingnutritional status to worsen more rapidly,or to develop rapidly from fairly normal states of(1–3)above. Variables1–3should be included in all screening tools,while4is relevant mainly to hospitals.In screening tools,each variable should be given a score, thereby quantifying the degree of risk and allowing a direct link to a defined course of action.Screening tools recommended by ESPENThe community:MUST for adults(see appendix)The purpose of the MUST system is to detect under-nutrition on the basis of knowledge about the associa-tion between impaired nutritional status and impaired function(5).It was primarily developed for use in the community,where serious confounders of the effect of undernutrition are relatively rare.Evaluation.The predictive validity of MUST in the community is based on previous and new studies of the effect of semi-starvation/starvation on mental and physical function in healthy volunteers concurrent validity with other tools,and utilisation of health care resources.The new series of studies describe the impair-ment of function as a results of various extents of weight loss,with various rates of weight loss,from various initial nutritional statures(low or high BMI)(6).It has been documented to have a high degree of relia-bility(low inter-observer variation)with a k=0.88À1.00. Its content validity has been assured by involving a multidisciplinary working group in its preparation.Its practicability has been documented in a number of studies in different community regions in the UK(5)(Table1). The tool has recently been extended to other health care settings,including hospitals,where again it has been found to have excellent inter-rater reliability,concurrent validity with other tools,and predictive validity(length of hospital stay,mortality in elderly wards,and discharge destination in orthopaedic patients).The hospital:NRS-2002(see appendix)The purpose of the NRS-2002system is to detect the presence of undernutrition and the risk of developing undernutrition in the hospital setting(4).It contains the nutritional components of MUST,and in addition,a grading of severity of disease as a reflection of increased nutritional requirements.It includes four questions as a pre-screening for departments with few at risk patients. With the prototypes for severity of disease given,it is meant to cover all possible patient categories in a hospital.A patient with a particular diagnosis does not always belong to the same category.A patient with cirrhosis,for example,who is admitted to intensive care because of a severe infection,should be given a score of 3,rather than1.It also includes old age as a risk factor, based on RCTs in elderly patients(4)(Table2). Evaluation.Its predictive validity has been documented by applying it to a retrospective analysis of128RCTs of nutritional support which showed that RCTs with patients fullfilling the risk criteria had a higher likelihood of a positive clinical outcome from nutritional support than RCTs of patients who did not fulfill these criteria (4).In addition,it has been applied prospectively in a controlled trial with212hospitalized patients selected according to this screening method,which showed a reduced length of stay among patients with complications in the intervention group(when adjusted for occurrence of operation and death).2Its content validity was maximized by involving an ESPENad hoc working group under the auspices of the ESPENEducational and Clinical Practice Committee in the literature based validation.It has also been used by nurses and dietitians in a2years’implementation study in three hospitals (local,regional and university hospital)in Denmark(7),1Data on simultaneous measurements of BMI and mid-arm circum-ference have not been published in a form that allows comparison of cut-off points for these measurements.An analysis of RCTs,in whichmean values BMI were given together with mean values of mid-arm circumference,suggested that a mid-arm circumference o25cm corresponds to a BMI o20.5(4).The data did not allow for distinguishing between lower cut-off points for BMI.2The trial was completed in April2002and a manuscript is in preparation by N.Johansen et al.A copy is available upon request (kondrup@rh.dk)CLINICAL NUTRITION417which indicated that staff and investigators seldomly disagreed about a patient’s risk status.Its reliability was validated by inter-observer variation between a nurse,a dietitian and a physician with a k=0.67.Its practicability was shown by thefinding that99%of750newly admitted patients could be screened.The incidence of at-risk patients was about20%(7).The elderly:MNAThe purpose of MNA is to detect the presence of undernutrition and the risk of developing undernutrition among the elderly in home-care programmes,nursing homes and hospitals.The prevalence of undernutrition among the elderly may reach significant levels(15–60%) under these circumstances(8).The screening methods mentioned above will detect undernutrition among many elderly patients,but for the frail elderly the MNA screening is more likely to identify risk of developing undernutrition,and undernutrition at an early stage, since it also includes physical and mental aspects that frequently affect the nutritional status of the elderly,as well as a dietary questionnaire.It is in fact a combination of a screening and an assessment tool,since the last part of the form(not reproduced here)is a more detailed exploration of the items in thefirst part of the form. Evalution.The predictive validity of MNA has been evaluated by demonstrating its association with adverse health outcome(9),social functioning(10),mortality (11,12)and a higher rate of visits to the general practitioner(13).In a randomized trial of elderly at risk according to MNA,those given oral supplements increased body weight,but not grip strength(14),and in another similar(but small)randomized trial of elderly in a nursing home,the intervention group increased dietary intake but no functional or clinical outcome data were reported(15).The content validity has not been reported.The reliability(inter-observer variation)was estimated,with a k=0.51(8).The MNA takes o10min to complete and its practicability has been shown by its use in a large number of studies,see(8).ChildrenA universally accepted screening tool for children is not yet available(although guidelines are in preparation under the Chairmanship of Professor Bert Koletzko, Munich).It is already standard practice among paedia-tricians to maintain height and weight charts,allowing calculation of growth velocity which is high-sensitive to nutritional status.Pubertal development is also im-paired during undernutrition.Other screening systemsIn their recent guidelines,the ASPENboard of directors stated that no screening system has been validated with respect to clinical outcome(16).They also suggested that,in the absence of an outcomes validated approach,a combination of clinical and biochemical parameters should be used to assess the presence of malnutrition. They suggest using the subjective global assessment,SGA (17),which classifies patients subjectively on the basis of data obtained from history and physical examination, since this system has been validated in several ways other than with respect to clinical outcome,e.g.inter-observer variation.However,the lack of a direct connection between the observations and the classification of patients leaves the tool more complex and less focused than desired for rapid screening purposes.An analysis of a total of44screening tools for use in hospital and the community(3)indicated that tools were published with insufficient details regarding their intended use and method of derivation,and with an inadequate assessment of their effectiveness.No one tool satisfied a set of criteria regarding scientific merit. The present recommendations by ESPENmay share some of these short-comings,but in view of the massive neglect of nutritional problems in health institutions, and the explicit lack of generally accepted screening tools,the predictive validity given above is considered sufficient to provide a practical and reasonable ap-proach in the light of present knowledge.These recommendations may need to be modified in the light of future experience.Predictive validity vs meta-analyses of treatmentThe predictive validity reported here needs to be commented upon in relation to recent meta-analyses, or systematic reviews.Such analyses suggest that nutritional support by the enteral or oral route improves functional capacity and clinical outcome,and reduces length of stay and mortality,e.g.(18,19).In a recent meta-analysis of studies employing parenteral nutrition (20),it was pointed out that there are inadequate data to assess the efficacy of parenteral nutrition in patients who are severely undernourished,who have highly catabolic disease processes,or who cannot be provided with enteral nutrition for several weeks.These are in fact the patients who most commonly receive supportive par-enteral nutrition now-a-days,and for ethical reasons, there will probably not be randomized trials available in the future either.The majority of studies available deal with the grey area of patients who are less under-nourished/not undernourished and/or are mildly–mod-erately catabolic.With these studies at hand,it was difficult to identify clinical conditions where parenteral nutrition would be clinically effective(20).However,the literature analysis mentioned above(4)suggests that parenteral nutrition is clinically effective in studies of patients who rather more than just fulfill the criteria for being nutritionally at risk.Furthermore,nutrients known to be essential for healthy humans are also essential for patients,and therefore the required documentation is not to confirm418ESPENGUIDELIN ESthe essentiality of nutrients among patients,but rather to define when a certain form of nutritional support is more beneficial than leaving the patient to develop nutritional deficiences.Therefore,meta-analyses and systematic reviews of nutritional support are too simplistic,if performed by analogy with treatment using a new drug.Finally,a nutritional care plan in most cases will involve food,oral supplements,tube feeding and parenteral nutrition,often used interchangeably in the same patient,whereas the majority of randomized trials,and meta-analyses,have dealt with studies of single modality treatments.The predictive validity of a screen-ing tool therefore cannot be directly based on meta-analyses available at present.References1.McWhirter J P,Pennington C R.Incidence and recognition of malnutrition in hospital.BMJ 1994;308:945–9482.Keys A,Brozek J,Henschel A et al.The Biology of Human Starvation.Minneapolis:University of Minnesota Press;1950:703–748&819and 9183.Jones J M.The methodology of nutritional screening and assess-ment tools.J Hum Nutr Diet 2002;15:59–714.Kondrup J,Rasmussen H H,Hamberg O et al.Nutritional Risk Screening (NRS 2002):a new method based on an analysis of controlled clinical trials.Clin Nutr 2003;22:321–3365.Malnutrition Advisory Group (MAG).MAG—guidelines for Detection and Management of Malnutrition.British Association for Parenteral and Enteral Nutrition,2000,Redditch,UK6.Elia M.Personal communication7.Kondrup J,Johansen N,Plum L M et al.Incidence of nutritional risk and causes of inadequate nutritional care in hospitals.Clin Nutr 2002;21:461–4688.Vellas B,Guigoz Y,Garry P J et al.The Mini NutritionalAssessment (MNA)and its use in grading the nutritional state of elderly patients.Nutrition 1999;15:116–1229.Beck A M,Ovesen L,Osler M.The ‘Mini Nutritional Assessment’(MNA)and the ‘Determine Your Nutritional Health’Checklist (NSI Checklist)as predictors of morbidity and mortality in an elderly Danish population.Br J Nutr 1999;81:31–3610.Griep M I,Mets T F,Collys K et al.Risk of malnutrition inretirement homes elderly persons measured by the ‘mini-nutritional assessment’.J Gerontol A Biol Sci Med Sci 2000;55:M57–pan B,di Castri A,Plaze J M et al.Epidemiological studyof malnutrition in elderly patients in acute,sub-acute and long-term care using the MNA.J Nutr Health Aging 1999;3:146–15112.Gazzotti C,Albert A,Pepinster A et al.Clinical usefulness of themini nutritional assessment (MNA)scale in geriatric medicine.J Nutr Health Aging 2000;4:176–8113.Beck A M,Ovesen L,Schroll M.A six months’prospective follow-up of 65+-y-old patients from general practice classified according to nutritional risk by the Mini Nutritional Assessment.Eur J Clin Nutr 2001;55:1028–1033uque S,Arnaud Battandier F,Mansourian R et al.Protein-energy oral supplementation in malnourished nursing-home residents.A controlled trial.Age Ageing 2000;29:51–5615.Beck A M,Ovesen L,Schroll M.Home-made oral supplement asnutritional support of old nursing home residents,who areundernourished or at risk of undernutrition based on the MNA.A pilot trial.Aging Clin Exp Res 2002;14:212–21516.ASPENBoard of directors.Guidelines for the use of parenteral,enteral nutrition in adult and pediatrc care.J Parenter Enteral Nutr 2002;26:9SA–12SA17.Detsky A S,McLaughlin J R,Baker J P et al.What is subjectiveglobal assessment of nutritional status?J Parenter Enteral Nutr 1987;11:8–1318.Potter J,Langhorne P,Roberts M.Routine protein energy supple-mentation in adults:systematic review.BMJ 1998;317:495–50119.Stratton R J,Green C J,Elia M E.Disease Related Malnutrition:An Evidence-based Approach to Treatment.CAB International,Oxford,UK,200320.Koretz R L,Lipman T O,Klein S.AGA technical review onparenteral nutrition.Gastroenterology 2001;121:970–1001Can be adapted for special circumstances (e.g.when weight and height cannot be measured or when there are fluid disturbances)using specified alternative measurements including subjective criteria.It also identifies obesity (BMI 430kg/m 2).AppendixMalnutrition Universal Screening Tool (MUST)for adultsCLINICAL NUTRITION 419420ESPENGUIDELIN ESNutritional Risk Screening(NRS2002)CLINICAL NUTRITION421 r。
数据库论⽂参考⽂献数据库论⽂参考⽂献范例 参考⽂献为撰写或编辑论⽂和著作⽽引⽤的有关⽂献信息资源,以下是⼩编搜集整理的数据库论⽂参考⽂献范例,供⼤家阅读查看。
参考⽂献⼀: [1]⽥⼒,黄宝华,栾绍鹏.烟台市⼟地储备系统设计与实现[J].⼭东国⼟资源.2010(10) [2]崔少国,刘赟,周林.基于GIS的⼟地收购储备管理信息系统的研究与构建[J].软件导刊.2007(19) [3]黄志超,王明举.基于GIS的⼟地收购储备管理信息系统设计与实现[J].微型电脑应⽤.2005(02) [4]陈正江,汤国安,任晓东编着.地理信息系统设计与开发[M].科学出版社,2005 [5]李满春等编着.GIS设计与实现[M].科学出版社,2003 [6]赵美超,陶本藻,赵俊三.⼟地储备与交易信息系统的设计与实现[J].测绘通报.2004(01) [7]GB/T21740-2008.基础地理信息城市数据库建设规范[S].2008 [8]GB/T17798-2007.地理空间数据交换格式[S].2007[9]DonT.Johnson,LaryB.Cowart.PublicSectorLandBanking:ADecisionModelforLocalGovernments[J].PublicBudgeting&Finance.2003(4) [10]芦倩.基于ArcGISEngine的⽔⽂⽣态数据管理系统设计与实现[D].北京林业⼤学2011 [11]刘伟.光纤资源⽹GIS管理的数据挖掘研究[D].吉林⼤学2004 [12]唐铁虎.基于Web服务的企业基础数据服务中⼼研究[D].哈尔滨⼯程⼤学2012 [13]周学蕾.吉林省既有建筑节能改造价值分析[D].长春⼯程学院2015 [14]王要锋.基于综合评判及有限元分析的基坑⽀护⼯程⽅案优化设计[D].长春⼯程学院2015 [15]冯清.天津某深基坑“两墙合⼀”⽀护结构的变形分析[D].长春⼯程学院2015 [16]张云.能⼒胜任模型在建筑施⼯单位绩效管理中的应⽤研究[D].长春⼯程学院2015 [17]付⽤⼴.城镇地籍数据库建设研究[D].南京农业⼤学2009 [18]钟少君.数据挖掘技术在数字电视平移中的应⽤研究[D].江西理⼯⼤学2009 [19]张泽建.基于GIS的地籍管理信息系统的设计研究[D].浙江师范⼤学2009 [20]单楠.基于SketchUp和ArcGIS的三维GIS开发技术研究[D].西南⼤学2009 [21]戚尚育.⾼分辨率遥感图像样本提取和样本库的研究[D].西安科技⼤学2008 [22]黄刚.基于SOA的`油⽥WebGIS研究与实现[D].⼤庆⽯油学院2008 [23]蔡磊.新疆沙漠化监测预警系统研究[D].新疆⼤学2011 [24]冯勰.基于Oracle的测井数据库的设计与研究[D].吉林⼤学2006 [25]马⽂惠.基于决策⽀持的棉库管理系统研究[D].华北电⼒⼤学2011 [26]贾艳秋.基于GIS的农业宏观决策⽀持系统研究[D].北京林业⼤学2007 [27]宋怡.101堆退役数据库建⽴及实现技术研究[D].哈尔滨⼯程⼤学2013 [28]张宏.镁合⾦数据库维护系统及安全机制的研究[D].重庆⼤学2010 参考⽂献⼆: [1]Biun,A.Virtualizationtechniques:AmethodicalreviewofXenandKVM[A]-CommunicationinComputerandInformationScience[C],2011:399-410[2]SupermanJ,VenkitachalamG,LimB.VirtualizationI/ODevicesonVMWareWorkstationHostedVirtualMachineMonitor[A].In:Proceedingofthe2001USENIXAnnualTechnicalConference(USENIXATC2001)[C]5Boston,MA,USA,2001:16-30. [3]Quynh?NguyenAnh.Areal-timeintegritymonitorforXenvirtualmachine[A].InternationalConferenceonNetworidngandServices2006:110-123. [4]Fernandes,NataliaCastro>eto.XNetMon:Anetworkmonitorforseemingvirtualnetworks[A].IEEEInternationalConferenceonCommunication[C].2011:351-356.[5]PayneB,CarboneM,SharifMbaxges:anarchitectureforsecureactivemonitoringusingvirtualization[A],In:ProceedingoftheIEEESymposiumonSecurityaridPrivacy,IEEEComputerSociety[Cj.Washington,DC,USA,2008:2 247 [6]Carbone,Martim.Secureandrobustmonitoringofvirtualmachinesthroughguest-assistedintrospection[A].LectureNotesinComputerScience,2012:22-4L [7]Ibrahim,AmaniS.CloudSec:AsecuritymonitoringapplianceforHirtualMachinesinthelaascloudmodel[A].InternationalConferenceonNetworkandSystemSecurity[C]-2011:113-120. [8]GuofbXiang,HaiJin,DeqingZou.AComprehensiveMonitoringFrameworkforVirtualtfiComputingEnvironment[A].In:Proaofthe26InternationalConferenceonInformationNetworking(IC01N2012)[C],poster,Bali,Indonesia,2012:551-556. [9]Vmitoolsprojecthomepage.2012.Available: [10]Payne,BryanD.Secureandflexiblemonitoringofvirtualmachines[A].AnnualComputerSecurityApplicationsConference,ACSAC[C].2007:385-397. [11]wton,B.Denney,N.D.Guarneri,V.Ruppert,C.Bothamy.Bochsx86PCEmulatorUserManual[EB/OL]. [12]ChandraShekar,N.Fornesic.AnalysisonQUME[A].CommunicationsinComputerandInformationScience[C],2011,250:777-781. [13]SharifM,LeeW,CuiW,LanziA.SecureinVMmonitoringusinghardwarevirtualization[A],In:Proc.ofthe16*ACMConfonComputerandCommunicationsSecurity[C].NewYork:ACMPress,2009:477-487.[14]GarfinkelT,RosenblumM.Avirtualmachineintrospectionbasedarchitectureforintrusiondetection[A],In:Proc.ofthe10thNetworkandDistributedSystemSecuritySymp[C].Berkeley:USENIXAssociation,2003:191-206. [15]Barham,Paul.Xenandtheartofvirtualization[A].OperatingSystemReview(ACM)[C].2003,275.:164-177. [16]P.Barham,B,Dragovic,K.Franser,S.Hand,T.Harris,A.Ho,R.Neugebauer,I.Pratt,andA.Warfiele.Xenandtheartofvirtualization[A].ACMsymposiumonOperatingSystemsPrinciples(SISP19)[C]92003:164-180. [17]A.SrivastavaandV.Ganapathy.TowardsaRicherModelofCloudAppMarkets[A].ACMCCSCloudComputingSecurityWorkshop(CCSW12)[C],2012:101-114. [19]项国富,⾦海,邹德清,陈学.基于虚拟化的安全监控[J].软件学报,2012. [20]项国富.虚拟计算环境的安全监控技术研究[DI,华中科技⼤学,2009.【数据库论⽂参考⽂献范例】相关⽂章:1.2.3.4.5.6.7.8.。
VIMS2002 Internat ional Symposium onVirtual and Intelligent Measurement SystemsMt. Alyeska Resort, AK, USA, 18-20 May 2002Intelligent Robotic Sensor Agents for Environment MonitoringEmil M. Petriu (1), Gilles G. Patry (1), Thom E. Whalen (2),Abdul Al-Dhaher(1), and Voicu Z. Groza(1)(1) University of Ottawa, Ottawa, ON, Canada(2) Communications Research Centre Canada, Ottawa, ON, CanadaAbstract – This paper discusses development aspects of a wireless network of mobile autonomous Robotic Intelligent Sensor Agents deployed in the field for active investigation of multiple environ-mental parameters. The collected sensor data are fused in a world model, which is available to remote human supervisors as an in-teractive virtual Virtualized Reality TM environment model. Keywords– intelligent sensors, mobile agents, distributed sensor networks, wireless sensors, multi-sensor data fusion, behavior-based robots, Virtualized Reality TM, human computer interaction.I. INTRODUCTIONInformation appliances are emerging as the new, information-intensive, evolutionary stage of the pervasive computing paradigm [1], [2], [3], and [4]. There is also a growing inter-est in the pervasive, communication and interfacing standard aspects of distributed sensors and instrumentation [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], and [15].Monitoring environment parameters is a complex task of great importance in many areas such as the natural living environment, industrial or laboratory hazardous environments (biologically, radioactively, or chemically contaminated), polluted/toxic natural environments, water treatment plants, nuclear stations, war zones, or remote difficult to reach envi-ronments such as the deep space or underwater, [16], [17], and [18].The objective of our project is the development of a new gen-eration of autonomous wireless Robotic Intelligent Sensor Agents (R-ISA) for complex environment monitoring. Moni-toring is done by continuously collecting sensory data from a distributed network of stationary and mobile Intelligent Sen-sor Agents (ISA) deployed in the field. These data, which are of different nature, are then fused in a world mo del, which is remotely available to human supervisors as an interactive virtual environment model.Human operator expertise is still needed to carry out monitor-ing tasks requiring a higher level of intelligence. A proper control of these tasks cannot be accomplished without some telepresence capability allowing the human operator to e x-perience the feeling that he/she is immersed in the remote, out of the harm’s way, V irtualized Reality TM Environment (VRE), [19]. The VRE is a generalization of the computer-generated, essentially synthetic, Virtual Environment (VE) concept. While still being a computer generated multi-media world model, VRE is based on information about the real/physical world objects and phenomena as captured by a variety of sensors. In order to find efficient solutions to the complex perception tasks, the humans will have to combine their intrinsic reactive-behavior with higher-order world model representations of the immersive VRE systems.The human-computer interface (HCI) should couple the hu-man operator and the VRE as transparently as possible. Having a VRE model of the natural environment that is moni-tored would also allow for the off-line training of the person-nel and as a virtual prototyping environment for no-penalty what-if experiments.II. SYSTEM ARCHITECTUREMonitoring natural uncertain environments is a task that is very much dependent of each application. The complexity of this task is function of the nature of the parameters and the nature of the environment to be monitored. The type of sen-sors, their number and their bandwidth, the difficulties e n-countered while deploying the sensors in the field, the reli-ability of the sensory data and of the data communication network, are all requirements that have to be considered when designing the intelligent sensor agents and the distributed sensor network architecture. Integrating the partial and het-erogeneous sensor-views of the environment into a coherent VRE global model, which has to be easy to use by a com-puter controller as well a s by a human operator is another important aspect to be considered.The architecture of the distributed intelligent sensor system for environment monitoring, shown in Fig. 1, consists of both stationary ISA’s and mobile R-ISA’s, a wireless communica-tion network, a shared multimedia VRE, and HCI for the hu-man supervisor.A multi-sensor fusion framework, [20] and [21], deals in a consistent way with a diversity of measurement data pro-duced by ISA’s. Such a multi-sensor fusion system has to (i) organize data collection and signal processing from different types of sensor, (ii) produce local and global world modelsusing the multi-sensor information about the environment, and (iii) integrate the information from the different sensors into a continuously updated model of the system.Fig. 1. Distributed wireless network of mobile and stationary intelli-gent sensor agents deployed in the environment. The human operator monitors the environment from a remote location using interactivevirtualized reality.The multi-sensor data fusion systems may have a hierarchical or decentralized structure, [20] and [21]. A multitude of multi-sensor fusion methods are discussed in the literature: weighted average, Kalman filter, Bayesian estimate, statisti-cal decision theory, evidential reasoning, fuzzy logic, neural networks and production rules, [20], [21], [22], [23], [24], [25], and [26].In order to provide a flexible extensible open mechanism allowing for interoperability, an agent-based resource man-agement framework should address the functional and com-munication needs of each ISA, [5] and [27]. Special networking mechanisms should allow ISA’s to han-dle a variety of redundant and complementary data communi-cation channels, [5] and [28].The development of a distributed network of ISA’s should address wireless networking issues looking for the develop-ment of cost-effective solutions for environments where de-ployment of advanced networking infrastructure could be unjustifiably costly.In many applications, there is a consi derable communication delay and randomness between the information collected from the field deployed sensor agents. This may affect the fidelity and consistency of the integral world model of the monitored environment, [29] and [30].In order to avoid fatal errors and reduce the effect of the communication delay, we are using a distributed virtual envi-ronment allowing maintaining a shared world model of the physical environment that is explored, [31].The “time clutch” and “position clutch” concepts proposed in [29], are used to maintain the coherence between the i n-formation acquired from different sensors agents measuring parameters of the same object or environment region.We are currently investigating a multisensor data fusion mechanism by integrating heterogeneous sensory data into a composite model of 3D object shape, surface and material properties, such as texture, elasticity, heat transfer character-istics, radiation (EM, thermal, radioactive, optical, etc.), and contact forces. Using a unique comp osite model of the ob-jects could be more efficient than using a separate data stream for each sensing modality. A unique composite model has an inherent synchronism between all the properties used charac-terizing a given object in the environment.III. EXPERIM ENTAL ROBOTIC PLATFORM FOR A MOBILE INTELLIGENT SENSOR AGENTIn order to provide a high degree of autonomy as requested by their functions, the mobile robotic intelligent sensor agents, R-ISA’s, should have onboard sensing, computing, and wireless communication capabilities as well as the ability to autonomously perform exploratory motions, [32], [33],[34], [35], [36], [37], and [38].A variety of sensors should be available to cover all four per-ception phases of the environment parameters: far away, near to, touching, and manipulation. R-ISA’s should be able of selective environment perception focusing on parameters that are important for the specific task and avoid wasting effort on processing irrelevant data. Different sensor planning strate-gies are reported for the placement of sensors in such a way as to get optimum performance during specific sensing tasksand for the real-time selection of sensing operations to mini-mize the observed system entropy, [39] and [40].Fig. 2. shows an early experimental R-ISA platform. It has eight infrared (IR) sensors allowing together for a 90° field of view in front of the vehicle, [41]. Each sensor has a field view of 6°, along with a measure of the range of a target up to about 3 m, with medium to high accuracy irrespective of tar-get reflectivity.Fig.2. Four-wheel robotic platform for an experimental mobile ISA equipped with camera, IR sensors and wheel encoders. Snapshots of the IR images taken from different locations of the R-ISA are integrated using the occupancy grid fram e-work, [42]. The snapshots are then further fused using the dead reckoning information from the vehicle's steering and wheel encoders producing a partial view of the environment.A 2D correlation of the snapshots containing views of the same landmarks reduces the registration errors inherent in dead reckoning position estimations.IV. HUMAN AIDED WORLD MODELING IN VREUsing a Head Mounted Display for augmented visual virtual reality and a haptic feedback system, the human operator controls the operation of the remote ISA’s.The haptic human-computer interface, Fig. 3, allows the hu-man operator to get through his/her own sense of touch and force a direct feeling of the contact phenomena that a specific ISA experiments while exploring the environment.The human teleoperator "manually" integrates raster images received from the onboard auto-focus camera equipped with a IR range finder, [41] and [43]. The range information a c-companying each image and the position sensors of mobile R-ISA's provide a certain degree of Position Orientation and Scale Estimation (POSE) indexing for these images. This inform ation helps the human to combine local snapshots in a composite image of the environment as seen from a givenvantage-point of the robot.Fig. 3. Haptic human-computer interfaceUsing the raster-image/graphic-map techniques described in [44], the human operator generates a wire-frame sketch of the visualized objects by drawing lines over the object features of interest apparent in the composite raster image. The operator identifies then common features in different images showing different views of the same object, Fig. 4. This provides a de facto connection of all vertices thought to belong to the same object. It results into a 2D partial wire-frame model of that object. The lengths of all vertex-limited segments are auto-matically calculated from their relative positions in the 2D image and the POSE parameters of that image.Fig. 4. The operator identifies common features in images represent-ing different views of the same objectBased on the POSE sensor data and using his/her interpreta-tion of the composite raster images of an object seen from different vantage points, the ground-based vertices of eachobject model are then assigned to specific locations on the displayed 2D occupancy grid of the environment, as illus-trated in Fig. 5. The 3D position of the above ground vertices is inferred from the specific shape of the polygons seen fromdifferent point of views, [45].Fig. 5. 3D object models are positioned in the reference frame of theobserved environmentThe interactive virtual reality display allows the human op-erator to choose between the purely geometric 3D model of an object and the raster image of that object. The operator has also the possibility to inquire about the position of any object on the displayed occupancy grid, Fig. 6. The operator can change these parameters, which will result in an instant modi-fication of the world model. The resulting 3D wire-frame model is ready to be used for the VRE. It is also sent to the R-ISA’s on-board autonomous controller.Fig. 6. Augmented reality information available on request about the objects represented in a VRE scene.V. CURRENT DEVELOPMENTSMonitoring the environment, in practical terms, is a game with limited resources. There is a limited number of ISA’s, which have limited operational parameters, communicating via a limited QoS wireless communication network.ISA’s are not functionally and operationally identical. There are stationary and mobile agents which each can meas-ure/sense different environment parameters. Even if they measure the same type of parameters the sensors/instruments may have different characteristics. The robotic carriers may also have different operational characteris tics. Like humans, the local controllers of each intelligent “bot”, [46],i-bot agent, may have it’s own personality, [47].Human-to-human communication and cooperation require a common language and an underlying system of shared knowledge and common values. In order to achieve a similar degree of machine-to-machine i-bot interaction and coopera-tion, an i-bot social framework should be developed to allow for the management of heterogeneous functions and knowl-edge for a large diversity of i-bots.An agent-based resource management framework[48] and [49],was developed for seamless interaction and cooperation between a large diversity of distributed intelligent sensors. Learning allows R-ISA’s to acquire knowledge by interaction with the environment and subsequently adapt their behavior. Behavior learning methods could be used to solve complex problems that a real (not simulated) R-ISA encounters while exploring an unknown real-world environment. A variety of reinforcement learning paradigms using learning classifier, neural networks, genetic algorithms, fuzzy logic, Q-learning, [23] and [50], are investigated to implement basic reactive behaviors that accomplish simple sensing tasks.We are currently investigating the use of Brooks’ reactive-behavior paradigm, [51], as an alternative to the traditional function oriented sensing-planning-acting control strategies, The behavior paradigm is based on a task-wise decomposi-tion of the control functions in special-purpose simple task-achieving modules. We are verifying claims that neither stra-tegic planning nor carefully calibrated sensors are necessary to produce robust intelligent reactive-behavior in autonomous robotic agents, [50] and [51].An autonomous R-ISA uses a combination of intrinsic reac-tive-behaviors with higher-order world model representations of the environment, [52]. A forward model-learning method is used to recover explicit structural representations of the dynamic environments from the sensor data and robot naviga-tional experience, [50].All ISA are by definition instinctive information seeking agents. When the costs of deploying sensors agents is pro-hibitive, R-ISA’s would benefit from having survival behav-ior/instinct, cooperation skills, [27], [53], and [54], adapta-tion and learning abilities, as well as evolutionary capacit y. In order to take full advantage from these characteristics, R-ISA’s should have modular reconfigurable structures, [55], with accessible and easy to assembly/disassembly comp o-nents. R-ISA’s should be able to cannibalize/recycle other agents that are operationally dead, which otherwise will be abandoned in the field. Providing R-ISA’s with such a be-havior would contribute to the i-bot species survival, [56].Operational resources of the incapacitated R-ISA’s will be cannibalized (e.g. taking over the energy reserves, sensors and other spare parts) and used either to upgrade the opera-tional capability of other surviving R-ISA or they can be combined making a new operational R-ISA’s from the inca-pacitated agents.Recycling the resources of the operationally dead agents will increase the efficiency of the surviving R-ISA’s, which will improve the quality of the global monitoring mission. This recycling will also be ecological wise as it reduces the amount of the operational dead agents abandoned in the envi-ronment. In order to facilitate recycling, each R-ISA should have a status advertising mechanism telling other agents about its job related functional qualification and health level. Cooperating agents should be able to work together with other mobile R-ISA’s or stationary ISA’s toward the overall goal, which is to maximize the information acquired from the environment. For instance, two cooperating R-ISA’s could assume the best relative positions in order for them to get a stereo image of a region of the environment. Or, a R-ISA could illuminate the subject for another R-ISA to take i m-ages. This cooperation should also allow modular R-ISA’s to permanently or temp orarily couple forming new structures better adapted to solving specific problems. For instance, two or more R-ISA’s can couple to make a bridge over a trench, or one could be helped by another to get over an obstacle.An evolutionary mechanism would allow a R-ISA to pass over to other R-ISA’s the learning experience and behavioral genes they acquired while operating in the field, [56].Each R-ISA is supported at the hardware level by a real-time resource management system using the QNX real-time oper-ating system. However, another higher-level resource man-agement framework is needed to address the communication needs of the agents. This framework should work at a level that’s higher the classical network protocols, [5], and even distributed computing frameworks such as CORBA, which provide mainly distribution transparency. Heterogeneous ISA’s cannot realistically be expected to talk exactly the same language. However, they will share d o-main-specific knowledge, which may be expressed by each of them in a different dialect. Accordingly, the communication management framework should define a domain specific se-mantic for common knowledge and functions. This frame-work is expected to act as a universal translator between dif-ferent dialects, [57].In order to provide a flexible extensible open framework a l-lowing for interoperability, methods should be developed to allow different agents to exchange the grammars describing their own dialects and to learn to understand each other. This way, the agents would be able to advertise their own func-tions, search and discover providers of required services, and express their needs in a collaborative environment.XML (Extensible Markup Language), [58], could provide high-level protocols for exchanging information between different information appliances. XML provides syntax f or building a formal DTD model, which describes relationships between elements and attributes of each class of documents. Since a DTD gives a standard format for information related to a specific domain, it could be used to simplify the e x-change of information between different sources that refer to the same domain r egardless of the internal format of each source.ACKNOWLEDGMENTThis work was funded in part by the Natural Sciences and Engineering Research Council of Canada and the Communi-cations Research Centre Canada.REFERENCES[1] J. Birnbaum, "Pervasive Information Systems", Communications of theACM, Vol.40, No.2, pp. 40-41, 1997[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,“IEEE Personal Communications, Vol. 8, No. 4, pp. 10 – 17, 2001 [3] G.D. Abowd and J.P.G. Sterbenz, “Final report on the inter-agencyworkshop on research issues for smart environments, “IEEE Personal Communications, Vol. 7, No. 5 pp. 36 – 40, 2000[4] A. Schmidt, and K. van Laerhoven, “How to build smart appliances?”IEEE Personal Communications, Vol. 8, No. 4, pp. 66 - 71, 2001 [5] G. Fortino, D. Grimaldi, L. Nigro, “Multicast Control of Mobile Meas-urement Systems,” IEEE Trans. Instrum. Meas., Vol.47, No.5, pp.1149-1154, 1998[6] M. Bertocco, F. Ferraris, C. Offelli, M. Parvis, "A client-server archi-tecture for distributed measurement system", IEEE Trans. Instrum.Meas., vol. 47, pp.1143-1148, 1998[7] L. Cristaldi, A. Ferrero, and V. Piuri, “Programmable instruments,virtual instruments, and distributed measurement systems: what is really useful, innovative and technically sound?” IEEE Instr. Meas.Magazine, Vol. 2, No. 3, pp. 20 - 27, 1999[8] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, “Protocols for self-organization of a wireless sensor network,” IEEE Personal Communi-cations, Vol. 7, No. 5, pp. 16 –27, 2000[9] C-P. Young; W-L. Juang, and M.J. Devaney, “Real-time Intranet-controlled virtual instrument multiple-circuit power monitoring,” IEEE Trans. Instrum. Meas., Vol.49, No. 3, pp. 579 - 584, 2000[10] K.B. Lee and R.D. Schneeman, “Distributed measurement and controlbased on the IEEE 1451 smart transducer interface standards,” IEEE Trans. Instrum. Meas., Vol.49, No. 3, pp. 621 - 627, 2000[11] T. Imielinski, and S. Goel, “DataSpace: querying and monitoringdeeply networked collections in physical space, “ IEEE Personal Communications, Vol. 7, No. 5, pp. 4 – 9, 2000[12] M. Dunbar, “Plug-and-play sensors in wireless networks,” IEEE Instr.Meas. Magazine, Vol. 4, No. 1, pp. 19 – 23, 2001[13] H. Qi, S.S. Iyengar, and K. Chakrabarty, “Multiresolution data inte-gration using mobile agents in distributed sensor networks, “IEEE Trans. Syst. Man Cybern. - Part C: Applications and Reviews, Vol. 31, No. 3, pp.383 – 391, 2001[14] C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor InformationNetworking Architecture and Applications”, IEEE Personal Communi-cations, pp. 52-59, 2001[15] D. Potter, “Smart plug and play sensors,” IEEE Instr. Meas. Magazine,Vol. 5, No. 1, pp. 28 - 30, 2002[16] G. Giralt, "The Remote-Operated Autonomous-Robot concept: fromdeep sea to outer space applications," Intl. Symp. Missions Technolo-gies and Design of Planetary Mobile Vehicles, Toulouse, France, 1992 [17] D.M. Wilson, S. Hoyt, J. Janata, K. Booksh, and L. Obando, “ChemicalSensors for Portable, Handheld Field Instruments” IEEE Senso rs J., Vol. 1, No. 4, pp. 256-274, 2001[18] A.M. Zoubir, I.J. Chant, C.L. Brown, B. Barkat, and C. Abeynayake,“Signal Processing Techniques for Landmine Detection Using Impulse Ground Penetrating Radar” IEEE Sensors J., Vol. 2, No. 1, pp. 41-51, 2002[19] T. Kanade, Virtualized Reality T M, /~virtualized-reality/, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA[20] B.V. Dasarathy, "Sensor Fusion Potential Exploitation – InnovativeArchitectures and Illustrative Applications," Proc. IEEE, Vol.85, No.1, pp.24-38, 1997[21] R. Joshi, A.C. Sanderson, Multisensor Fusion: A Minimal Representa-tion Framework, World Scientific, 1999[22] S.T. Venkataraman, S. Gulati, J. Barhen, and N. Toomarian “A NeuralNetwork Based Identification of Environments Models for Compliant Control of Space Robots,” IEEE Trans. Robotics Automat, Vol. 9, No.5, pp. 685-697, 1993[23] E.B. Kosmatopoulos and M.A. Christodoulou, “High-Order NeuralNetworks for the Learning of Robot Contact Surface Shape,” IEEE Trans. Robotics Automat, Vol. 13, No. 3, pp. 451-455, 1997[24] F. Russo, G. Ramponi, “Fuzzy Methods for Multisensor Data Fusion,”in Instrum. and Measurement: Technology and Applications, (E. Petriu, Edit.), pp.464-470, IEEE Press, New York, 1998[25] C. Alippi, V. Piuri, “Neural Modeling of Dynamic Systems with Non-measurable State Variables,” IEEE Trans. Instrum. Meas., Vol.48, No.6, pp.1073-1080, 1999[26] S. Ferrari, A.A. Borghese, and Vincenzo Piuri, “Multiscale Models forData Processing: An Experimental Sensitivity Analysis,” IEEE Tra ns.Instrum. Meas., Vol.50, No.4, pp. 995-1002, 2001[27] R.J. Gallimore, N.R. Jennings, H.S. Lamba, C.L. Mason, B.J. Oren-stein, “Cooperating Agents for 3D Scientific Data Interpretation,” IEEE Trans. Syst. Man Cybern. -Part C: Applications and Reviews, Vol.29, No.1, pp.110-126, 1999[28] J. Agre, and L. Clare, “An Integrated Architecture for Co-operativeSensing Networks,” IEEE Computer Magazine, pp. 106-108, 2000 [29] L. Conway L., R.A. Voltz., and M.W. Walker, "Teleautonomous Sy s-tems: Projecting and Coordinating Intelligent Action at a Distance,"IEEE Trans. Robotics Automat., vol. 6, no. 2, pp. 146-158, 1990[30] G.V. Kondraske, R.A. Votz, D.H. Johnson, D. Tesar, J.C. Trinkle, andC.R. Price, “Network-Based Infrastructure for Distributed Remote Op-erations and Robotics Research,” IEEE Trans. Robotics Automat, Vol.9, No. 5, pp. 702-704, 1993[31] F.C.A. Groen, N. Vlassis, M. Boasson, H.J.W. Spoelder, and H.E. Bal,“A framework for maintaining a shared world model in dynamic envi-ronments between differentiated embedded systems and allowing inter-action with human supervisors,” in Proc. 2nd PROGRESS Workshop on Embedded Systems, Veldhoven, The Netherlands, 2001[32] J.S. Bay, "A fully Autonomous Active Sensor-Based Exploration Co n-cept for Shape-Sensing Robots," IEEE Trans. Syst. Man Cybern., Vol.21, No.4, pp.850-860, 1991[33] [G.D. Hager, "Task-Directed Computation of Qualitative DecisionsFrom Sensor Data," IEEE Trans. Robotics Automat., Vol.10, No.4, pp.415 – 429, 1994[34] S. Elgazzar, R. Liscano, F. Blais, “Active Range Sensing for IndoorEnvironment Modeling,” IEEE Trans. Instrum. Meas., Vol.47, No.1, pp.260-264, 1998 [35] C-C Tsai, “A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements,” IEEE Trans. Instrum. Meas., Vol.47, No.5, pp. 1399 - 1404, 1998[36] K. Dixon, J. Dolan,W. Huang, C. Paredis, P. Khosla, "RAVE: A Realand Virtual Environment for Multiple Mobile Robot Systems," Proc.IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'99),Kyongju, Korea, October 17-21, 1999[37] ***, Natural Landmark Based Navigation Project, The Robotics Inst i-tute, Carnegie Mellon University, Pittsburgh, PA, USA, http://www-/~deano/Landmark/[38] C.-Y. Chan, “Magnetic Sensing as a Position Reference System forGround Vehicle Control,” IEEE Trans. Instrum. Meas., Vol.51, No.1, pp.43-52, 2002[39] G. Roth, M.D. Levine, "Minimal Subset Random Sampling for PoseDetermination and Refinement," in Advances in Machine Vision, (C.Archibald, E. Petriu, Edit.), pp.1-21, World Scientific, 1992[40] K.A. Tarabanis, P.K. Allen, R.Y. Tsai, "A Survey of Sensor Planningin Computer Vision, " IEEE Trans. Robotics Automat., Vol.11, No.1, pp.86-104, 1995[41] C. Gal, Multi-Sensor (IR) Data Fusion for Mobile Robot NavigationUsing Occupancy Grid Method, M.A.Sc. Thesis, University of Ottawa, Ottawa, ON, Canada, 1994[42] A. Elfes, "Using Occupancy Grids for Mobile Robot Perception andNavigation," IEEE Computer, Vol. 22, No. 6, pp. 46-57, 1989[43] S.K. Yeung, W.S. McMath, E.M. Petriu, N. Trif, C. Gal, “Teleoperator-Aided Multi-Sensor Data Fusion for Mobile Robot Navigation,” Proc.MFI’94 IEEE Multisensor Fusion and Integration for Intell. Syst.Conf., pp. 470-476, Las Vegas, Nevada, 1994[44] R. Talluri, J.K. Aggarwal, "Image/Map Correspondence for MobileRobot Self-Locating Using Computer Graphics," IEEE Trans. Syst.Man Cyber., Vol. 15, No. 6, pp. 597-601, 1993[45] K. Sugihara, "Mathematical Structures of Line Drawings of Polyhe-drons-Toward Man-Machine Communications by Means of Line Draw-ings," IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-4, No. 5, pp. 458-469, 1982[46] A. Leonard, Bots – The Origin of New Species, Hardwired, San Fran-cisco, 1997[47] S. Pinker, How The Mind Works, W.W. Norton & Co., New York,1997[48] J.S. Basran, E.M. Petriu, D.C. Petriu, “Flexible Agent-Based RoboticAssembly Cell,” Proc. 1997 IEEE Intl. Conf. Robotics and Automation, pp. 3461-3466, Albuquerque, New Mexico, 1997[49] J.S. Basran, Agent-Based Management of a Task-Level Multi-RobotAssembly Cell, Ph.D. Thesis, University of Ottawa, Ottawa, ON, Can-ada, 1998[50] R.C. Arkin, Behavior-Based Robotics, The MIT Press, 1998[51] R. Brooks, "A Robust Layered Control System for a Mobile Robot,"IEEE J. Robotics Automat., vol.2, no.1, pp. 14-23, 1986[52] Tani, "Model-Based Learning for Mobile Robot Navigation from theDynamical Systems Perspective," IEEE Trans. Syst. Man Cybern. -Part B: Cybernetics, vol 26 no. 3, pp. 421- 436, 1996[53] L. E. Navarro-Serment, R. Grabowski, C. J.J. Paredis & P. K. Khosla,"Heterogeneous Teams of Modular Robots for Mapping and Explora-tion", Technical report ICES 04-11-99, The Insti tute for Complex En-gineered Systems, Carnegie Mellon University, Pittsburgh, PA, USA. [54] A. Banerjee, T. DeFanti, A. Hudson, B. Dodds, and J.R. Curtis, “ABehavioral Layer Architecture for Telecollaborative Virtual Manufac-turing Operations,” IEEE Trans. Robotics Automat, Vol. 16, No. 3, pp.218-227, 2000[55] M. Yim, Y. Zhang and D. Duff, “Modular Robots,” IEEE Spectrum,Vol. 39, No. 2, pp. 30-34, 2002[56] R. Dawkins, The Selfish Gene-New Edition, Oxford University Press,Oxford, 1989[57] E.M. Petriu, N.D. Georganas, D.C. Petriu, D. Makrakis, and V.Z.Groza, "Sensor-Based Information Appliances," IEEE Instrum. Meas.Mag., Vol. 3, No. 4, pp. 31-35, 2000.[58] World Wide Web Consortium (W3C), Extensible Markup Language(XML) 1.0, /TR/REC-xml。