2018版高考复习(数学)-历年高考真题与模拟题分类汇编 M单元 推理与证明(理科) 含答案
- 格式:doc
- 大小:45.00 KB
- 文档页数:4
数 学M 单元 推理与证明 M1 合情推理与演绎推理 11.M1 观察下列各式: C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________. 11.4n -1归纳可知,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1.M2 直接证明与间接证明16. N1(1)选修41:几何证明选讲如图15,在⊙O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F .证明:(i )∠MEN +∠NOM =180°; (ii)FE ·FN =FM ·FO .图15N3(2)选修44:坐标系与参数方程已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(i)将曲线C 的极坐标方程化为直角坐标方程;(ii)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. N4,M2(3)选修45:不等式选讲 设a >0,b >0,且a +b =1a +1b.证明:(i)a +b ≥2;(ii)a 2+a <2与b 2+b <2不可能同时成立.16.(1)证明:(i)如图所示,因为M ,N 分别是弦AB ,CD 的中点,所以OM ⊥AB ,ON ⊥CD ,即∠OME =90°,∠ENO =90°,因此∠OME +∠ENO =180°.又四边形的内角和等于360°,故∠MEN +∠NOM =180°.(ii)由(i)知,O ,M ,E ,N 四点共圆,故由割线定理即得FE ·FN =FM ·FO . (2)解:(i)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (ii)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t代入②,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.(3)证明:由a +b =1a +1b =a +b ab,a >0,b >0,得ab =1.(i)由基本不等式及ab =1,有a +b ≥2ab =2(当且仅当a =b 时等号成立),即a +b ≥2. (ii)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1;同理,0<b <1.从而ab <1,这与ab =1矛盾,故a 2+a <2与b 2+b <2不可能同时成立.21.D3,B11,M2 已知a >0,函数f (x )=e axsin x (x ∈ 已知数列{a n }的各项均为正数,b n =n ⎝ ⎛⎭⎪⎫1+1n na n (n ∈N +),e 为自然对数的底数. (1)求函数f (x )=1+x -e x的单调区间,并比较⎝ ⎛⎭⎪⎫1+1n n与e 的大小; (2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b na 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n )1n,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n .22.解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x. 当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x. 令x =1n ,得1+1n <e 1n,即⎝ ⎛⎭⎪⎫1+1n n <e .①(2)b 1a 1=1×⎝ ⎛⎭⎪⎫1+111=1+1=2;b 1b 2a 1a 2=b 1a 1·b 2a 2=2×2×⎝ ⎛⎭⎪⎫1+122=(2+1)2=32; b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32×3×⎝ ⎛⎭⎪⎫1+133=(3+1)3=43. 由此推测:b 1b 2…b n a 1a 2…a n=(n +1)n.②下面用数学归纳法证明②.(i)当n =1时,左边=右边=2,②成立. (ii)假设当n =k 时,②成立,即b 1b 2…b k a 1a 2…a k=(k +1)k.当n =k +1时,b k +1=(k +1)⎝ ⎛⎭⎪⎫1+1k +1k +1a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k (k +1)·⎝ ⎛⎭⎪⎫1+1k +1k +1=(k +2)k +1. 所以当n =k +1时,②也成立.根据(i)(ii),可知②对一切正整数n 都成立.(3)证明:由c n 的定义,②,算术几何平均不等式,b n 的定义及①得T n =c 1+c 2+c 3+…+c n=(a 1)11+(a 1a 2)12+(a 1a 2a 3)13+…+(a 1a 2…a n )1n=(b 1)112+(b 1b 2)123+(b 1b 2b 3)134+…+(b 1b 2…b n )1nn +1≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n (n +1)=b 1⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n (n +1)+b 2⎣⎢⎡12×3+⎦⎥⎤13×4+…+1n (n +1)+…+b n·1n (n +1)=b 1⎝⎛⎭⎪⎫1-1n +1+b 2⎝ ⎛⎭⎪⎫12-1n +1+…+ b n ⎝ ⎛⎭⎪⎫1n -1n +1<b 11+b 22+…+b n n =⎝ ⎛⎭⎪⎫1+111a 1+⎝ ⎛⎭⎪⎫1+122a 2+…+⎝ ⎛⎭⎪⎫1+1n na n <e a 1+e a 2+…+e a n =e S n ,即T n <e S n .23.M3 已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 23.解:(1)f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,f (k +1)在f (k )的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:(i)若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;(ii)若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立;(iii)若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立;(iv)若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立;(v)若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立;(vi)若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.M4 单元综合8.M4 若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .至多等于3 B .至多等于4 C .等于5 D .大于58.B 正四面体符合要求,因此n 可以等于4.下面证明n =5不可能.证明:假设存在五个点两两距离相等,设为A ,B ,C ,D ,E .其中A ,B ,C ,D 构成空间的正四面体ABCD ,设其棱长为a .设G 为△BCD 的中心,则不难算出AG =63a ,BG =33a ,且AG ⊥平面BCD .如果点E 到A ,B ,C ,D 四点的距离相等,那么点E 一定在直线AG 上,且EB =a . 如果点E 在线段AG 上,那么在Rt △EBG 中,EG =BE 2-BG 2=63a ,AG =63a ,此时A ,E 重合,所以点E 可能在AG 的延长线上. 如果点E 在AG 的延长线上,此时EG =63a ,EA =263a ≠a . 综上所述,如果E 到正四面体的四个顶点的距离相等,那么点E 只能是正四面体的四个顶点之一.所以若空间中n 个不同的点两两距离相等,则正整数n 的取值至多是4.15.M4 一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.15.5 1101101中x 1=x 2=x 4=x 5=x 7=1,x 3=x 6=0,则x 4⊕x 5⊕x 6⊕x 7=1,不满足方程组,x 2⊕x 3⊕x 6⊕x 7=0,满足方程组,所以推测x 4或x 5错误.又x 1⊕x 3⊕x 5⊕x 7=1,不满足方程组,所以x 5错误,故k =5.7. 已知三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现,任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数f (x )=13x 3-12x 2+3x -512,请你根据该同学的发现,计算f ⎝⎛⎭⎪⎫12015+f ⎝ ⎛⎭⎪⎫22015+f ⎝ ⎛⎭⎪⎫32015+…+f ⎝ ⎛⎭⎪⎫20142015=________.7.2014 f′(x)=x 2-x +3,由f″(x)=2x -1=0得x =12,则⎝ ⎛⎭⎪⎫12,1为y =f(x)的对称中心,故f ⎝⎛⎭⎪⎫12015+f ⎝ ⎛⎭⎪⎫20142015=f ⎝ ⎛⎭⎪⎫22015+f ⎝ ⎛⎭⎪⎫20132015=…=2f ⎝ ⎛⎭⎪⎫12=2,故f ⎝⎛⎭⎪⎫12015+f ⎝ ⎛⎭⎪⎫22015+f ⎝ ⎛⎭⎪⎫32015+…+f ⎝ ⎛⎭⎪⎫20142015=2014. 8. 如图K522(1)所示,在平面几何中,设O 是等腰直角三角形ABC 底边BC 的中点,AB =1,过点O 的动直线与两腰或其延长线的交点分别为Q ,R ,则有1AQ +1AR=2.类比以上结论,将其拓展到空间中,如图K522(2)所示,设O 是正三棱锥A BCD 中底面BCD 的中心,AB ,AC ,AD 两两垂直,AB =1,连接AO ,且过点O 的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q ,R ,P ,则有________.图K5228.1AQ +1AR +1AP =3 设O 到正三棱锥ABCD 三个侧面的距离为d.易知V 三棱锥R AQP =13S △AQP·AR =13×12·AQ ·AP ·AR =16AQ ·AP ·AR.又∵V 三棱锥R AQP =V 三棱锥O AQP +V 三棱锥O ARP +V 三棱锥O AQR =13S △AQP ·d +13S △ARP ·d +13S △AQR ·d =16(AQ·AP+AR·AP+AQ·AR)d, ∴16AQ ·AP ·AR =16(AQ·AP+AR·AP+AQ·AR)d, 即1AQ +1AR +1AP =1d. 而V 三棱锥A BDC =13S △BDC ·AO =13×34×2×33=16,∴V 三棱锥O ABD =13V 三棱锥A BDC =118,即13·S △ABD ·d =13×12·d =118,得d =13,∴1AQ+1AR+1AP=3.6.由棱长为1的正方体叠成的几何体如图K521所示,第1个几何体的表面积为6,第2个几何体的表面积为18,第3个几何体的表面积是36. 依此规律,则第n个几何体的表面积是________.6.3n(n+1) 第1个几何体的表面积为6×1=6,第2个几何体的表面积为6×(1+2)=18,第3个几何体的表面积为6×(1+2+3)=36,由此可得第n个几何体的表面积为6×(1+2+3+…+n)=3n(n+1).。
第十五章推理与证明1.(2014·北京,8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人1.B [学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙.一组学生中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B.]2.(2014·山东,4)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根2.A [至少有一个实根的否定是没有实根,故要做的假设是“方程x3+ax+b=0没有实根”.]3.(2016·全国Ⅱ,15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.3.1和3 [由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.]4.(2015·山东,11)观察下列各式:C01=40;C03+C13=41;C05+C15+C25=42;C07+C17+C27+C37=43;……照此规律,当n ∈N *时,C 02n -1+C 12n -1+ C 22n -1+…+ C n -12n -1=________. 4.4n -1[观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1, 第4个等式右边为43=44-1,所以第n 个等式右边为4n -1.]5.(2015·福建,15)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.5.5 [(ⅰ)x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=1,(ⅱ)x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=0;(ⅲ)x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x 5,x 7有一个错误,(ⅱ)中没有错误, ∴x 5错误,故k 等于5.]6.(2015·江苏,23)已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数. (1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 6.解 (1)f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n=6时,f(6)=6+2+62+63=13,结论成立;②假设n=k(k≥6)时结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k +1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+k-12+k-23+3=(k+1)+2+k+12+k+13,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+k2+k3+1=(k+1)+2+(k+1)-12+(k+1)-13,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+k-12+k-13+2=(k+1)+2+k+12+(k+1)-23,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+k2+k-23+2=(k+1)+2+(k+1)-12+k+13,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(x)+2=k+2+k-12+k3+2=(k+1)+2+k+12+(k+1)-13,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+1=k+2+k2+k-13+1=(k+1)+2+(k+1)-12+(k+1)-23,结论成立.综上所述,结论对满足n≥6的自然数n均成立.7.(2014·陕西,14)观察分析下表中的数据:7.F+V-E=2 [三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.]8.(2014·陕西,21)设函数f(x)=ln (1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 8.由题设得,g (x )=x1+x(x ≥0). (1)由已知,g 1(x )=x1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x ,g 3(x )=x1+3x,…, 可得g n (x )=x1+nx .下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx=x 1+(k +1)x,即结论成立.由①②可知,结论对n ∈N *成立.(2)已知f (x )≥ag (x )恒成立,即ln (1+x )≥ax1+x 恒成立.设φ(x )=ln (1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a (1+x )2=x +1-a(1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递增,又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立, ∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )<0,∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0,即a >1时,存在x >0,使φ(x )<0, 故知ln (1+x )≥ax1+x 不恒成立.综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,n -f (n )=n -ln (n +1),比较结果为g (1)+g (2)+…+g (n )>n -ln (n +1). 证明如下:法一 上述不等式等价于12+13+…+1n +1<ln (n +1),在(2)中取a =1,可得ln (1+x )>x1+x ,x >0.令x =1n ,n ∈N *,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln (k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln (k +1)+1k +2<ln (k +1)+ln k +2k +1=ln (k +2), 即结论成立.由①②可知,结论对n ∈N *成立.法二 上述不等式等价于12+13+…+1n +1<ln (n +1),在(2)中取a =1,可得ln (1+x )>x1+x ,x >0.令x =1n ,n ∈N *,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1, 上述各式相加可得ln (n +1)>12+13+…+1n +1,结论得证.法三 如图,nxx +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和.∴12+23+…+n n +1>0n⎰xx +1d x =0n ⎰(1-1x +1)d x =n -ln (n +1), 结论得证.9.(2014·重庆,22)设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式;(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 9.解 (1)法一 a 2=2,a 3=2+1,再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0公差为1的等差数列,故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 法二 a 2=2,a 3=2+1,可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式: 当n =1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1.则a k +1=(a k -1)2+1+1 =(k -1)+1+1=(k +1)-1+1.这就是说,当n =k +1时结论成立.所以a n =n -1+1(n ∈N *). (2)法一 设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明加强命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1.易知f (x )在(-∞,1]上为减函数, 从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1. 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1.这就是说,当n =k +1时结论成立. 综上,符合条件的c 存在,其中一个值为c =14.法二 设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *).①当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1.易知f (x )在(-∞,1]上为减函数,从而0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立,故①成立.再证:a 2n <a 2n +1(n ∈N *).②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,有a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1,由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2,a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立,所以②对一切n ∈N *成立.由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14.③又由①、②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2, 所以a 2n +1>a 22n +1-2a 2n +1+2-1.解得a 2n +1>14.④综上,由②、③、④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。
M 推理与证明M1 合情推理与演绎推理11.M1观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74,……照此规律,第五个...不等式为______________.11.1+122+132+142+152+162<116本小题主要考查了归纳与推理的能力,解题的关键是对给出的几个事例分析,找出规律,推出所要的结果.从几个不等式左边分析,可得出第五个式子的左边为:1+122+132+142+152+162,对几个不等式右边分析,其分母依次为:2,3,4,所以第5个式子的分母应为6,而其分子依次为:3,5,7,所以第5个式子的分子应为11,所以第5个式子应为:1+122+132+142+152+162<116.13.M1回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.13.(1)90 (2)9×10n 由题意,1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,1221,…,1991,2002,…,9999,共90个,故归纳猜想2n +2位回文数与2n +1位回文数个数相等,均为9×10n 个.16.M1 设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N 2和后N2个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段N2个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i段,每段N2i 个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置; (2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.16.(1)6 (2) 3×2n -4+11 考查合情推理,以新定义题型为载体,依据排列,考查考生的逻辑推理能力,要求学生的想象能力相当出色.(1)由已知可得P 1=x 1x 3x 5x 7x 9x 11x 13x 15…,P 2=x 1x 5x 9x 13x 3x 7x 11x 15…,故x 7位于P 2中的第6个位置;(2)当i =1时,P 1的排列中x 173的位置是173+12=87位;当i =2时,P 2的排列中x 173的位置是87+12=44位;当i =3时,P 3的排列中x 173的位置是2n -22+442=2n -3+22位;当i=4时,P4的排列中x173的位置是2n-3+2n-3+222=2n-3+2n-4+11=3×2n-4+11位.6.M1观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28 B.76 C.123 D.1996.C 考查归纳推理,以及观察能力;解题的突破口是通过观察得到后一项与前两项结果之间的关系.由于a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和.因此,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,故选C.M2 直接证明与间接证明23.M2、D1对于数集X={-1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={a|a=(s,t),s∈X,t∈X},若对任意a1∈Y,存在a2∈Y,使得a1·a2=0,则称X具有性质P,例如{-1,1,2}具有性质P.(1)若x>2,且{-1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n 的通项公式.23.解:(1)选取a1=(x,2),Y中与a1垂直的元素必有形式(-1,b),所以x=2b,从而x=4.(2)证明:取a1=(x1,x1)∈Y,设a2=(s,t)∈Y,满足a1·a2=0.由(s+t)x1=0得s+t=0,所以s,t异号.因为-1是X中唯一的负数,所以s,t之中一个为-1,另一个为1,故1∈X.假设x k=1,其中1<k<n,则0<x1<1<x n.选取a 1=(x 1,x n )∈Y ,并设a 2=(s ,t )∈Y 满足a 1·a 2=0,即sx 1+tx n =0, 则s ,t 异号,从而s ,t 之中恰有一个为-1. 若s =-1,则x 1=tx n >t >x 1,矛盾; 若t =-1,则x n =sx 1<s ≤x n ,矛盾. 所以x 1=1.(3)设a 1=(s 1,t 1),a 2=(s 2,t 2),则a 1·a 2=0等价于s 1t 1=-t 2s 2,记B =⎩⎨⎧st |}s ∈X ,t ∈X ,|s |>|t |,则数集X 具有性质P 当且仅当数集B关于原点对称.注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数.由于x n x n -1<x n x n -2<…<x n x 2<x nx 1,已有n -1个数,对以下三角数阵x n x n -1<x n x n -2<…<x n x 2<x n x 1, x n -1x n -2<x n -1x n -3<…<x n -1x 1, …x 2x 1. 注意到x n x 1>x n -1x 1>…>x 2x 1,所以x n x n -1=x n -1x n -2=…=x 2x 1,从而数列的通项为x k =x 1⎝ ⎛⎭⎪⎫x 2x 1k -1=q k -1,k =1,2,…,n .19.D2、D3、M2 已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B n A n =a 2+a 3+…+a n +1a 1+a 2+…+a n =q a 1+a 2+…+a na 1+a 2+…+a n =q ,C n B n =a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q a 2+a 3+…+a n +1a 2+a 3+…+a n +1=q ,即B n A n =C n B n =q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q ,得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1. 由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0.因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.22.B12、M3、M2 (1)已知函数f(x)=rx-x r+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(2)试用(1)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数.若b1+b2=1,则ab11ab22≤a1b1+a2b2;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)′=αxα-1.22.解:(1)f′(x)=r-rx r-1=r(1-x r-1),令f′(x)=0,解得x=1.当0<x<1时,f′(x)<0,所以f(x)在(0,1)内是减函数;当x>1时,f′(x)>0,所以f(x)在(1,+∞)内是增函数.故函数f(x)在x=1处取得最小值f(1)=0.(2)由(1)知,当x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1-r).①若a1,a2中有一个为0,则ab11ab22≤a1b1+a2b2成立;若a1,a2均不为0,又b1+b2=1,可得b2=1-b1,于是在①中令x=a1a2,r=b1,可得⎝⎛⎭⎪⎫a1a2b1≤b1·a1a2+(1-b1),即ab11a1-b12≤a1b1+a2(1-b1),亦即ab11ab22≤a1b1+a2b2.综上,对a1≥0,a2≥0,b1,b2为正有理数且b1+b2=1,总有ab11ab22≤a1b1+a2b2.②(3)(2)中命题的推广形式为:若a1,a2,…,a n为非负实数,b1,b2,…,b n为正有理数.若b1+b1+…+b n=1,则ab11ab22…ab nn≤a1b1+a2b2+…+a n b n.③用数学归纳法证明如下:①当n=1时,b1=1,有a1≤a1,③成立.②假设当n=k时,③成立,即若a1,a2,…,a k为非负实数,b1,b2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…ab kk ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即 1-b k +1>0,于是ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1 =(ab 11-b k +11a b 21-b k +12…a b k1-b k +1k)1-b k +1ab k +1k +1.因b 11-b k +1+b 21-b k +1+…+b k1-b k +1=1,由归纳假设可得 a b 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k1-b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1.又因(1-b k +1)+b k +1=1,由②得⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k 1-b k +1·(1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1. 故当n =k +1时,③成立.由①②可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.M3 数学归纳法21.D1、D3、E1、M3设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(1)求证:{a n}是首项为1的等比数列;(2)若a2>-1,求证:S n≤n2(a1+a n),并给出等号成立的充要条件.21.解:(1)证法一:由S2=a2S1+a1得a1+a2=a2a1+a1,即a2=a2a1.因a2≠0,故a1=1,得a2a1=a2.又由题设条件知Sn+2=a2S n+1+a1,S n+1=a2S n+a1,两式相减得S n+2-S n+1=a2(S n+1-S n),即a n+2=a2a n+1,由a2≠0,知a n+1≠0,因此an+2an+1=a2.综上,an+1an=a2对所有n∈N*成立,从而{a n}是首项为1,公比为a2的等比数列.证法二:用数学归纳法证明a n=a n-12,n∈N*.当n=1时,由S2=a2S1+a1,得a1+a2=a2a1+a1,即a2=a2a1,再由a2≠0,得a1=1,所以结论成立.假设n=k时,结论成立,即a k=a k-12,那么当n=k+1时,a k+1=S k+1-S k=(a2S k+a1)-(a2S k-1+a1)=a2(S k-S k-1)=a2a k=a k2,这就是说,当n=k+1时,结论也成立.综上可得,对任意n∈N*,a n=a n-12.因此{a n}是首项为1,公比为a2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知a 1=1,a n =a n -12,所以要证的不等式化为 1+a 2+a 22+…+a n -12≤n2(1+a n -12)(n ≥3), 即证:1+a 2+a 22+…+a n2≤n +12(1+a n 2)(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r2-1(r =1,2,…,n -1)同为负; 当a 2>1时,a r 2-1与a n -r 2-1(r =1,2,…,n -1)同为正.因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r 2-1)>0,即 a r 2+a n -r 2<1+a n 2(r =1,2,…,n -1).上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n 2),由此可得1+a 2+a 22+…+a n2<n +12(1+a n 2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n ≤n2(a 1+a n ),等号成立.当a 2=1时,S n =n=n2(a 1+a n ),等号也成立. 当a 2≠1时,由(1)知S n =1-a n 21-a 2,a n =a n -12,下证: 1-a n 21-a 2<n 2(1+a n -12)(n ≥3,a 2>-1且a 2≠1). 当-1<a 2<1时,上面不等式化为(n -2)a n 2+na 2-na n -12<n -2(n ≥3). 令f (a 2)=(n -2)a n 2+na 2-na n -12.当-1<a 2<0时,1-a n -22>0,故f (a 2)=(n -2)a n 2+na 2(1-a n -22)<(n -2)|a 2|n <n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n =ng (a 2).其中g (a 2)=(n -2)a n -12-(n -1)a n -22+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)a n -32<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令b =1a 2,则0<b <1,由已知的结论知1-⎝ ⎛⎭⎪⎫1a 2n 1-1a 2<n 2⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a 2n -1, 两边同时乘以a n -12得所要证的不等式. 综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.22.B12、M3、M2 (1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1.求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则ab 11ab 22≤a 1b 1+a 2b 2; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题. 注:当α为正有理数时,有求导公式(x α)′=αx α-1.22.解:(1)f ′(x )=r -rx r -1=r (1-x r -1),令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数; 当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数.故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ). ① 若a 1,a 2中有一个为0,则ab 11ab 22≤a 1b 1+a 2b 2成立; 若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1,于是在①中令x =a 1a 2,r =b 1,可得⎝ ⎛⎭⎪⎫a 1a 2b 1≤b 1·a 1a 2+(1-b 1),即ab 11a 1-b 12≤a 1b 1+a 2(1-b 1),亦即ab 11ab 22≤a 1b 1+a 2b 2.综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有ab 11ab 22≤a 1b 1+a 2b 2.②(3)(2)中命题的推广形式为:若a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数. 若b 1+b 1+…+b n =1,则ab 11ab 22…ab nn ≤a 1b 1+a 2b 2+…+a n b n .③ 用数学归纳法证明如下:①当n =1时,b 1=1,有a 1≤a 1,③成立.②假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…ab kk ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即 1-b k +1>0,于是ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1 =(a b 11-b k +11a b 21-b k +12…a b k1-b k +1k)1-b k +1ab k +1k +1.因b 11-b k +1+b 21-b k +1+…+b k1-b k +1=1,由归纳假设可得a b 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k1-b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1.又因(1-b k +1)+b k +1=1,由②得⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k 1-b k +1·(1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1. 故当n =k +1时,③成立.由①②可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.22. D3、M3 函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为y -5=f-5(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为y -5=f x k +1-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=-x k +1+x k +12+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①、②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得x n +1=3+4x n2+x n .设b n =x n -3,则1b n +1=5b n +1,1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-4.M4 单元综合23.M4 设集合P n ={1,2,…,n },n ∈N *.记f (n )为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A . (1)求f (4);(2)求f (n )的解析式(用n 表示).23.解:(1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4}, 故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数; 若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是由m 是否属于A 确定的.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n ⎝⎛⎭⎪⎫或n +12,所以f (n )=⎩⎨⎧2n2,n 为偶数,2n +12,n 为奇数.20.B3、D4、M4 设A 是由m ×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记S (m ,n )为所有这样的数表构成的集合.对于A ∈S (m ,n ),记r i (A )为A 的第i 行各数之和(1≤i ≤m ),c j (A )为A 的第j 列各数之和(1≤j ≤n );记k (A )为|r 1(A )|,|r 2(A )|,…,|r m (A )|,|c 1(A )|,|c 2(A )|,…,|c n (A )|中的最小值.(1)对如下数表A,求k(A)的值;(2)设数表A∈S(2,3)求k(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求k(A)的最大值.20.解:(1)因为r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8,所以k(A)=0.7.(2)不妨设a≤b.由题意得c=-1-a-b.又因c≥-1,所以a+b≤0,于是a≤0.r(A)=2+c≥1,r2(A)=-r1(A)≤-1,1c(A)=1+a,c2(A)=1+b,c3(A)=-(1+a)-(1+b)≤-(1+a).1所以k(A)=1+a≤1.当a=b=0且c=-1时,k(A)取得最大值1.(3)对于给定的正整数t,任给数表A∈S(2,2t+1)如下:任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*∈S(2,2t+1),并且k(A)=k(A*).因此,不妨设r 1(A )≥0,且c j (A )≥0(j =1,2,…,t +1). 由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c j (A )(j =1,2,…,t +1). 又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0, 所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A ) =r 1(A )-c t +2(A )-…-c 2t +1(A )=∑j =1t +1a j -∑j =t +22t +1b j≤(t +1)-t ×(-1)=2t +1. 所以k (A )≤2t +1t +2.对数表A 0: -1+t -1t t +-1+t -1t t +则A 0∈S (2,2t +1),且k (A 0)=t +2.综上,对于所有的A ∈S (2,2t +1),k (A )的最大值为2t +1t +2.。
2018年全国各地高考数学试题及解答分类汇编大全 (15概率、统计、统计案例、推理与证明)一、选择题1.(2018全国新课标Ⅰ文、理)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半1。
答案:A解答:由图可得,A 选项,设建设前经济收入为x ,种植收入为0.6x .建设后经济收入则为2x ,种植收入则为0.3720.74x x ⨯=,种植收入较之前增加.另解:假设建设前收入为a ,则建设后收入为2a ,所以种植收入在新农村建设前为60%a ,新农村建设后为37%2a ⋅;其他收入在新农村建设前为4%a ⋅,新农村建设后为5%2a ⋅,养殖收入在新农村建设前为30%a ⋅,新农村建设后为30%2a ⋅ 故不正确的是A.2.(2018全国新课标Ⅱ文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A .0.6B .0.5C .0.4D .0.32.【答案】D【解析】设2名男同学为1A ,2A ,3名女同学为1B ,2B ,3B ,从以上5名同学中任选2人总共有12A A ,11A B ,12A B ,13A B ,21A B ,22A B ,23A B ,12B B ,13B B ,23B B 共10种可能,选中的2人都是女同学的情况共有共12B B ,13B B ,23B B 三种可能则选中的2人都是女同学的概率为30.310P ==,故选D .3.(2018全国新课标Ⅲ文)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.73.答案:B解答:由题意10.450.150.4P =--=.故选B.二、填空1.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .1.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.2.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .2.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.3. (2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)4.(2018全国新课标Ⅲ文)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 14.答案:分层抽样解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法.三、解答题1.(好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加01.,哪类电影的好评率减少01.,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)1.【答案】(1)0025.;(2)0814.;(3)增加第五类电影的好评率,减少第二类电影的好评率. 【解析】(1)由题意知,样本中电影的总部数是140503002008005102000+++++=.第四类电影中获得好评的电影部数是20002550⨯=.,故所求概率为5000252000=..(2)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有14006500830008520007580008510091628⨯+⨯+⨯+⨯+⨯+⨯=......部.由古典概型概率公式得()162808142000P B ==..(3)增加第五类电影的好评率,减少第二类电影的好评率.2.(2018北京理)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n =3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.2(共14分)解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M (α,α)=12 [(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,M (α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x 1,x 2,x 3,x 4)∈B ,则M (α,α)= x 1+x 2+x 3+x 4. 由题意知x 1,x 2,x 3,x 4∈{0,1},且M (α,α)为奇数, 所以x 1,x 2,x 3,x 4中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}. 将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M (α,β)=1. 所以每组中的两个元素不可能同时是集合B 的元素. 所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(Ⅲ)设S k =( x 1,x 2,…,x n )|( x 1,x 2,…,x n )∈A ,x k =1,x 1=x 2=…=x k –1=0)(k =1,2,…,n ),S n +1={( x 1,x 2,…,x n )| x 1=x 2=…=x n =0}, 则A =S 1∪S 1∪…∪S n +1.对于S k (k =1,2,…,n –1)中的不同元素α,β,经验证,M (α,β)≥1. 所以S k (k =1,2 ,…,n –1)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过n +1.取e k =( x 1,x 2,…,x n )∈S k 且x k +1=…=x n =0(k =1,2,…,n –1).令B =(e 1,e 2,…,e n –1)∪S n ∪S n +1,则集合B 的元素个数为n +1,且满足条件. 故B 是一个满足条件且元素个数最多的集合.3.(2018江苏)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).3.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.4.(2018天津文)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 4.【答案】(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(2)①答案见解析;②521.【解析】(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.②由(1),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种. 所以,事件M 发生的概率为()521P M =.5.(2018全国新课标Ⅰ文)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:((2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)5.答案:略 解答:(1)(2)由题可知用水量在[0.3,0.4]的频数为10,所以可估计在[0.3,0.35)的频数为5,故用水量小于30.35m 的频数为1513524+++=,其概率为240.4850P ==.(3)未使用节水龙头时,50天中平均每日用水量为: 31(0.0510.1530.2520.3540.4590.55260.657)0.50650m ⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.506365184.69m ⨯=. 使用节水龙头后,50天中平均每日用水量为: 31(0.0510.1550.25130.35100.45160.555)0.3550m ⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.35365127.75m ⨯=, ∴一年能节省3184.69127.7556.94m -=.6.(2018全国新课标Ⅱ文、理) 下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.6.【答案】(1)模型①226.1亿元,模型②2565.亿元;(2)模型②,见解析. 【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 30.413.5192ˆ26.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ˆ9917592565y =+⨯=..(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ99175y t =+.可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.7.(2018全国新课标Ⅲ文、理)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m(3附:22()()()()()n ad bc K a b c d a c b d -=++++,2()0.0500.0100.0013.8416.63510.828P K k k ≥.7.答案:见解析解答:(1)第一种生产方式的平均数为184x =,第二种生产方式平均数为274.7x =,∴12x x >,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.(2)由茎叶图数据得到80m =,∴列联表为(3)222()40(151555)10 6.635()()()()20202020n ad bc K a b c d a c b d -⨯-⨯===>++++⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异.古今中外有学问的人,有成就的人,总是十分注意积累的。
M 推理与证明M1 合情推理与演绎推理11.M1 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个...不等式为______________.11.1+122+132+142+152+162<116本小题主要考查了归纳与推理的能力,解题的关键是对给出的几个事例分析,找出规律,推出所要的结果.从几个不等式左边分析,可得出第五个式子的左边为:1+122+132+142+152+162,对几个不等式右边分析,其分母依次为:2,3,4,所以第5个式子的分母应为6,而其分子依次为: 3,5,7,所以第5个式子的分子应为11,所以第5个式子应为:1+122+132+142+152+162<116.13.M1 回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n +1(n ∈N *)位回文数有________个.13.(1)90 (2)9×10n 由题意,1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,1221,…,1991,2002,…,9999,共90个,故归纳猜想2n +2位回文数与2n +1位回文数个数相等,均为9×10n 个.16.M1 设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N2和后N2个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段N2个数,并对每段作C 变换,得到P 2;当2≤i ≤n-2时,将P i 分成2i段,每段N2i 个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置; (2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.16.(1)6 (2) 3×2n -4+11 考查合情推理,以新定义题型为载体,依据排列,考查考生的逻辑推理能力,要求学生的想象能力相当出色.(1)由已知可得P 1=x 1x 3x 5x 7x 9x 11x 13x 15…,P 2=x 1x 5x 9x 13x 3x 7x 11x 15…,故x 7位于P 2中的第6个位置;(2)当i =1时,P 1的排列中x 173的位置是173+12=87位;当i =2时,P 2的排列中x 173的位置是87+12=44位;当i =3时,P 3的排列中x 173的位置是2n -22+442=2n -3+22位;当i =4时,P 4的排列中x 173的位置是2n -3+2n -3+222=2n -3+2n -4+11=3×2n -4+11位.6.M1 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1996.C 考查归纳推理,以及观察能力;解题的突破口是通过观察得到后一项与前两项结果之间的关系.由于a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和.因此,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,故选C.M2 直接证明与间接证明23.M2、D1 对于数集X ={-1,x 1,x 2,…,x n },其中0<x 1<x 2<…<x n ,n ≥2,定义向量集Y ={a |a =(s ,t ),s ∈X ,t ∈X },若对任意a 1∈Y ,存在a 2∈Y ,使得a 1·a 2=0,则称X 具有性质P ,例如{-1,1,2}具有性质P .(1)若x >2,且{-1,1,2,x }具有性质P ,求x 的值; (2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1; (3)若X 具有性质P ,且x 1=1、x 2=q (q 为常数),求有穷数列x 1,x 2,…,x n 的通项公式.23.解:(1)选取a 1=(x,2),Y 中与a 1垂直的元素必有形式(-1,b ),所以x =2b ,从而x =4.(2)证明:取a 1=(x 1,x 1)∈Y ,设a 2=(s ,t )∈Y ,满足a 1·a 2=0.由(s +t )x 1=0得s +t =0,所以s ,t 异号.因为-1是X 中唯一的负数,所以s ,t 之中一个为-1,另一个为1,故1∈X .假设x k =1,其中1<k <n ,则0<x 1<1<x n .选取a 1=(x 1,x n )∈Y ,并设a 2=(s ,t )∈Y 满足a 1·a 2=0,即sx 1+tx n =0,则s ,t 异号,从而s ,t 之中恰有一个为-1. 若s =-1,则x 1=tx n >t >x 1,矛盾; 若t =-1,则x n =sx 1<s ≤x n ,矛盾. 所以x 1=1.(3)设a 1=(s 1,t 1),a 2=(s 2,t 2),则a 1·a 2=0等价于s 1t 1=-t 2s 2,记B =⎩⎨⎧st|}s ∈X ,t ∈X ,|s |>|t |,则数集X 具有性质P 当且仅当数集B 关于原点对称.注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数.由于x n x n -1<x n x n -2<…<x n x 2<x nx 1,已有n -1个数,对以下三角数阵x n x n -1<x n x n -2<…<x n x 2<x nx 1, x n -1x n -2<x n -1x n -3<…<x n -1x 1, …x 2x 1. 注意到x n x 1>x n -1x 1>…>x 2x 1,所以x n x n -1=x n -1x n -2=…=x 2x 1,从而数列的通项为x k =x 1⎝ ⎛⎭⎪⎫x 2x 1k -1=q k -1,k =1,2,…,n .19.D2、D3、M2 已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B n A n =a 2+a 3+…+a n +1a 1+a 2+…+a n =q a 1+a 2+…+a na 1+a 2+…+a n =q , C n B n =a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q a 2+a 3+…+a n +1a 2+a 3+…+a n +1=q , 即B n A n =C n B n=q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q ,得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1.由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0.因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.22.B12、M3、M2 (1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1.求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则ab 11ab 22≤a 1b 1+a 2b 2;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(x α)′=αx α-1.22.解:(1)f ′(x )=r -rx r -1=r (1-x r -1),令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数; 当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数. 故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ). ①若a 1,a 2中有一个为0,则ab 11ab 22≤a 1b 1+a 2b 2成立; 若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1,于是在①中令x =a 1a 2,r =b 1,可得⎝ ⎛⎭⎪⎫a 1a 2b 1≤b 1·a 1a 2+(1-b 1),即ab 11a 1-b 12≤a 1b 1+a 2(1-b 1),亦即ab 11ab 22≤a 1b 1+a 2b 2. 综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有ab 11ab 22≤a 1b 1+a 2b 2.②(3)(2)中命题的推广形式为:若a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数. 若b 1+b 1+…+b n =1,则ab 11ab 22…ab nn ≤a 1b 1+a 2b 2+…+a n b n .③ 用数学归纳法证明如下:①当n =1时,b 1=1,有a 1≤a 1,③成立.②假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…ab kk ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即 1-b k +1>0,于是ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1 =(a b 11-b k +11a b 21-b k +12…a b k1-b k +1k )1-b k +1ab k +1k +1.因b 11-b k +1+b 21-b k +1+…+b k1-b k +1=1,由归纳假设可得 ab 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k1-b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤⎝⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1. 又因(1-b k +1)+b k +1=1,由②得⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k1-b k +1·(1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1. 故当n =k +1时,③成立.由①②可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.M3 数学归纳法21.D1、D3、E1、M3 设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0.(1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件.21.解:(1)证法一:由S 2=a 2S 1+a 1得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1.因a 2≠0,故a 1=1,得a 2a 1=a 2.又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1,两式相减得S n +2-S n +1=a 2(S n +1-S n ), 即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2. 综上,a n +1a n=a 2对所有n ∈N *成立,从而{a n }是首项为1,公比为a 2的等比数列.证法二:用数学归纳法证明a n =a n -12,n ∈N *. 当n =1时,由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1,再由a 2≠0,得a 1=1,所以结论成立.假设n =k 时,结论成立,即a k =a k -12,那么 当n =k +1时,a k +1=S k +1-S k =(a 2S k +a 1)-(a 2S k -1+a 1)=a 2(S k-S k -1)=a 2a k =a k 2,这就是说,当n =k +1时,结论也成立.综上可得,对任意n ∈N *,a n =a n -12.因此{a n }是首项为1,公比为a 2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知a 1=1,a n =a n -12,所以要证的不等式化为1+a 2+a 22+…+a n -12≤n2(1+a n -12)(n ≥3),即证:1+a 2+a 22+…+a n2≤n +12(1+a n 2)(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r 2-1(r =1,2,…,n -1)同为负; 当a 2>1时,a r 2-1与a n -r 2-1(r =1,2,…,n -1)同为正. 因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r 2-1)>0,即 a r 2+a n -r 2<1+a n 2(r =1,2,…,n -1).上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n 2), 由此可得1+a 2+a 22+…+a n2<n +12(1+a n 2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n ≤n2(a 1+a n ),等号成立.当a 2=1时,S n =n =n2(a 1+a n ),等号也成立.当a 2≠1时,由(1)知S n =1-a n 21-a 2,a n =a n -12,下证:1-a n 21-a 2<n 2(1+a n -12)(n ≥3,a 2>-1且a 2≠1). 当-1<a 2<1时,上面不等式化为(n -2)a n 2+na 2-na n -12<n -2(n ≥3). 令f (a 2)=(n -2)a n 2+na 2-na n -12.当-1<a 2<0时,1-a n -22>0,故 f (a 2)=(n -2)a n 2+na 2(1-a n -22)<(n -2)|a 2|n <n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n =ng (a 2).其中g (a 2)=(n -2)a n -12-(n -1)a n -22+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)a n -32<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令b =1a 2,则0<b <1,由已知的结论知1-⎝ ⎛⎭⎪⎫1a 2n1-1a 2<n 2⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a 2n -1, 两边同时乘以a n -12得所要证的不等式. 综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.22.B12、M3、M2 (1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1.求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则ab 11ab 22≤a 1b 1+a 2b 2;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(x α)′=αx α-1.22.解:(1)f ′(x )=r -rx r -1=r (1-x r -1),令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数; 当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数. 故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ). ①若a 1,a 2中有一个为0,则ab 11ab 22≤a 1b 1+a 2b 2成立; 若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1,于是在①中令x =a 1a 2,r =b 1,可得⎝ ⎛⎭⎪⎫a 1a 2b 1≤b 1·a 1a 2+(1-b 1),即ab 11a 1-b 12≤a 1b 1+a 2(1-b 1),亦即ab 11ab 22≤a 1b 1+a 2b 2. 综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有ab 11ab 22≤a 1b 1+a 2b 2.②(3)(2)中命题的推广形式为:若a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数. 若b 1+b 1+…+b n =1,则ab 11ab 22…ab nn ≤a 1b 1+a 2b 2+…+a n b n .③用数学归纳法证明如下:①当n =1时,b 1=1,有a 1≤a 1,③成立.②假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…ab kk ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即 1-b k +1>0,于是ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1=(ab 11-b k +11a b 21-b k +12…a b k1-b k +1k )1-b k +1ab k +1k +1.因b 11-b k +1+b 21-b k +1+…+b k1-b k +1=1,由归纳假设可得 a b 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k1-b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤⎝⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1. 又因(1-b k +1)+b k +1=1,由②得⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k1-b k +1·(1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1. 故当n =k +1时,③成立.由①②可知,对一切正整数n,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n≥2成立,则后续证明中不需讨论n=1的情况.22. D3、M3函数f(x)=x2-2x-3.定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(1)证明:2≤x n<x n+1<3;(2)求数列{x n}的通项公式.22.解:(1)用数学归纳法证明:2≤x n<x n+1<3.①当n=1时,x1=2,直线PQ1的方程为y-5=f-52-4(x-4),令y=0,解得x2=114,所以2≤x1<x2<3.②假设当n=k时,结论成立,即2≤x k<x k+1<3.直线PQ k+1的方程为y-5=f x k+1-5x k+1-4(x-4),令y=0,解得x k+2=3+4x k+1 2+x k+1.由归纳假设知x k+2=3+4x k+12+x k+1=4-52+x k+1<4-52+3=3,x k+2-x k+1=-x k+1+x k+12+x k+1>0,即x k+1<x k+2.所以2≤x k+1<x k+2<3,即当n=k+1时,结论成立.由①、②知对任意的正整数n,2≤x n<x n+1<3.(2)由(1)及题意得x n +1=3+4x n2+x n .设b n =x n -3,则1b n +1=5b n+1,1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1.M4 单元综合23.M4 设集合P n ={1,2,…,n },n ∈N *.记f (n )为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A . (1)求f (4);(2)求f (n )的解析式(用n 表示).23.解:(1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数; 若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是由m 是否属于A 确定的.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2⎝ ⎛⎭⎪⎫或n +12,所以f (n )=⎩⎪⎨⎪⎧2n2,n 为偶数,2n +12,n 为奇数.20.B3、D4、M4 设A 是由m ×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记S (m ,n )为所有这样的数表构成的集合.对于A ∈S (m ,n ),记r i (A )为A 的第i 行各数之和(1≤i ≤m ),c j (A )为A 的第j 列各数之和(1≤j ≤n );记k (A )为|r 1(A )|,|r 2(A )|,…,|r m (A )|,|c 1(A )|,|c 2(A )|,…,|c n (A )|中的最小值.(1)对如下数表A ,求k (A )的值;(2)设数表A ∈S求k(A)的最大值;(3)给定正整数t,对于所有的A∈S(2,2t+1),求k(A)的最大值.20.解:(1)因为r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8,所以k(A)=0.7.(2)不妨设a≤b.由题意得c=-1-a-b.又因c≥-1,所以a+b≤0,于是a≤0.r1(A)=2+c≥1,r2(A)=-r1(A)≤-1,c1(A)=1+a,c2(A)=1+b,c3(A)=-(1+a)-(1+b)≤-(1+a).所以k(A)=1+a≤1.当a=b=0且c=-1时,k(A)取得最大值1.(3)对于给定的正整数t,任给数表A∈S(2,2t+1)如下:任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*∈S(2,2t+1),并且k(A)=k(A*).因此,不妨设r1(A)≥0,且c j(A)≥0(j=1,2,…,t+1).由k(A)的定义知,k(A)≤r1(A),k(A)≤c j(A)(j=1,2,…,t+1).又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0,所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A )=r 1(A )-c t +2(A )-…-c 2t +1(A )=∑j =1t +1a j -∑j =t +22t +1b j≤(t +1)-t ×(-1)=2t +1. 所以k (A )≤2t +1t +2.对数表A 0: -1+t -1t t +-1+t -1t t +则A 0∈S (2,2t +1),且k (A 0)=t +2.综上,对于所有的A ∈S (2,2t +1),k (A )的最大值为2t +1t +2.。
第四节归纳与类比[考纲传真] 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性;掌握演绎推理的基本模式,并能用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理方式.(2)特点:①是由部分到整体,由个别到一般的推理.②利用归纳推理得出的结论不一定是正确的.2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理过程.(2)特点:①是两类事物特征之间的推理.②利用类比推理得出的结论不一定是正确的.3.合情推理(1)定义:是根据实验和实践的结果,个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.4.演绎推理(1)定义:是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)归纳推理与类比推理都是由特殊到一般的推理.( )(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )(3)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( )(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( )[答案] (1)× (2)× (3)√ (4)×2.由“半径为R 的圆内接矩形中,正方形的面积最大”,推出“半径为R 的球的内接长方体中,正方体的体积最大”是( )A .归纳推理B .类比推理C .演绎推理D .以上都不是B [类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).所以,由“半径为R 的圆内接矩形中,正方形的面积最大”,推理出“半径为R 的球的内接长方体中,正方体的体积最大”是类比推理.]3.(教材改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -1B .a n =4n -3C .a n =n 2D .a n =3n -1 C [a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.]4.“因为指数函数y =a x 是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x 是增函数(结论)”,上面推理的错误在于( ) A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .大前提和小前提错误导致结论错误A [“指数函数y =a x是增函数”是本推理的大前提,它是错误的.因为实数a 的取值范围没有确定,所以导致结论是错误的.]5.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.A [由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A.](1)(2016·武汉4月调研)数列12,13,23,14,24,34,…,1m +1,2m +1,…,mm +1,…的第20项是( )A.58B .34C .57D .67(2)(2016·山东高考)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5; ……照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝⎛⎭⎪⎫sin 2n π2n +1-2=________. (1)C (2)43n (n +1) [(1)数列m m +1在数列中是第1+2+3+…+m =m m +1 2项,当m =5时,即56是数列中第15项,则第20项是57,故选C. (2)通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).] [规律方法] 1.常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质;(2)从相同性质中推出一个明确表述的一般性命题.[变式训练1] (1)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +a x n ≥n +1(n ∈N *),则a =__________. (2)下面图形由小正方形组成,请观察图641(1)至图(4)的规律,并依此规律,写出第n 个图形中小正方形的个数是__________.【导学号:66482303】图641(1)n n (n ∈N *) (2)n n +1 2(n ∈N *) [(1)第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n .(2)由题图知第n 个图形的小正方形个数为1+2+3+…+n .所以总个数为n n +1 2(n∈N *).]n 数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也是等差数列,类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n =n c n 1+c n 2+…+c n n nD .d n =n c 1·c 2·…·c n(2)(2016·贵州六校联考)在平面几何中,△ABC 的∠C 的平分线CE 分AB 所成线段的比为AC BC =AE BE.把这个结论类比到空间:在三棱锥A BCD 中(如图642),DEC 平分二面角A CD B 且与AB 相交于E ,则得到类比的结论是________________.【导学号:66482304】图642(1)D (2)AE EB =S △ACD S △BCD[(1)法一:从商类比开方,从和类比到积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =n c 1·c 2·…·c n .法二:若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -1 2d ,∴b n =a 1+ n -1 2d =d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n n -1 2,∴d n =n c 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D.(2)由平面中线段的比转化为空间中面积的比可得AE EB =S △ACD S △BCD.] [规律方法] 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想,其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差数列与等比数列类比;运算类比(和与积、乘与乘方,差与除,除与开方).数的运算与向量运算类比;圆锥曲线间的类比等.[变式训练2] 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”;④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1.”其中类比结论正确的个数为( )A .1B .2C .3D .4B [类比结论正确的有①②.]数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .【导学号:66482305】[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 2分∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)5分(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)8分又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)12分[规律方法] 演绎推理的一般模式为三段论,三段论推理的依据是:如果集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .应用三段论解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.[变式训练3] 如图643所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).图643【导学号:66482306】[证明] (1)同位角相等,两条直线平行,(大前提)∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提)所以DF ∥EA .(结论)5分(2)两组对边分别平行的四边形是平行四边形,(大前提)DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论)8分(3)平行四边形的对边相等,(大前提)ED 和AF 为平行四边形的对边,(小前提)所以ED =AF .(结论)上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒ 四边形AFDE 是平行四边形⇒ED =AF . 12分[思想与方法]1.合情推理的过程概括为从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错与防范]1.在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,否则只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.2.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严谨性,书写格式的规范性.。
1.综合法(1)定义:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法.(2)框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证明的结论).2.分析法(1)定义:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.(2)框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.3.反证法我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.反证法的证题步骤是:(1)作出否定结论的假设;(2)进行推理,导出矛盾;(3)否定假设,肯定结论.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.(×)(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >a b答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0, ∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为( ) A .a ,b 都能被5整除 B .a ,b 不都能被5整除 C .a ,b 至少有一个能被5整除 D .a ,b 至多有一个能被5整除 答案 C解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·青岛模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n ),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π). ∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用例1 数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列{1a n }是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n =2n -1,∴S n =n (1+2n -1)2=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=nn +1. 方法二1S 1+1S 2+…+1S n =112+122+…+1n2>1, 又∵1>nn +1,∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞), ∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立. 上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a 2)>lg abc ,∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22, 即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22,因此只要证明12233x x +-(x 1+x 2)≥1223x x +-(x 1+x 2),即证明,121223233x xx x ++≥因此只要证明12233x x+由于x 1,x 2∈R 时,13x >0,23x>0,由基本不等式知12233x x+思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·重庆月考)设a >0,b >0,2c >a +b ,求证:(1)c 2>ab ;(2)c -c 2-ab <a <c +c 2-ab . 证明 (1)∵a >0,b >0,2c >a +b ≥2ab , ∴c >ab ,平方得c 2>ab .(2)要证c -c 2-ab <a <c +c 2-ab , 只要证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,即(a -c )2<c 2-ab . ∵(a -c )2-c 2+ab =a (a +b -2c )<0成立, ∴原不等式成立. 题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·西安模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB 平面ABCD ,AD 平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD . ∵BC ∥AD ,BC 平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =b a .假设x 1,x 2是它的两个不同的根,即ax 1=b ,① ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤: 第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图像与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图像与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根, 又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根. 即1a是函数f (x )的一个零点. (2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a >c .23.反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k 2.所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分]因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]1.(2017·泰安质检)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( ) A .方程x 2+ax +b =0没有实根 B .方程x 2+ax +b =0至多有一个实根 C .方程x 2+ax +b =0至多有两个实根 D .方程x 2+ax +b =0恰好有两个实根 答案 A解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A. 2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0]答案 D解析 2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0或k =0. 解得-3<k ≤0.3.(2017·上饶质检)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2答案 C解析 因为(y x +y z )+(z x +z y )+(x z +x y) =(y x +x y )+(y z +z y )+(z x +x z)≥6, 当且仅当x =y =z 时等号成立. 所以三个数中至少有一个不小于2,故选C.4.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①的假设正确;②的假设错误C .①与②的假设都正确D .①的假设错误;②的假设正确答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D.5.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案 C解析 因为a +1b +b +1c +c +1a≤-6, 所以三者不能都大于-2.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图像关于y 轴对称,求证:f (x +12)为偶函数.证明 由函数f (x +1)与f (x )的图像关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得f (x -12+1)=f [-(x -12)], 即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴21x x a->1且1x a >0, ∴21x x a a -=121(1)x x x a a -->0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=21x x a a -+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则0x a =-x 0-2x 0+1. ∵a >1,∴0<0xa <1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1,得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34, 又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b > c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b > c +d .②若a +b > c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b > c +d 是|a -b |<|c -d |的充要条件.。
专题30 推理与证明考纲解读明方向考纲解读分析解读 1.能利用已知结论类比未知结论或归纳猜想结论并加以证明.2.了解直接证明与间接证明的基本方法,体会数学证明的思想方法.3.掌握“归纳—猜想—证明”的推理方法及数学归纳法的证明步骤.4.归纳推理与类比推理是高考的热点.本章在高考中的推理问题一般以填空题形式出现,分值约为5分,属中档题;证明问题一般以解答题形式出现,分值约为12分,属中高档题.2017年高考全景展示1. 【2017课标II,理7】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。
老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。
看后甲对大家说:我还是不知道我的成绩。
根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【考点】合情推理【名师点睛】合情推理主要包括归纳推理和类比推理。
数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。
合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。
而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。
2.(2017北京,14,5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.答案①Q1②p23.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.4.(2017北京,20,13分)设{a n}和{b n}是两个等差数列,记c n=max{b1-a1n,b2-a2n,…,b n-a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n-1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.解析本题考查等差数列,不等式,合情推理等知识,考查综合分析,归纳抽象,推理论证能力.(1)c1=b1-a1=1-1=0,c2=max{b1-2a1,b2-2a2}=max{1-2×1,3-2×2}=-1,c3=max{b1-3a1,b2-3a2,b3-3a3}=max{1-3×1,3-3×2,5-3×3}=-2.当n≥3时,(b k+1-na k+1)-(b k-na k)=(b k+1-b k)-n(a k+1-a k)=2-n<0,所以b k-na k关于k∈N*单调递减.所以c n=max{b1-a1n,b2-a2n,…,b n-a n n}=b1-a1n=1-n.所以对任意n≥1,c n=1-n,于是c n+1-c n=-1,所以{c n}是等差数列.(2)设数列{a n}和{b n}的公差分别为d1,d2,则b k-na k=b1+(k-1)d2-[a1+(k-1)d1]n=b1-a1n+(d2-nd1)(k-1).所以c n=①当d1>0时,取正整数m>,则当n≥m时,nd1>d2,因此c n=b1-a1n.此时,c m,c m+1,c m+2,…是等差数列.②当d1=0时,对任意n≥1,c n=b1-a1n+(n-1)max{d2,0}=b1-a1+(n-1)(max{d2,0}-a1).此时,c1,c2,c3,…,c n,…是等差数列.③当d1<0时,当n>时,有nd1<d2.所以==n(-d1)+d1-a1+d2+≥n(-d1)+d1-a1+d2-|b1-d2|.对任意正数M,取正整数m>max,故当n≥m时,>M.2016年高考全景展示1.【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.【答案】1和3考点:逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.。
M单元推理与证明M1合情推理与演绎推理M2直接证明与间接证明M3数学归纳法M4 单元综合23.M4[2018·江苏卷]设n∈N*,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).23.解:(1)记τ(abc)为排列abc的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,所以f3(0)=1,f3(1)=f3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以f n(1)=n-1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)-f n-1(2)]+[f n-1(2)-f n-2(2)]+…+[f5(2)-f4(2)]+f4(2)=(n-1)+(n-2)+…+4+f4(2)=n2-n-2,2因此,当n≥5时,f n(2)=n2-n-2.21.[2018·河南中原名校五联]老师在4个不同的盒子里面放了4张不同的扑克牌,分别是红桃A,梅花A,方片A以及黑桃A,小明、小红、小张、小李四个人进行猜测:小明说:第1个盒子里面放的是梅花A,第3个盒子里面放的是方片A;小红说:第2个盒子里面放的是梅花A,第3个盒子里面放的是黑桃A;小张说:第4个盒子里面放的是黑桃A,第2个盒子里面放的是方片A;小李说:第4个盒子里面放的是红桃A,第3个盒子里面放的是方片A.老师说:小明、小红、小张、小李,你们都只说对了一半.则可以推测,第4个盒子里装的是()A.红桃A或黑桃AB.红桃A或梅花AC.黑桃A或方片AD.黑桃A或梅花A1.A[解析] 因为四个人都只猜对了一半,所以有以下两种可能:(1)当小明猜对第1个盒子里面放的是梅花A时,则第3个盒子里面放的不是方片A,小李猜对第4个盒子里面放的是红桃A,小张猜对第2个盒子里面放的是方片A,小红猜对第3个盒子里面放的是黑桃A;(2)当小明猜对第3个盒子里面放的是方片A时,则第1个盒子里面放的不是梅花A,小红猜对第2个盒子里面放的是梅花A,小张猜对第4个盒子里面放的是黑桃A,小李猜对第3个盒子里面放的是方片A,则第1个盒子里面放的只能是红桃A.故选A.2.[2018·广东佛山模拟]德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数n,);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运如果n是偶数,就将它减半(即n2算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数n(首项)按照上述规则进行变换后的第9项为1(注:1可以多次出现),则n 的所有不同值的个数为()A.4B.5C.6D.72.D[解析] 如果正整数n按照规则实行变换后的第9项为1,则第8项一定是2,第7项一定是4,按照这种逆推的对应关系可得如下树状图:则n的所有可能的取值为4,5,6,32,40,42,256,共7个.3.[2018·乌鲁木齐一检]甲、乙、丙、丁四人关于买彩票的中奖情况有下列对话:甲说:“如果我中奖了,那么乙也中奖了.”乙说:“如果我中奖了,那么丙也中奖了.”丙说:“如果我中奖了,那么丁也中奖了.”结果三人都没有说错,但是只有两人中奖,那么这两人是()A.甲、乙B.乙、丙C.丙、丁D.甲、丁3.C[解析] 假设甲中奖,则乙、丙、丁都中奖,此时四人都中奖,故甲不可能中奖;假设乙中奖,则丙、丁都中奖,甲不一定中奖,此时至少三人中奖,故乙不可能中奖.故只有可能是丙、丁均中奖,符合题意.5.[2018·吉林二调]某公司招聘员工,有甲、乙、丙三人应聘并进行面试,结果只有一人被录用,当三人被问到谁被录用时,甲说:丙没有被录用;乙说:我被录用;丙说:甲说的是真话.事实证明,三人中只有一人说的是假话,那么被录用的人是.5.甲[解析] 如果甲说假话,则丙被录用,那么乙也说了假话,与题设矛盾;如果乙说假话,甲、丙说了真话,则乙没有被录用,丙也没有被录用,则甲被录用,满足题意;如果丙说假话,则甲也说了假话,与题设矛盾.综上,被录用的是甲.6.[2018·广东茂名五校一联]某校的团知识宣讲小组由学生和青年教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于青年教师人数;(ⅲ)青年教师人数的两倍多于男学生人数.若青年教师人数为3,则该宣讲小组总人数为.6.12[解析] 设男学生人数、女学生人数、青年教师人数分别为a,b,c,则2c>a>b>c,a,b,c∈N*,由青年教师人数为3,可得c=3,6>a>b>3,所以a=5,b=4,所以a+b+c=12,即该宣讲小组总人数为12.。