Scale-free network provides an optimal pattern for knowledge transfer
- 格式:pdf
- 大小:1.94 MB
- 文档页数:8
基于动态贝叶斯网络的复杂网络攻击方法研究刘飞飞;蔺婧娜;刘潇潇【摘要】在制定网络攻击策略时,目标网络信息存在不确定性,攻击方缺乏综合、可靠、实时的攻击依据,难以达到攻击效果,为此提出一种科学的复杂网络攻击方法.对网络攻击中攻击方收益、损耗、代价和遇到的风险进行分析,建立指标体系,利用动态贝叶斯网络对网络节点的攻击效果进行综合评估,克服了传统节点重要度评估方法依靠网络拓扑单一指标或者对目标节点进行静态评估的缺点.仿真实验表明该方法在攻击时综合了更多节点关系和观测信息,避免了依靠静态评估手段实施攻击时实际攻击效果与理论期望的差距,同时在攻击精度上更加准确,攻击效能更高.%The uncertain attack information and the lack of a reliable basis for command and decision-maker in the formu-lation of the attack plan in complex network attacks, lead to the effect of attacks difficult to achieve mission objectives when implementing action. For this situation, this paper presents a scientific complex network attack effect evaluation method. By analyzing income, cost of attack, loss of the attacker, attacker risks encountered network attacks, the paper establishes the corresponding index system, through DBN method for a comprehensive assessment of the effect of attacking nodes in the network, effectively overcomes the traditional node selection method relying on a single indicator of network topology, the results show that the fuzzy dynamic model synthesizes more nodes connection and informations of observed data and can overcome the static evaluation method to carry out attacks in the gap between theactual attack and theory of expectation effect while making more precision and higher performance on attack.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)011【总页数】9页(P18-25,60)【关键词】网络攻击;动态贝叶斯网络;复杂网络;综合评估【作者】刘飞飞;蔺婧娜;刘潇潇【作者单位】山西大学商务学院,太原 030031;山西大学商务学院,太原 030031;山西大学商务学院,太原 030031【正文语种】中文【中图分类】TP391网络空间信息对抗中的态势感知系统、监测控制系统、信息枢纽中心及各类力量单元由高度联结复杂网络所构成,在信息对抗中首先攻击对方网络系统,能够直接破坏或瓦解对方的信息防御体系,随着信息技术的不断发展,复杂网络在军事和经济领域的应用越来越广泛、网络应用的组织结构更具协同化,应用的层次朝多方向发展,网络攻击行为更具不确定性,攻击策略呈复杂化和多样化趋势,怎样使用有限的力量对目标网络的众多节点进行最具价值的攻击,关系到攻击效能的高低,网络攻击策略的制定需要对网络攻击效果进行精确的效果评估已经形成共识,如何在复杂的网络环境下对网络攻击的效果作出定性和定量的评估,检验攻击行为的有效性和网络系统的安全性,已成为相关领域的研究热点,目前,国内外学者在相关领域基于传统攻击方法的研究取得了一定成果,Petter Holme等人研究了不同网络模型在随机攻击和选择性攻击下的抗毁性,陈盼和吴晓峰等人提出一种基于局部拓扑结构已知的复杂网络攻击策略,Tsen F P和T Y Sung提出了基于最小生成树准则来评价链路重要性算法,胡爱群、王勇等人以此为基础从网络的节点角度出发,提出了基于最小生成树准则的节点删除法,来判定网络各节点的重要性,上述及现有大部分研究主要以网络局部拓扑结构或者网络节点的单一特性在攻击中的表现为基础,没有考虑网络攻击的代价以及面临的风险,现实世界中许多网络都是无标度网络例如Internet,这类网络在这种假设前提下的攻击中表现出了很强的鲁棒性,当遭受选择性攻击时并没有出现崩溃,此外大多数方法主要是对网络系统的攻击效果进行局部或孤立的看待,以此来对复杂网络节点特性进行评估[1],没有考虑时间因素和攻击频率,对未知的网络攻击态势分析不彻底,不能有效应对未知及不确定信息对网络节点攻击造成的影响[2],在进行复杂网络攻击时应该全面衡量攻击策略强度,将攻击代价,风险,收益全面纳入考量因素,动态贝叶斯网络(Dynamic Bayesian Network)是近年来不确定环境下效果评估的一个发展方向,当获得的目标网络节点情报信息为模糊状态且在时序上呈动态不确定时,建立DBN评估模型可以对网络系统中节点受攻击前后的信息变化对网络局部和全局所产生影响进行连续感知和评估,为复杂网络攻击行动提供一种更加精确的定量分析手段,获得更加有利的攻击态势信息,从而选择更加有效的攻击策略。
六個人的小世界--複雜網路簡介記錄:小魚 主講人:台大電信所孔令宏學長12/29 19:00 ~ 21:30 博理館217講座大綱壹、研究複雜網路的動機貳、測量複雜網路的幾個概念参、小世界網路模型(Small-world network model)肆、無尺度網路模型(Scale-free network model)伍、應用陸、未來展望柒、參考資料壹、研究複雜網路的動機日常生活中有哪些網路?不限電腦網路,與會人自由舉例:MSN人際關係小道消息手機聯絡人用來傳遞訊息的routers物流體內循環系統國際貿易等綜合以上所提,日常生活中的網路有以下幾類:一、社交網路如朋友、公司合作夥伴、聯姻等二、訊息網路如引用學術論文、網際網路的超連結等三、科技網路如電力網路、電話網路、電子電路、飛機航線等四、生物網路如代謝途徑、食物網、神經網路等圖只呈現了一部份的分子交互作用。
(From ref. 4.)Fig 2. 威斯康辛州小岩湖(Little Rock Lake)的食物網。
(From ref. 4.)什麼樣的東西可被稱為網路?與會人自由舉例:具有(1)節點及(2)連結節點的路徑。
路徑可能有方向性。
具有牽一髮而動全身的特性。
連結強度可能有強弱之別。
組成的點之間有同質性。
連結後的行為和各自獨立時不同。
複雜程度可大可小。
或point﹞與邊﹝或稱Links﹞構成,各個node之間由edges連結。
Fig.3.了解複雜網路的方法一、Bottom-up approach由下而上,將複雜系統拆解成基本物質,再重新組合而成。
如同找尋物理的基本力一般。
二、Top-down approach由整體網路的架構方法研究網路。
今天我們將主要以此途徑探討複雜網路。
了解網路的困難點一、結構的複雜性二、網路的進化網路可能隨著時間的進行而變。
三、邊的多樣性各個edge可能有不同的權重、正負號和方向。
四、節點的多樣性各個node可能有不同的功能和層級。
基于无尺度网络的僵尸网络传播模型欧阳晨星;谭良;朱贵琼【期刊名称】《计算机工程》【年(卷),期】2012(038)005【摘要】The mainstream propagation models can not exactly describe how the bots spread on Internet. To solve this problem, a new propagation model of Botnet on scale-free network is proposed, which considers carefully about the real situation of Internet, especially two key factors including growth and preferential attachment, so it can reflect the scale-free feature of actual Internet. Simulation result indicates that propagation model of Botnet on scale-free network more exactly confirm with the propagation principle and the inflection feature of Bot on actual Internet.%主流传播模型不能准确反映僵尸程序在Internet中的传播特性.针对该问题,提出一种基于无尺度网络结构的僵尸网络传播模型.该模型考虑了Internet网络的增长特性和择优连接特性,能够反映实际网络中的无尺度特性,更符合真实Internet网络中僵尸程序的传播规律和感染特性.【总页数】4页(P126-128,132)【作者】欧阳晨星;谭良;朱贵琼【作者单位】四川师范大学计算机学院可视化计算与虚拟现实四川省重点实验室,成都610068;四川师范大学计算机学院可视化计算与虚拟现实四川省重点实验室,成都610068;中国科学院计算技术研究所,北京100190;四川师范大学计算机学院可视化计算与虚拟现实四川省重点实验室,成都610068【正文语种】中文【中图分类】TP393【相关文献】1.无尺度网络下的僵尸网络传播模型研究 [J], 欧阳晨星;谭良2.无尺度网络下具有双因素的僵尸网络传播模型 [J], 黄彪;成淑萍;欧阳晨星;谭良3.无尺度网络下具有免疫特征的僵尸网络传播模型 [J], 黄彪;谭良;欧阳晨星;成淑萍4.基于加权网络的僵尸网络传播模型研究 [J], 曹晓丽;牛志玲5.基于KSC算法的无尺度僵尸网络传播模型研究 [J], 徐健因版权原因,仅展示原文概要,查看原文内容请购买。
第39卷第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀中南民族大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Vol.39No.32020年6月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀JournalofSouth⁃CentralUniversityforNationalities(NaturalScienceEdition)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀Jun.2020㊀㊀收稿日期㊀2019⁃11⁃01㊀㊀作者简介㊀郑波尽(1975⁃),男,副教授,博士,研究方向:复杂网络㊁演化计算,E⁃mail:zhengbj@mail.scuec.edu.cn代航,研究方向:复杂网络,E⁃mail:sayonara_dh@163.com㊀㊀基金项目㊀国家自然科学基金资助项目(61603420);中央高校基本科研业务费专项资金资助项目(CZY17006)动态演化下的无标度网络生成算法郑波尽,代航,胡丽君,孙爽(中南民族大学计算机科学学院,武汉430074)摘㊀要㊀当无标度网络上的动力学过程导致网络结构动态演化时,随机性会破坏网络的无标度属性.为了解释动态演化下的一些网络具有无标度特征,提出一种无标度网络生成算法(SFNGA),该算法能充分考虑到现实网络随机性强的特性,结合边度优化策略,加入出生率和死亡率等参数来模拟动态演化过程,在面对节点和边的随机增加或删除时,能保证动态演化下的网络一直是无标度的.理论分析及实验结果均表明:动态演化下的无标度网络生成算法确实能在动态演化下保存网络的无标度特征,并能够抵抗随机性的干扰.关键词㊀动态演化;无标度网络;随机性干扰;复杂网络建模中图分类号㊀TP399㊀文献标志码㊀A㊀文章编号㊀1672⁃4321(2020)03⁃0315⁃06doi:10.12130/znmdzk.20200316引用格式㊀郑波尽,代航,胡丽君,等.动态演化下的无标度网络生成算法[J].中南民族大学学报(自然科学版),2020,39(3):315⁃320.ZHENGBojin,DAIHang,HULijun,etal.Ascale⁃freenetworkgenerationalgorithmbasedondynamicevolution[J].JournalofSouth⁃CentralUniversityforNationalities(NaturalScienceEdition),2020,39(3):315⁃320.Ascale⁃freenetworkgenerationalgorithmbasedondynamicevolutionZHENGBojin,DAIHang,HULijun,SUNShuang(CollegeofComputerScience,South⁃CentralUniversityforNationalities,Wuhan430074,China)Abstract㊀Whendynamicalprocessonscale⁃freenetworksleadstothedynamicevolutionofnetworkstructures,therandomnesswilldestroythescale⁃freefeatureofstructures.Inordertoexplainthephenomenathatsomenetworksholdthescale⁃freefeatureunderthedynamicevolution,thispaperproposesascale⁃freenetworkgenerationalgorithm(SFNGA)toensurethatthenetworkunderdynamicevolutionalwayshasscale⁃freefeature.Thisalgorithmcanfullyconsiderthestrongrandomnessoftherealnetwork,combinetheedge⁃degreeoptimizationstrategy,addthebirthrateanddeathrateandotherparameterstosimulatethedynamicevolutionprocess.Inspiteoftherandominsertionordeletionofnodesandedges,itcanalsoensurethatthenetworkunderdynamicevolutionisalwaysscale⁃free.Theoreticalanalysisandexperimentalresultsshowthatthisscale⁃freenetworkgenerationalgorithmunderdynamicevolutioncansavethescale⁃freefeatureunderdynamicevolution,andcanresisttheinterferenceofrandomness.Keywords㊀dynamicevolution;scale⁃freenetwork;randominterference;complexnetworkmodeling㊀㊀真实世界中的网络无处不在,这些网络可以通过复杂网络理论来描述,其中包括www,Internet万维网,科学协作网络和全球机场网络等[1].许多实验数据表明,真实网络可以表现出无标度特性,例如,网络节点度的分布满足幂律分布[2],即大多数节点是低度节点,少量节点是高度节点.为了解释这一现象,1999年BARABÁSI和ALBERT[3]提出了无标度网络的生成模BA模型[3,4],该模型能采用优先连接机制[5],网络规模随着时间的推移不断增大,新节点的加入会优先连接到高度节点,能保证生成幂值近似为3的无标度网络.然而,许多现实世界中的网络并不是单一规模的扩张,而是动态演化的,主要体现在三个方面:增加链路和节点,删除链路和节点,或节点之间链路的动态改变.例如,可以将用户聊天软件的联系人作为网络中的节点,将联系人列表中的好友作为链接来构建一个网络.尽管软件联系人的容量是一定的,但该网络仍然是一个不断发展和不断变化的网络,其中的变化包括:新联系人的添加(包括节点和链接),一些不常用联系人的删除(节点删除的同时链接同样被删除).蛋白质网络[6]也是一个不断进化的网络,当基因转录或发生突变时,同样存在节点和链接的添加和删除.学者们为了更好地模拟出真实网络的演化模型,于是在演化过程中加入出生率和死亡率等参数来建造一个动态的演化环境,其中,SHI等[7]借鉴BA模型的演化机制,提出一种网络模型可以添加和删除链接和节点,来动态地模拟真实网络的演化情况,最终结果显示网络的结构仍具有无标度特征,并揭示了网络演变成无标度网络的过程;但是,删除和增加机制并非是随机的,其过程等价于传统的BA模型.VURAL等[8]发现网络的演化表现为新节点和边的随机添加,导致网络依赖的结构发生变化,从而不再是无标度网络;FENG等[9,10]在确定了网络构建机制的基础上,对基于生死过程的网络模型进行演化分析,最终通过对网络结构的分析,表明该模型能生成无标度网络;但是,其生死过程并非一个随机过程.在随机性的干扰下,上述网络模型都等价于传统的BA模型.随机地增加和删除网络中的节点会导致上述模型不能生成无标度网络.真实网络是动态演化的,随着时间的增长,网络的大小和结构不断地发生着变化,随机性非常强,例如,节点死亡后会被移出网络,当多个高度节点死亡时,与这些节点相连的边都会被删除,从而破坏网络的无标度特性;同样,新生节点的随机加入也会造成网络的结构和规模发生变化.在随机增加和删除节点之后,为了能保证网络是无标度的,本文采用优化模型的思想[11⁃15],提出一种动态演化下的无标度网络生成算法(SFNGA),该算法基于边度优化的多目标优化策略,在演化过程中,即使以随机方式增删节点,只要不停地优化网络的边度,使之边度最大化,就能保证网络的结构一直具有无标度特征.本文将对边度优化这一核心概念进行论述,并在数学理论和实验分析的基础上验证其正确性.本文的组织结构如下:第一节将对动态演化下的传统模型进行分析,说明传统模型不适合随机性很强的动态演化;第二节详细介绍本文所提出的SFNGA算法,以及所采用的边度优化策略;第三节对本文提出的算法进行代码实现,并对结果进行分析;第四节对本文进行总结.1㊀动态演化中的BA模型为了验证传统模型在动态演化中的演变情况,以传统的BA模型为例,作动态演化分析.在演化过程中加入出生率和死亡率来模拟动态演化特征,同时为了保证随机性,新生节点采取随机加入的方式,并不遵从优先连接机制.出生节点的随机加入和死亡节点的删除会很大程度地改变网络的结构.因此,需对加入出生率和死亡率后的网络模型进行长时间的演化,并对演化结束后的网络结构进行表征分析.实验条件如下:网络大小为N=1000,出生率Birth_Pi=0.005,新生节点计算公式为N㊃Birth_Pi,即每次新生节点个数为5;死亡率Death_Pi=0.005,死亡节点计算公式为N㊃Death_Pi,即每次死亡节点个数为5,网络中死亡的节点都是随机选择的;出生和死亡的周期为T=10,即每演化10次进行一次出生或死亡操作;总演化时间Time=10000.该演化算法的伪代码描述如下:Input:N,BP,DP,T,Time;InitializeaBAnetworkG(A);fori=1toTimedo㊀㊀ifi%T==0doBirthandDeath(G(A),N,BP,DP);㊀㊀endifendfor为了保证演化过程中网络规模的变化不影响实验结果的分析,假设出生率=死亡率,进行10000次的动态演化后,对节点度的概率分布做双对数表征,判断其结构的变化.实验结果如图1所示,均为度的概率分布和网络的拓扑图,其中图1(a)为演化前的网络节点度的概率分布图和网络拓扑图,很明显,演化前度分布服从幂律分布,并且网络拓扑表现出无标度特征;图1(b)为演化后的网络节点度的概率分布图和网络拓扑图,可以看出演化结束后,高度节点的数量相比演化前有很大程度的降低,节点度的概率分布并不服从幂律分布,并且从网络的拓扑图可613中南民族大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第39卷以看出,很多节点从网络中脱离开来,说明新生节点和死亡节点导致网络结构发生了很大的变化.所以传统的BA模型并不能在动态演化中维持网络结构不变,不能避免随机性的干扰.㊀(a)演化前㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(b)演化后图1㊀动态演化结束前后对比图Fig.1㊀Comparisonchartbeforeandaftertheendofdynamicevolution2㊀SFNGA算法在随机性的干扰下,传统的演化模型不能生成无标度网络.为了抵抗随机性的干扰,本文基于边度优化的多目标优化策略,来得到无标度网络.2.1㊀边度的定义从图的定义出发,节点的度通常指的是:如果有n条边与该节点相连,那么该节点的度就为n;边度指的是:两个节点的度的幂函数的乘积.用xi表示第i个节点的度,假设第i个节点和第j个节点有一条边相连,那么这条边的度就为xai㊃xbj,其中a和b为常数,如图2所示.图2㊀边度的描述Fig.2㊀Descriptionofedge⁃degree2.2㊀边度优化策略根据边度的定义,将优化模型描述为:一个连通的无向网络使其网络中节点的总度不变,使其网络的边度之和最大化.在网络的随机演化中,使网络朝着最大化边度这一目标优化.其数学模型可以表示为:FA()=ðNi=1ðNj=1xiA()[]axjA()[]bδijA(),(1)其中,A是网络变量;F(A)是网络的边度;N是网络的总节点数;xi(A)是网络中节点i的度;函数δij(A)表示节点i和节点j之间是否存在连接,如果存在值为1,否则值为0;a和b是非负常量.无标度网络的度分布满足幂律分布,随机选取一个节点,它的度d正好是自然数k的概率满足P(k) k-γ.于是,将网络中节点的度看成随机变量,将公式(1)中的xi看成随机变量,同时假设xiʈxj,于是:Fxi()ʈx-1+a+b()i,其中xi表示第i个节点的度,并满足xi=CX(),所以公式(1)可以近似为:PX()=CX()-1+a+b()+δ,C=1ðNX=1X-1+a+b().令γ=1+a+b,可以得到PX()=CX-γ+δ,δ为一个常数.当C为一个常数时,该公式满足无标度网络的幂律分布公式,度分布指数为γ,因此,最终得到的网络是无标度网络.随机网络通过控制网络的总度不变,不断优化网络中节点的连边,使网络总边度最大化,从而达到由随机网络演化成无标度网络的目的.首先,初始化713第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀郑波尽,等:动态演化下的无标度网络生成算法一个随机网络G(A),这个网络的总度为n(n为固定值),网络总的边度为edge_degree_sum1;然后,随机删除网络中的一条边并随机连接一条边,此时,网络发生改变,再次计算网络总边度为edge_degree_sum2;如果edge_degree_sum1<edge_degree_sum2,则改变网络,否则还原网络.如图3所示,指数a和b的值设置为1,所以网络G(A)的边度之和为50,删除节点5和6之间的边,连接1节点和6节点得到一个新网络G(B),G(B)的边度之和为57,由于G(B)边度之和大于G(A)的边度之和,所以就用G(B)替换G(A).图3㊀边度优化方式Fig.3㊀Edge⁃degreeoptimizationmethod2.3㊀算法描述SFNGA算法采用边度优化策略,以用户给定的网络节点数㊁出生率㊁死亡率㊁出生和死亡的周期㊁优化次数和演化时间作为输入参数,最终演化结束后得到一个无标度网络.算法的主要过程为:首先根据输入的网络大小N初始化一个随机网络;然后每达到一个出生和死亡的周期就进行一次节点的删除和节点的加入,这个过程是随机进行的;出生死亡操作完成之后,进行边度的优化;演化结束便可得到一个无标度网络.该算法过程描述如下:Step1:初始化一个节点为N的随机网络,每个节点的度1ɤdegreeɤE的网络G(A),其中N和E为常数,随机设定;Step2:出生率和死亡率的加入.设置出生率Birth_Pi和死亡率Death_Pi的数值,指定一个周期T,当达到一个周期时,网络会进行一次节点的随机删除和随机加入,每次新生的节点个数为N㊃Birth_Pi,死亡的节点个数为N㊃Death_Pi,上述参数可以随意设定;Step3:对网络G(A)进行边度的优化.首先记录网络G(A)的边度之和为edge_degree_sum1,然后随机选择网络中的4个节点(i,j,k,l),进入优化的前提条件是节点i与j之间有边,k与l之间没有边,如果不满足,则继续寻找,直到满足为止;删除节点i和j之间的边,然后将节点k与l进行连接形成一个新的网络G(B);最后,再次计算网络G(B)的边度之和为edge_degree_sum2,如果edge_degree_sum2>edge_degree_sum1,则让G(B)替代G(A),否则网络仍然为G(A).进而,还可以设置每个单位时间优化的边数来控制整个演化过程中总的优化边数,单位时间优化边数为Edge_Num;Step4:演化的总时长为TIME,当演化时间t<TIME时,循环Step2和Step3步骤,直到演化结束.该算法的伪代码描述如下:Input:N,BP,DP,T,Times;InitializearandomnetworkG(A);whilecount<Time㊀㊀G(B)=G(A);㊀㊀sum1=CalEdgeDegree(G(A));㊀㊀DeleteanedgefromG(B);㊀㊀LinkedanedgefromG(B);㊀㊀sum2=CalEdgeDegree(G(B));㊀㊀ifsum1<sum2do㊀㊀㊀㊀G(A)=G(B);㊀㊀㊀㊀count++;㊀㊀else813中南民族大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第39卷㊀㊀㊀㊀continue;㊀㊀ifcount%T==0do㊀㊀㊀㊀BirthandDeath(G(A),N,BP,DP);㊀㊀endifendforOutput(G(A)).3㊀实验仿真根据本文2.3节对SFNGA算法的描述,可以对该算法进行代码实现,因此,只需要输入参数就可以得到指定规模的无标度网络.为了验证算法的正确性,分别输入表1中所设置的参数来生成指定的网络,其中,BP表示出生率,DP表示死亡率,E表示每次优化的边数,T表示出生和死亡周期,Time是演化的时间.为了避免网络规模影响实验结果,就需要控制每个周期T内出生节点个数等于死亡节点个数,即BP=DP.演化结束之后分别对生成的5个网络进行分析.本文分别对表1中的5个网络进行10000次动态演化,演化结束后对网络所有节点的度作概率统计,并将统计结果用双对数表征,对所有网络的结构作拓扑分析.如图4所示:每个网络的双对数图中都包含该网络的结构拓扑图,可以看出,网络大小为300㊁500㊁800㊁1000和2000的幂指数γ分别为1.545㊁2.014㊁1.956㊁2.056和1.653,符合无标度网络的幂率特征;网络拓扑图呈现出低度节点分布在最外围㊁度越高的节点逐渐向网络内部聚集的现象,其中,网络中绝大多数为低度节点,只有少量高度节点在网络内部.综合以上分析可知,演化的最终结果都是无标度网络.表1㊀数据参数Tab.1㊀DataparameterNBPDPETTime/次3000.010.01510100005000.010.01510100008000.010.015101000010000.010.015101000020000.010.0151010000图4㊀实验结果图Fig.4㊀Experimentalresultschart4㊀结论在动态演化下,出生率和死亡率的加入往往会改变网络的结构特征,节点的随机删除和新生节点的随机加入会破坏无标度网络的网络结构.本文提出动态演化下的无标度网络生成算法SFNGA,该算法在动态演化中仍能保证网络结构不受出生率和死亡率这些随机因素的影响,保证最终生成的网络为无标度网络.同时该算法能根据用户给定的网络节913第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀郑波尽,等:动态演化下的无标度网络生成算法点数㊁出生率㊁死亡率㊁出生和死亡的周期㊁优化次数和演化时间作为输入参数,生成一个指定大小的无标度网络,实验证明了该算法的正确性.它可用于疾病传播㊁舆情传播㊁人工道德网络建模等领域.参㊀考㊀文㊀献[1]㊀MIGUENSJIL,MENDESJFF.Travelandtourism:Intoacomplexnetwork[J].PhysicaA:StatisticalMechanicsandItsApplications,2008,387(12):2963⁃2971.[2]㊀ADMICLA,HUBERMANBA.Power⁃lawdistributionoftheworldwideweb[J].Science,2000,287(5461):2115.[3]㊀BARABASIAL,ALBERTR.Emergenceofscalinginrandomnetworks[J].Science,1999,286(5439):509⁃512.[4]㊀ZHANGY,XUK,LIUY,etal.Modelingofscale⁃freenetworkbasedonpagerankalgorithm[C]//IEEE.InternationalConferenceonFutureComputer&Communication.Wuhan:IEEE,2010:783⁃786.[5]㊀WANGJ,LIX,WANGXB.ComplexnetworkevolutionofdifferentscaleshippingbasedonimprovedBAmodel[J].JournalofTransportationSystemsEngineeringandInformationTechnology,2013,13(2):103⁃110.[6]㊀BOYELEA,LIYI,PRITCHARDJK.Anexpandedviewofcomplextraits:frompolygenictoomnigenic[J].Cell,2017,169(7):1177⁃1186.[7]㊀SHID,LIUL,ZHUSX,etal.Degreedistributionsofevolvingnetworks[J].EurophysicsLetters(EPL),2006,76(4):731⁃737.[8]㊀VURALDC.Agingincomplexinterdependencynetworks[J].PhysicalReviewEStatisticalNonlinear&SoftMatterPhysics,2014,89(2):022811.[9]㊀FENGM,QUH,YIZ,etal.Evolvingscale⁃freenetworksbypoissonprocess:modelinganddegreedistribution[J].IEEETransactionsonCybernetics,2015,46(5):1144⁃1155.[10]㊀FENGM,DENGL,KURTHSJ.Evolvingnetworksbasedonbirthanddeathprocessregardingthescalestationarity[J].Chaos:AnInterdisciplinaryJournalofNonlinearScience,2018,28(8):083118.[11]㊀GUERRAB,GOMEZ⁃GARDENESJ.Annealedandmean⁃fieldformulationsofdiseasedynamicsonstaticandadaptivenetworks[J].PhysicalReviewE,2010,82(3):035101.[12]㊀PAPADOPOULOSF,KITSAKM,SERRANOMÁ,etal.Popularityversussimilarityingrowingnetworks[J].Nature,2012,489(7417):537⁃540.[13]㊀方锦清,毕桥,李永,等.复杂动态网络的一种和谐统一的混合择优模型及其普适特性[J].中国科学G辑,2007,37(2):230⁃249.[14]㊀应伟勤,李元香,SHEUPC⁃Y,等.演化多目标优化中的几何热力学选择[J].计算机学报,2010,33(4):755⁃767.[15]㊀SYAHPUTRAR,WIYAGIRO,SURIPTOS,etal.Anovelfuzzyapproachformulti⁃objectiveoptimizationofdistributionnetworkconfigurationincomplexsystem[J].IntJApplEngRes,2018,13(2):1120⁃1127.(责任编辑㊀曹东)023中南民族大学学报(自然科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第39卷。
第二章一.名词解释1.全局耦合网络:任意两个点之间都有边直接相连,完全连接。
2.最近邻耦合网络:每一个节点只和它周围的邻居节点相连。
3.星形耦合网络:有一个中心点,其余N-1个点都只与这个中心点连接4.均匀网络:当k >> <k>时,度为k的节点几乎不存在。
因此这类网络也成为均匀网络或指数网络5.无标(尺)度网络:由于这类网络的节点连接度没有明显的特征长度6.随机网络:节点度的分布将遵循钟形曲线分布。
按照这种分布,大多数节点拥有的连接的数目都相差不多7.鲁棒性:如果移走少量节点后,网络中的绝大部分节点仍是连通的,那么称该网络的连通性对节点故障具有鲁棒性或者稳健性。
8.脆弱性:蓄意去除少量度最高的节点就可破坏无标度网络的连通性9.设计网络:随机网络中节点总数N是预先给定的,所以它们是静态的、固定的、平衡的网络,也有称为设计网络10.演化网络:若网络模型的节点总数不是预先给定的,而是逐步增减的,则它们是动态的、增长的、非平衡的网络,或者称为演化网络(evolving network)11.马太效应:新的节点更倾向于与那些具有较高连接度的“大”节点相连接,这种现象也称为“富者更富(rich get richer)”或“马太效应(Matthew effect)”。
12.分形几何:普通几何研究的对象一般都具有整数的维数,比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。
分形几何(fractal geometry)是研究具有不一定是整数的维,而存在一个分数维数的空间。
13.适应度:在许多实际网络中,节点的度及其增长速度并非只与该节点的年龄有关,有时是与节点的内在性质有关的,Bianconi和Barabasi把这一性质称为节点的适应度(fitness)14.模块:模块(model)是指一组物理上或功能上连接在一起的、共同完成一个相对独立功能的节点。
15.模体:具有高聚类性的网络在局部可能包含各种由高度连接的节点组构成的子图(subgraph),如三角形,正方形和五角形,其中一些子图所占的比例明显高于同一网络的完全随机化形式中这些子图所占的比例,这些子图就称为模体。
计算机科学中的图论和网络科学图论是计算机科学中的一个重要分支,它研究顶点之间通过边相互联系的图形结构。
其应用在通讯、电子商务、社会网络等领域,被广泛使用。
随着时代的变迁,由于互联网的兴起和网络科学的兴盛,图论又与网络科学融合在了一起。
本文将深入探讨计算机科学中的图论和网络科学的基本概念和研究方向。
一、图论图论是一种研究顶点和边构成的图结构的数学分支。
在计算机科学领域,图论常常被用来分析不同的计算机网络,比如社交网络、信息网络、生物网络等等。
图结构可以用来表示很多现实场景,比如邮路图,城市道路、人际关系等等。
a. 图的基本概念在图论中,对于一个图结构,我们通常会有以下概念:·顶点(Vertex):一个图结构中的单独节点;·边(Edge):两个顶点之间的连线;·权重(Weight):边上的值,用于表示两个顶点之间的距离或代价等。
b. 图的类型在图论中,有许多不同的图类型,以用于解决不同的问题。
这里我们简单介绍几种常见的类型:·简单图(Simple Graph):没有自环和重边的图;·完全图(Complete Graph):所有的顶点两两之间都有边相连的图;·有向图(Directed Graph):边有方向的图;·加权图(Weighted Graph):边上有权值的图。
二、网络科学网络科学是一门新兴的学科,它研究各种网络之间的复杂性和特征。
网络科学广泛应用于社会、生物、信息、市场等不同领域,以帮助人们理解和预测这些领域中的现象和行为。
网络科学使用数学和电脑模拟等方法来研究各种网络,比如社交网络、互联网、生物网络等。
在网络科学的各个领域中,我们可以发现许多基于图论的算法和模型。
a. 网络的结构网络结构是网络科学的一个基本概念。
根据这个概念,网络可以分为以下类型:·随机图(Random Graph):网络中的节点和连接是完全随机的;·小世界网络(Small World Network):在这种网络结构中,任意两个节点之间的距离很短,通常是对数级别的;·无标度网络(Scale-Free Network):在这种网络结构中,一些节点会拥有更多的连接,而大多数节点只有很少的连接。
SNS背后的科学(1)从六度分隔到无尺度网络 (1)0.前言 (1)1. 随机网络 (1)2. 六度分隔 (2)3.无尺度网络(Scale-free network) (2)4. 结论 (4)(2) 割裂的Web和割裂的Twitter (4)1. 有向网络 (4)2. 结构 (5)3.成因 (5)4. Twitter (6)5. Twitter上的孤立 (6)6. 总结 (6)(3)社会资本 (7)定义 (7)度量 (7)社会资本和SNS (8)总结 (8)(1)从六度分隔到无尺度网络此系列Blog连载于mxwu的Blog和SocialBeta。
0.前言一次偶然机会,我了解到SNS在国外是一门科学。
再读过一些相关书籍后,我认识到,对于SNS的产品设计师绝对有必要了解SNS的一些基本知识——这就如同为一个漂亮姑娘设计衣服,如果你连她的模样都不知道,如何能够为她设计出合适的衣服呢?本系列Blog专注于SNS的网络特性,旨在为SNS产品设计提供基本的理论基础。
我既不想成为科普读物那样堆积一些故事,也不想过于学术化数学公式满篇飞,只想在这两者之间找到一个平衡点,从耳熟能详的事实和高深莫测的公式中提取出一些定律。
这些定律,可以为我们的SNS产品设计、社会化营销指出一个方向。
我们没有必要闭门造车,唯有站在巨人的肩膀上才能看得更远。
1. 随机网络现在我们来思考一个关于SNS形成的问题:我的朋友是从那里来的?大约的故事是这样的:从前,有个叫mxwu的小孩出生在了中国某个二线城市的小院子里。
他不知道为什么上帝没有把他安排在美国、英国、法国、甚至是非洲某个不知名的国家,而偏偏选中了中国;他也不知道为什么上帝没有选择北京、上海、深圳而又把地点选择到了这个二线城市。
这种感觉就好像上帝在扔筛子:1美国,2英国,3法国,4中国,哦4 啊,mxwu,你出生在中国。
更令人吃惊的是,还有一大群同样的小孩一样被上帝发配到了这个小院子里。
Test Canvas: Quiz: Week 3Multiple Choice: Which of the following is the best ex...Multiple Choice: Which of the following is the best ex... Points:101.Which of the following is the best example of a microblog?Answer SelectedA.TwitterB.YouTubeC.FeacebookD.FlickrE.SnapfishAnswer: AExplanation: A) Twitter limits posts to 140 characters.Page Ref: Tuten& Solomon 6-22.________________ content is content that ia person feel instrinsically motivated to prepare andshare.AnswerA.CounterfeitB.SponsoredmercialD.IncentivizedanicAnswer: EExplanation: E) It's useful to distinguish between consumer-generated content that people voluntarily publish and content that appears because some organization has invited contributions from users. Page Ref: Tuten& Solomon 6-93.Content that is encouraged by the chance to win a contest or receive free merchandise is labeled as________.AnswerA.CounterfeitB.SponsoredmercialD.IncentivizedanicCorrect FeedbackAnswer: DExplanation: D) It's useful to distinguish between consumer-generated content that people voluntarily publish and content that appears because some organization has invited contributions from users. Page Ref: T&S 6-94.Which of the following are used as search engine optimization techniques?Answer1.optimizing content value2.optimizing tags3.modifying keywords4.modifying site characteristics5.paying for sponsored advertisingAnswers: A, B, C, DExplanation: Using search engine optimization (SEO), marketers develop and publish content in ways that improve the likelihood that search engines will rank the sites well in response to search queries. Page Ref: T&S 6-165.Search engine marketers call the space on the screen where listings are virtually guaranteed to beviewed as the ________.AnswerA.golden triangleB.contrary hookC.gateway pageD.hookE.heading tagAnswer: AExplanation: A) How can a source enhance the probability that its listing will appear near the top? For many organizations, this is (literally) the million dollar question! And that's exactly the point of search engine optimization.Page Ref: Tuten& Solomon 6-256.________ are automated web programs that gather information from sites that ultimately formthe search engine's entriesAnswerGolden trianglesHooksWeb crawlersQueriesPlug-insAnswer: CExplanation: C) The programs are called crawlers because they crawl websites. They follow all the links, site after site, collecting data until the link network is exhausted. After the bots gather this information, they index (classify) it using labels the sites provide.Page Ref: Tuten& Solomon 6-257.The insertion of a superficially large number of keywords throughout a site's content and tags isknown as keyword ________.AnswerA.stuffingB.cloakingC.indexingD.hookingE.three-way linkingAnswer: AExplanation: A) Gray hats take some liberties with the system. For example, they will utilize a keyword density (the number of times the keyword is used in the body of a page) that is beyond that of the typical usage of keywords, but be below that of true keyword stuffing.Page Ref: Tuten&Solomon 6-328.The careful crafting of a title that markets the content is known as ________.AnswerA.stuffingB.cloakingC.indexingD.linkbaitingE.three-way linkingAnswer: DExplanation: D) How do users initially decide whether a site is worth checking out? The most likely candidate is simple: the title. We can enhance interest in content when we compose a catchy title. Page Ref: Tuten& Solomon 6-359.________ create the ability to easily share a site's content with external sites.AnswerA.TrackbacksB.Web crawlersC.Plug-insD.On-site indicatorsE.Meta tagsAnswer: CExplanation: C) Share tools are plugins that appear as clickable icons on a website and enable the viewer to bookmark or share the page with many social networking, social news, and social bookmarking sites.Page Ref: Tuten& Solomon 6-3710.Social news sites and social bookmarking sites uphold the principles of ________: individuals, actingas editors, determine what material is disseminated throughout the community as well as the value ratings associated with the material.AnswerA.media democratizationB.three-way linkingC.urban legendsD.search engine optimizationE.sockpuppetingAnswer: AExplanation: A) The process supports the wisdom-of-crowds perspective.Page Ref: Tuten& Solomon 6-4011.Which of the following is an example of a use case for search analytics?AnswerA.Choosing paid advertising messages and keywordsB.Choosing natural search messagingC.Identifying trends and seasonal changesD.Brand auditsE.All of the aboveCorrect Answer: E)Reference: Hemann&Burbary, Chp. 512.Which of the following is the best example of a tool that provides information helpful to searchanalytics?AnswerA. Social MentionB. FacebookC. ExcelD. Google TrendsE. AmazonCorrect Response: D)Reference: Hemann&BurbaryChp. 513.Entering the search term "snickers bar" into Google Trends Explore creates a graph spanningFebruary 2004 to September 2013. The graph shows that the search term has a value of 100 in March 2013. This means that:AnswerA.100 unique users searched for "snickers bar" in March 2013B.100 total users searched for "snickers bar" in March 2013C.The total number of searches up through March 2013 is some multiple of 100.D.Out of all months displayed on the graph, March 2013 contained the maximum number of monthly searches for "snickers bar."Correct Response: D)Reference: Hemann&Burbary 5, Google TrendsTest Canvas: Quiz: Weeks 4 and 51.Which of the following online tools provide direct scores regarding an individual's influence level?Check all that apply.AnswerA.KloutB.FacebookC.FlickrD.PeerIndexE.SocialMentionAnswers: Klout, PeerIndex, and SocialMention. Though one can potentially use Facebook or Flickr to compute one's own influence scores, these tools do not directly provide such scores. Reference: Hemann&Burbarychp. 92.What is the value of a Facebook fan?AnswerA.$174B.$10C.$0.02D.It depends on the context and how value is defined.Correct answer: D)Reference: Class 4 slides and discussion3.Which one of the following network graphs represents a scale-free network?AnswerA.B.C.D.None of the aboveCorrect answer: A)A scale-free network is characterized by having hubs with a disproportionately high number of connections.Reference: Class 5 slides4.Which of the following are examples of metrics that can be used to help calculate the value aFacebook fan provides a brand? Check all that apply.AnswerLoyaltyAquisition CostProduct SpendingBrand AffinityCorrect Resposes: All answers should be checked.Reference: Syncapse article and Class 4 slides.5.In the sociogram depicted below, which network member has the greatest degree centrality? AnswerA.ChrisB.RalphC.JoeD.EllieE.JanCorrect Answer: C) Joe.Degree centrality is determined by the number of direct connections a node has. Joe has four. Reference: Class 5 Slides, Class 5 reading6.On a sociogram, a group or clique is best defined as ___________________AnswerA.An arbitrary cross-section of users used for statistical sampling.B.A cluster of nodes that appear in close proximity when the graph is drawn out.C.A set of three or more nodes that are entirely disconnected from the rest of the network.D.A subgroup of highly interconnected nodes that is not heavily connected to the rest of the network.Correct answer: D)Reference: Class 5 slides and reading7.When brands create brand profiles within selected social networking communities, the brand acts asa ________ in the network's social graph.AnswerA.themeB.skinC.nodeD.seedE.badgeAnswer: CExplanation: C) Doing this increases the opportunities for interactions with customers and prospects and also serves to encourage people to talk about the brand with each other.Page Ref: Tuten& Solomon Chp. 5-268.The following question relates to the concept of ________: What would the value of the brand-specific mention be if it had come through a paid advertising placement rather than a volunteered comment?AnswerA.media democratizationB.mediamultiplexityC.ad equivalency valueD.social capitalE.two-step flow model of influenceAnswer: CExplanation: C) When brands use paid media, they have an estimate of the value of the advertising in the form of the fees they paid to place the ads. But in social media, most of our promotional value comes from earned and owned media. Therefore, we may try to establish a value and relate that value to the cost of buying equivalent paid media.Page Ref: T&S Chp. 4-279.The principle of six degrees of separation comes from the mathematical model known as________.AnswerA.media democratizationB.vertical networkC.two-step flow model of influenceD.small-world networkE.social object theoryAnswer: DExplanation: D) Six degrees of separation is an observation that everyone is connected to everyone else by no more than six ties. A small-world network would illustrate the example of Maria and Jeff being indirectly connected on LinkedIn through Jose, a co-worker of Maria and a neighbor to Jeff.Page Ref: T&S Chp. 4-610.A ________ is a snippet of cultural information that spreads person to person until eventually itenters the general consciousness.AnswerA.mavenB.memeC.normD.nodeE.homophilyAnswer: BExplanation: B) These snippets may include songs, phrases, ideas, slang words, fashion trends, or shared behaviors.Page Ref: T&S chp. 4-1211.________ proposes that a small group of influencers are responsible for dissemination ofinformation because they can modify the opinions of a large number of other people.AnswerA.The social-object theoryB.Reputational capitalC.Media democratizationD.The two-step flow model of influenceE.Ad-equivalency valueAnswer: DExplanation: D) When the authors run extensive computer simulations of this process, they find that the influence is driven less by influentials and more by the interaction among those who are easily influenced.Page Ref: T&S chp. 4-17。
Physica A389(2010)473–480Contents lists available at ScienceDirectPhysica Ajournal homepage:/locate/physaScale-free network provides an optimal pattern for knowledge transferMin Lin,Nan Li∗College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing210016,PR Chinaa r t i c l e i n f oArticle history:Received9June2009Received in revised form24September 2009Available online13October2009 PACS:89.75.Hc87.23.Ge89.65.-sKeywords:Knowledge transferComplex networkKnowledge diffusionKnowledge evolution a b s t r a c tWe study numerically the knowledge innovation and diffusion process on four representa-tive network models,such as regular networks,small-world networks,random networksand scale-free networks.The average knowledge stock level as a function of time is mea-sured and the corresponding growth diffusion time,τis defined and computed.On the four types of networks,the growth diffusion times all depend linearly on the network size N as τ∼N,while the slope for scale-free network is minimal indicating the fastest growth and diffusion of knowledge.The calculated variance and spatial distribution of knowledge stockillustrate that optimal knowledge transfer performance is obtained on scale-free networks.We also investigate the transient pattern of knowledge diffusion on the four networks,anda qualitative explanation of this finding is proposed.©2009Elsevier B.V.All rights reserved.1.IntroductionKnowledge transfer provides opportunities for interpersonal cooperation.It stimulates the creation of new knowledge and contributes to the innovation ability in organization.Knowledge system is open and self-organized that knowledge evolves and diffuses through innovation and communication.Knowledge transfer has received much attention from management scholars,and it has become increasingly important in organizations.A growing body of empirical evidence indicates that organizations that are able to transfer knowledge effectively from one unit to another are more productive and more likely to survive than those that are less adept at knowledge transfer[1].The ability to transfer knowledge represents a distinct source of competitive advantage for organizations over other institutional arrangements such as markets[2].This knowledge-based theory of the firm views organizations as social communities specializing in efficient knowledge creation and transfer[3].Although organizations are able to realize remarkable increases in performance through knowledge transfer, successful knowledge transfer is difficult to achieve[4,5].Researchers have concluded key elements that affect knowledge transfer,such as the stickiness of knowledge[6,7],the absorptive capacity of receivers[8],and intermediary and context for knowledge transfer[9,10].Knowledge transfer in organizations occurs through a variety of mechanisms.These include personnel movement[11,12],training[13,14],communication[15–17],technology transfer[18],and other forms of inter-organizational relationships[19,20].More recently,there has been a surge of research activity on various aspects of complex networks since some important features of real networks were successfully explained by simple model networks[21–32].Complex networks,which can well mimic the interactions between individuals in real systems,provide a substrate for the researchers to study many interesting dynamical processes.Epidemic spreading[33–37]as well as classical and quantum diffusion[38,39]on complex ∗Corresponding author.E-mail address:lincnj@(N.Li).0378-4371/$–see front matter©2009Elsevier B.V.All rights reserved.doi:10.1016/j.physa.2009.10.004474M.Lin,N.Li /Physica A 389(2010)473–480networks have been extensively studied and served as a first step toward the complete understanding of the impact of network structure on the dynamical process.In light of this,close attentions are paid to the knowledge transfer on networks,which can be considered as a diffusion process.Ingram and Roberts [40]described how dense friendship networks affected the performance of Sydney hotels.One explanation for the observed effect is that friendship networks promote knowledge transfer,allowing managers facing similar market conditions to learn from each other’s experience.In Reagans and Zuckerman’s analysis of corporate research and development teams [41],they described how interactions among scientists with non-overlapping networks outside of their team improved productivity.Instead of examining how the structure of social relations affected performance,Tsai [42]found that the most innovative and profitable business units were central.Some researchers find that the performance of knowledge diffusion in organizations exhibits ’’small-world’’properties [43,44].In all these cases,knowledge transfer was assumed to be the causal mechanism linking network structure to performance.Although network analysis method has been used in the study of knowledge transfer,we still cannot obtain a clear picture about how network structures influence the knowledge transfer performance,and whether there exists certain network structure that can facilitate and promote knowledge transfer more efficiently.Motivated by these considerations,in this article,we numerically study a simple model of knowledge innovation and diffusion process on different types of network models.The important topological properties of the real-life population structures are well depicted by these network models.Regular network,where every agent is directly connected to the same small number of his nearest neighbors,is the simplest model representing the geometry of the social system.Random networks,where any pairs of agents in the population are connected with the same probability,describe the existence of disorder in real population.On the other hand,many real networks also exhibit special topological characteristics:a small average distance as random networks,large clustering coefficient as regular networks (small-world property)and a power-law degree distribution (scale-free property).The models introduced by Barabási and Albert (BA)[26]and by Watts and Strogatz (WS)[25]can well mimic these two properties separately.The growth and diffusion of knowledge are examined in details on the four network models,and we found that the scale-free networks provide an optimal pattern for knowledge transfer process.This paper is organized as follows.In Section 2,the models of networks and knowledge transfer process are introduced.In Section 3,We define the computed statistical quantities.The simulation results are given in Section 4.Finally in Section 5we give a discussion and summarize the article.2.The model2.1.Knowledge evolutionConsider N agents existing on an undirected,connected graph G (S ,Γ),where S ={1,...,N }is a finite set of nodes (agents)and Γ={Γi ,i ∈S }is the list of connections.Specially,Γi ={j ∈S −{i }|d (i ,j )=1},where d (i ,j )is the length of the shortest path from node i to node j on the graph.Only neighboring agents can interact.Each agent i ∈S is characterized by a knowledge stock which evolves over time as the agent innovates and receives knowledge broadcast by other agents.Formally,let v i (t )denote agent i ’s knowledge stock at time t .(1)Knowledge innovationIf agent i innovates at time t ,his knowledge increases according tov i (t +1)=(1+βi )v i (t )(1)with βi >0the innovative ability of agent i .Innovative abilities are independently and identically distributed among agents.(2)Knowledge absorptionAbsorption involves an individual incorporating new knowledge and is assumed to be proportional to the difference in knowledge stock between broadcaster and recipient.The innovating agent i broadcasts to every j ∈Γi .When a broadcast takes place,all the recipients absorb part of the knowledge that is transferred.Formally,when i broadcasts,j ’s knowledge stock increases immediately according to v j (t +1)= v j (t )+αj {v i (t +1)−v j (t )},if v i (t +1)>v j (t ),v j (t ),otherwise (2)with αj the absorptive capability of agent j .There is no consequent loss of knowledge to agent i .Since recipient can only partially assimilate received knowledge,αj <1captures an important aspect of knowledge transfer [45].We should note that,the value of knowledge stock is a scalar measure of the knowledge amount.When an agent innovates,which can be considered as self-study,his knowledge stock will increase according to his primary amount of knowledge (Eq.(1)).It means that,although an agent innovates (self-study),he cannot broadcast if his knowledge stock is less than that of his neighbor (Eq.(2)).The value of βi and αi is obtained asαi =α+a i r ,βi =b i β,(3)where αand βare separately lower bound of absorptive capability and upper bound of innovative ability.a i and b i are random numbers uniformly distributed in (0,1],and r is a global constant.We set r =0.2in this paper.M.Lin,N.Li/Physica A389(2010)473–480475 work modelThe simulation of knowledge transfer is run on the four representative network models:regular network,random network,small-world network and scale-free network.Regular network:The regular network used here is a one-dimensional lattice consisting of N nodes with periodic boundary condition and coordination number2z.It is easily found that every node has the same degree2z.Random network:According to the Erdös and Rényi model[24],we start with N nodes and connect every pair of nodes with probability p,creating a graph with approximately pN(N−1)/2edges distributed randomly.In order to keep the average degree the same with the other three networks,we choose p=2z/(N−1),and only the connected networks are considered.Small-world network:The algorithm of the WS model is the following[25]:(1)start with a ring lattice with N nodes in which every node is connected to its first2z neighbors.In order to have a sparse but connected network at all times, consider N 2z ln(N) 1.(2)Randomly rewire each edge of the lattice with probability P such that self-connections and duplicate edges are excluded.This process introduces PNz long-range edges.We choose P=0.2throughout this article.Scale-free network:The scale-free network is generated according to the BA’s algorithm[26]:(1)Growth:Starting with a small number(m)of nodes,at every time step,we add a new node with z(<m)edges that link the new node to z different nodes already present in the system.(2)Preferential attachment:When choosing the nodes to which the new node connects, we assume that the probabilityΠthat a new node will be connected to node i depends on the degree k i of node i,such thatΠ(k i)=k ij k j.(4)After t time steps this procedure results in a scale-free network with N=t+m nodes and zt edges,whose average degree is approximately2z.3.StatisticsWe measure the performance of knowledge transfer in three aspects:the growth and diffusion of knowledge,the adequacy of knowledge transfer,and the spatial distribution of knowledge.3.1.The growth and diffusion of knowledgeThe average knowledge stock level at time t is defined asv(t)=1Ni∈Sv i(t),(5)which is a major concern in the study of knowledge transfer.To characterize knowledge diffusion,we define the growth diffusion timeτassociated with the average knowledge stock level by the conditionv(t=τ)=C,(6) where the constant C indicates certain average knowledge stock level.On the other hand,the knowledge growth rate at time t is measured byρ(t)=v(t)v(t−1)−1,(7)which directly illustrates the speed of knowledge growth.3.2.The variance coefficient of knowledgeThe adequacy of knowledge transfer is judged by the variation of knowledge stocks.To some extent,one of the purposes of knowledge transfer is to narrow the gap of knowledge stocks among agents.The variance can be used to measure the degree of discrepancy in knowledge stocks,σ2(t)=1Ni∈Sv2i(t)−v2(t).(8)However,since the value of variance will increase as the average knowledge stock level grows,we use the coefficient of variance instead of variance,c(t)=σ(t)/v(t).(9) The value of variance coefficient ranges in value rge value of variance coefficient corresponds to large gap of knowledge stocks among agents.On the contrary,small value of variance coefficient denotes similarity in knowledge stocks.476M.Lin,N.Li /Physica A 389(2010)473–480Fig.1.The average knowledge stock as a function of time on four different networks.The system size is 103.3.3.The spatial distribution of knowledgeThe last measurement is related to the degree of spatial order in a system of locally interconnected components.To check whether the broadcast mechanism on different network structures generates spatially auto-correlated knowledge allocations,we compute the Moran coefficient,S (t )=1σ2(t ) i ∈S j =i w i ,j [v i (t )−v(t )][v j (t )−v(t )],(10)wherew i ,j =X (i ,j ) i ∈S j =i X (i ,j ).(11)X (i ,j )indicates whether there is a direct connection between i and j .The Moran coefficient usually ranges in value from −1to 1,with values close to zero indicating spatial randomness (i.e.,no spatial dependence).A positive Moran coefficient indicates positive spatial dependence,that is,agents with similar values of knowledge stocks tend to be located close to each other.Negative values of the Moran coefficient indicates negative spatial dependence (i.e.,agents with unlike values of knowledge stocks tend to be located close to each other).4.Simulation resultsThroughout the simulations,the average degree of each network is 2z =6and the initial knowledge stock for each agent is unity.All of the results have been computed for one thousand independent runs with different configurations of the innovative and absorptive ability as well as different network realizations,over which averages have been taken.4.1.The growth and diffusion of knowledgeAt first,we investigate the behavior of average knowledge stock level v(t )in time evolution on the four different networks.Fig.1shows the dependence of v(t )on time.We can see that knowledge growth varies greatly on different networks.Obviously,scale-free network is more conducive to promote the growth of knowledge in the system.We can get a more clear picture from Fig.2,which illustrates the knowledge growth rate as a function of time on the four types of networks.It is observed that the knowledge growth speed on the four different networks follows ρ(scale −free )>ρ(random )>ρ(small −world )>ρ(regular ),which will be discussed in detail in Section 5.On the four types of networks,the temporal behaviors of average knowledge stock level with different system size are computed (Fig.3)and the growth diffusion time τis measured from the condition in Eq.(6),where we choose the constant C =10.It has been examined that another choice for the value of C does not make any qualitative difference in the scaling behavior of τ.In Fig.4,we show the diffusion time τdepending on the system size N on the four different networks.It is observed that the growth diffusion times all depend linearly on the network size N as τ∼N ,and the slope corresponding to scale-free network is minimal,which indicates the fastest growth and diffusion of knowledge.This result that scale-free network provides an optimal framework for knowledge growth and diffusion can be qualitative explained from the viewpoint of network structure.It is known that in scale-free network there are few large degree nodes who are connected with a finite fraction of the system.We call them hub agents.When small degree agent broadcasts,M.Lin,N.Li/Physica A389(2010)473–480477Fig.2.The knowledge growth rateρas a function of time on four different networks.The system size is103.Fig.3.The dependence of average knowledge stock level v(t)on the system size N for regular network,small-world network,random network,and scale-free network.hub agent may probably learn because he is very likely to be connected with the broadcaster.This provides them with more chance to absorb knowledge from others and results in higher knowledge stock.On the other hand,when hub agent broadcasts,a finite fraction of the system agents connected with him will learn immediately,and thus the average knowledge stock of the system is largely promoted.On scale-free networks,the hub agent play a very important role.The newly innovated knowledge is quickly transferred to the hub agents from a few innovating agents,and then broadcasted to the rest of the systems.This mechanism provides fast knowledge growth and diffusion on scale-free network.4.2.Variance coefficient of knowledgeThe variance coefficient of knowledge stock is a measure of the level of overall difference in knowledge stock.The smaller of the value the more adequate knowledge transfer is.Table1shows the variance coefficient as a function of both lower bound of absorptive ability and network structure.We can see that regular network shows a large variation of knowledge stock among agents which means that regular network structure is not conducive to the balanced distribution of knowledge.478M.Lin,N.Li/Physica A389(2010)473–480Fig.4.Growth diffusion timeτversus system size N on four types of networks.Linear behaviorτ∼N is observed.The slope corresponding to scale-free network is minimal indicating the fastest growth and diffusion of knowledge.Table1Variance coefficient as a function of the network structure and the lower bound of absorptive capacityα.The data is obtained by averaging over10,0003Fig.5.Illustration of Moran coefficient as a function of the network structure and the lower bound of absorptive capacity.The data is obtained by averaging over10,000generations after a transient time of1000generations for each network.The system size is103.Interestingly,the variance coefficients corresponding to scale-free network and random network are very small,which suggest high adequacy of knowledge transfer.In regular network,each agent can only exchange knowledge with few close neighbors,and thus the knowledge transfer is localized.According to the knowledge transfer mechanism(Eq.(1)),the agent with more knowledge stock will innovate more knowledge,while the agent with less knowledge stock will stay at lower knowledge level,which results in large variation of knowledge stock in the system.The situation is changed in networks with long-range edges,such as small-world network,random network,and scale-free networks.The newly innovated knowledge can be quickly transferred to the others agent,which reduce the overall gap in knowledge stocks.4.3.The Moran coefficientMoran coefficient is used to measure the spatial distribution of knowledge.The Moran coefficient as a function of both lower bound of absorptive ability and network structure is displayed in Fig.5.For regular network,the value of Moran coefficient is in the vicinity of1,which indicates that agents with similar knowledge stock level form exclusive clusters. This is because the knowledge transfer is localized in regular network,which destroys the equity of knowledge stocks distribution.On the contrary,scale-free network exhibits a random spatial pattern and its Moran coefficient is in the vicinityM.Lin,N.Li/Physica A389(2010)473–480479Fig.6.The transient patterns of knowledge diffusion on regular network and small-world network(upper panel),and on random network and scale-free network(lower panel).The degree distributions according to the node index are also plotted for random network and scale-free network.The red lines are the adjacent averages of diffusion pattern at t=104for random network and scale-free network separately.The system size is400.of0.This result suggests that knowledge transfer is non-discriminatory among agents,that is to say,agents with either high knowledge stock or low knowledge stock have the equal opportunity to communicate and transfer knowledge with others in harmony.5.Discussion and conclusionIn order to get a deeper insight into the knowledge transfer process on the four types of networks,we investigate the transient pattern of the knowledge diffusion.Fig.6displays the knowledge stocks pattern according to the node index at different time step on regular network,small-world network,random network,and scale-free network.Firstly,we analyze the diffusion pattern of regular network.Due to the topological property of regular network where exist only short-range edges,the knowledge transfer is localized,which means the newly innovated knowledge can hardly be transferred to distant agents.At the early time step,every agents possess similar knowledge stock due to the same degree.However,few dominating agents with very high level of knowledge stock will emerge as time evolves,which can be seen in the diffusion pattern at time104on regular network in Fig.6.Since each agent can only exchange knowledge with few close neighbors, the agents at higher knowledge level will innovate more and more knowledge,while the agents with less knowledge stock innovate less knowledge and will stay at lower knowledge level.In small-world network,there exist long-range edges, which make the knowledge transfer become easier.We can see from the diffusion patten at the first time step on small-world network,the newly innovated knowledge can be transferred to faraway agent in only one time step.This property can largely reduce the variance of the knowledge stocks in the system.However,since the long-range edges are very few, the localization of knowledge transfer still occurs in some areas.Therefore,we can find several peaks in the growth and diffusion pattern on small-world network,which is shown in Fig.6.The Euclidean structure of the system is totally destroyed in random network where any pairs of agents in the population are connected with the same probability.The newly innovated knowledge can be transferred to any of the agents in the system through only several time steps,which largely improves the diffusion of knowledge and reduces the variance of the knowledge stocks of the system.Since in random network the degree of each agent is nearly the same(lower panel of Fig.6), we expect a homogeneous diffusion pattern of knowledge on random network,which is confirmed by simulation(Fig.6).On scale-free network,the behavior of the diffusion pattern of knowledge at the earlier time steps is almost the same as that on random network.As the time evolves,the growth of knowledge becomes much fast.It is known that in scale-free network there exist few hub agents who are connected with a considerable number of agents in the system.When the agent with small degree broadcasts,hub agent may probably receive the newly innovated knowledge because he is very likely to be480M.Lin,N.Li/Physica A389(2010)473–480connected with the broadcaster.This provides the hub agents with higher knowledge stock.In Fig.6,we display the adjacent average of knowledge diffusion pattern at time104on scale-free network as well as its degree distribution according to the agent index.It is found that the knowledge stock of an agent is proportional to its degree.On the other hand,when hub agent broadcasts,a large fraction of the agents connected with him will learn immediately,and thus the average knowledge stock of the system is efficiently improved.On scale-free networks,the hub agent plays a very important role that he gathers the newly innovated knowledge from several innovating agents,and then broadcast to the rest of the systems.This mechanism provides the fastest knowledge growth and diffusion on scale-free network.In this article,we study how the growth and diffusion of knowledge is affected by the network structure.Simulation results indicate that the steady-state level of average knowledge is maximal in scale-free network which holds adequacy and equity in knowledge transfer as well.We explain these results by carefully investigating the dynamics of knowledge transmission on networks with different architectures of connections among agents.Since the growth and diffusion of knowledge on the scale-free structure is very efficient,it may be a good target for reformation in company and government.Finally,we point out that our study just offers a starting point for understanding the interplay between network structure and knowledge transfer.More profound conclusions need further investigations.AcknowledgementThe authors would like to thank the National Science Foundation of China under Grant No.60572170and China Aeronautic Science Foundation under Grant No.2009ZG52066for the financial supports.References[1]J.A.C.Baum,P.Ingram,Manage.Sci.44(1998)996.[2]B.Kogut,U.Zander,Organ.Sci.3(1992)383.[3]B.Kogut,U.Zander,Organ.Sci.7(1996)502.[4]L.Argote,Kluwer,Norwell,MA,1999.[5]G.Stasser,W.Titus,J.Pers.Soc.Psychol.53(1987)81.[6]U.Zander,B.Kogut,Organ.Sci.6(1995)76.[7]I.Nonaka,H.Takeuchi,Oxford University Press,NewYork,1995,p.75.[8]W.Cohen,D.Levinthal,Adm.Sci.Q.35(1990)128.[9]B.L.Simonin,Strat.Manage.J.20(1999)595.[10]A.K.Gupta,indarajan,Strat.Manage.J.21(2000)473.[11]P.Almeida,B.Kogut,Manage.Sci.45(1999)905.[12]D.H.Gruenfeld,P.V.Martorana,E.T.Fan,Org.Behav.Hum.Decis.Process.82(2000)45.[13]R.L.Moreland,L.Myaskovsky,Org.Behav.Hum.Decis.Process.82(2000)117.[14]L.Thompson,D.Gentner,J.Lowenstein,Org.Behav.Hum.Decis.Process.82(2000)60.[15]J.M.Levine,E.T.Higgins,H.S.Choi,Org.Behav.Hum.Decis.Process.82(2000)88.[16]D.L.Rulke,S.Zaheer,M.H.Anderson,Org.Behav.Hum.Decis.Process.82(2000)134.[17]G.Stasser,S.I.Vaughan,D.D.Stewart,Org.Behav.Hum.Decis.Process.82(2000)102.[18]C.S.Galbraith,Calif.Manage.Rev.32(1990)56.[19]W.W.Powell,K.W.Koput,L.Smith-Doerr,Adm.Sci.Q.41(1996)116.[20]B.McEvily,A.Zaheer,Strat.Manage.J.20(1999)1133.[21]M.E.J.Newman,J.Stat.Phys.101(2000)819.[22]S.H.Strogatz,Nature(London)410(2001)268.[23]S.N.Dorogovtsev,J.F.F.Mendes,Adv.Phys.51(2002)1079.[24]R.Albert,A.-L.Barabási,Rev.Modern Phys.74(2002)47.[25]D.J.Watts,S.H.Strogatz,Nature(London)393(1998)440.[26]A.-L.Barabási,R.Albert,Science286(1999)509.[27]A.-L.Barabási,R.Albert,H.Jeong,Physica A272(1999)173.[28]R.Albert,H.Jeong,A.-L.Barabási,Nature(London)401(1999)130.[29]L.Tian,C.-P.Zhu,D.-N.Shi,Z.-M.Gu,T.Zhou,Phys.Rev.E74(2006)046103.[30]L.Tian,D.-N.Shi,C.-P.Zhu,Physica A380(2007)611.[31]L.Tian,D.-N.Shi,Euro.Phys.J.B74(2007)167.[32]L.Tian,D.-N.Shi,Europhys.Lett.84(2008)58001.[33]R.Pastor-Satorras,A.Vespignani,Phys.Rev.Lett.86(2001)3200.[34]R.Pastor-Satorras,A.Vespignani,in:S.Bornholdt,H.G.Schuster(Eds.),Handbook of Graphs and Networks:From the Genome to the Internet,Wiley-VCH,Berlin,2003,p.111.[35]T.Zhou,Z.-Q.Fu,B.-H.Wang,Progr.Natur.Sci.16(2006)452.[36]T.Zhou,J.-G.Liu,W.-J.Bai,G.-R.Chen,B.-H.Wang,Phys.Rev.E74(2006)056109.[37]G.Yan,T.Zhou,J.Wang,Z.-Q.Fu,B.-H.Wang,Chin.Phys.Lett.22(2005)510.[38]S.Jespersen,I.M.Sokolov,A.Blumen,Phys.Rev.E62(2000)4405.[39]B.J.Kim,H.Hong,M.Y.Choi,Phys.Rev.B68(2003)014304.[40]P.Ingram,P.Roberts,Am.J.Sci.106(2000)387.[41]R.Reagans,E.Zuckerman,Organ.Sci.12(2001)502.[42]W.Tsai,Acad.Manage.J.44(2001)996.[43]M.T.Hansen,Adm.Sci.Q.44(1999)82.[44]R.Cowan,N.Jonard,J.Econ.Dyn.Control28(2004)1557.[45]W.Cohen,D.Levinthal,Econ.J.99(1989)569.。