单片机
- 格式:doc
- 大小:47.00 KB
- 文档页数:8
引言:单片机作为现代电子系统中重要的组成部分,具有一系列独特的特性。
本文将结合现实应用和理论知识,从五个方面对单片机的特性进行详细介绍。
概述:单片机是一种集成电路芯片,具备处理器、存储器和各种输入输出接口等功能。
它在电子产品中广泛应用,使得许多电子设备更加智能化和功能丰富化。
单片机的特性主要包括高性能和多功能、低功耗和节能、易于编程和开发、稳定可靠、成本低廉等。
正文:一、高性能和多功能1.1强大的计算能力:单片机采用高性能处理器,能够进行复杂的运算和逻辑处理。
1.2丰富的外设接口:单片机具备多种输入输出接口,可以连接各种传感器和执行器,实现多种功能。
1.3多种编程语言支持:单片机可以用多种编程语言进行开发,如C语言、汇编语言等,以满足不同开发需求。
二、低功耗和节能2.1低功耗设计:单片机采用先进的低功耗技术,能够在保持高性能的同时,降低功耗,延长电池使用寿命。
2.2节能管理:单片机具备智能的电源管理功能,可以根据实际需求进行动态调整,实现能源的有效利用。
三、易于编程和开发3.1开发工具丰富:市场上有许多成熟的开发工具,如IDE(开发集成环境)、编译器等,方便程序员进行开发和调试。
3.2丰富的开发资源:单片机的应用广泛,有许多开源的库和实例代码可供使用,加速开发过程。
3.3简化的编程接口:单片机的编程接口通常采用标准化的接口,对初学者来说更加友好。
四、稳定可靠4.1抗干扰能力强:单片机具备抗电磁干扰和抗温度波动的能力,能够稳定运行在各种环境条件下。
4.2自动故障检测和调试:单片机内置了故障检测和排错功能,可以自动检测并处理系统错误,提高系统的可靠性。
4.3高可靠性的存储器:单片机内置的存储器具有高可靠性,能够稳定地存储和读取数据。
五、成本低廉5.1生产规模大:单片机的市场需求量大,大量生产使得成本降低。
5.2集成度高:单片机内部集成了处理器、存储器和输入输出接口等功能,减少了外围器件的使用,进一步降低了成本。
单片机原理及接口技术单片机(Microcontroller)是一种集成了微处理器核心、存储器、输入/输出端口和定时器等功能于一体的计算机系统。
它具有成本低廉、体积小巧、功耗低等优点,广泛应用于各个领域。
本文将介绍单片机的原理及接口技术。
一、单片机原理1. 单片机的组成结构单片机通常由CPU、存储器、输入/输出口、定时/计数器、中断系统等组成。
其中,CPU是单片机的核心,负责执行程序指令;存储器用于存储程序和数据;输入/输出口用于与外部设备进行数据交互;定时/计数器用于计时和计数;中断系统可以处理外部事件。
2. 单片机的工作原理单片机工作时,先从存储器中加载程序指令到CPU的指令寄存器中,然后CPU执行指令并根据需要从存储器中读取数据进行计算和操作,最后将结果写回存储器或输出到外部设备。
3. 单片机的编程语言单片机的程序可以使用汇编语言或高级语言编写。
汇编语言是一种低级语言,直接使用机器码进行编程,对硬件的控制更加精细,但编写和调试难度较大。
而高级语言(如C语言)可以将复杂的操作用简单的语句描述,易于编写和阅读,但对硬件的控制相对较弱。
二、单片机的接口技术1. 数字输入/输出接口(GPIO)GPIO是单片机与外部设备进行数字信号交互的通道。
通过配置GPIO的输入或输出状态,可以读取外部设备的状态或者输出控制信号。
GPIO的配置包括引脚的模式、电平状态和中断功能等。
应根据具体需求合理配置GPIO,以实现与外部设备的稳定通信。
2. 模拟输入/输出接口单片机通常具有模数转换器(ADC)和数模转换器(DAC),用于模拟信号的输入和输出。
ADC将模拟信号转换为数字信号,以便单片机进行处理。
而DAC则将数字信号转换为模拟信号,用于驱动模拟设备。
模拟输入/输出接口的配置需要考虑转换精度、采样率和信噪比等因素。
3. 串行通信接口串行通信接口允许单片机与其他设备进行数据交换。
常见的接口包括UART(通用异步收发器)、SPI(串行外设接口)和I2C(串行外设接口),它们具有不同的通信速率和传输协议。
什么是单片机在现代科技的世界里,单片机就像一个小巧而强大的“智能大脑”,默默地在各种电子设备中发挥着关键作用。
但对于很多非专业人士来说,“单片机”这个词可能还比较陌生。
那么,到底什么是单片机呢?简单来说,单片机是一种集成在一块芯片上的微型计算机系统。
它将中央处理器(CPU)、存储器、输入输出接口等功能部件集成在一块小小的芯片上,从而实现了对各种设备的控制和数据处理。
想象一下,我们日常生活中的很多电器,比如电饭煲、洗衣机、空调等等,它们能够按照我们设定的程序自动工作,这背后就有单片机的功劳。
单片机就像是这些电器的“指挥官”,接收我们输入的指令,然后按照预定的程序进行运算和控制,最终实现各种复杂的功能。
单片机的体积非常小,通常只有几毫米到几十毫米见方,这使得它可以方便地嵌入到各种设备中。
别看它体积小,但其功能却十分强大。
它能够处理各种数字信号和模拟信号,实现数据的采集、存储、计算和输出。
从内部结构来看,单片机主要包括以下几个部分。
首先是中央处理器(CPU),这是单片机的核心,负责执行程序指令和进行数据运算。
然后是存储器,包括程序存储器和数据存储器。
程序存储器用于存储单片机运行所需的程序代码,而数据存储器则用于存储运行过程中的数据。
输入输出接口(I/O 接口)也是单片机的重要组成部分。
通过这些接口,单片机可以与外部设备进行通信,接收外部的输入信号,比如温度、湿度、压力等传感器的信号,同时也可以向外输出控制信号,驱动电机、灯光等设备工作。
单片机的工作原理其实并不复杂。
当我们给单片机上电后,它会从程序存储器中读取预先编写好的程序代码,并将其加载到CPU 中执行。
在执行程序的过程中,单片机通过 I/O 接口不断地采集外部输入信号,然后根据程序的逻辑进行运算和处理,最后通过 I/O 接口输出控制信号,实现对外部设备的控制。
为了让单片机能够按照我们的需求工作,我们需要使用专门的编程语言为其编写程序。
常见的单片机编程语言有 C 语言、汇编语言等。
单片机到底是什么呢单片机,全称为单片微型计算机,是一种在单个集成电路芯片上集成了处理器、存储器和输入输出接口等各种功能模块的微型计算机系统。
它被广泛应用于电子设备中,如家用电器、汽车电子、工业控制等领域。
本文将从多个角度介绍单片机的定义、特点、应用和发展趋势等内容。
一、单片机的定义与特点单片机是一种集成度非常高的微型计算机系统,其核心部分是一个微型处理器。
相比于传统的计算机系统,单片机具有以下几个特点:1. 高度集成:单片机将处理器、存储器和输入输出接口等功能模块集成在一颗芯片上,大大减小了电路板的体积和重量。
2. 低功耗:由于单片机内部的电路非常简单,功耗较低,适合工作在电池供电的环境。
3. 低成本:由于集成度高,制造工艺成熟,单片机的成本相对较低,可以大规模应用于各个领域。
4. 易编程:单片机采用高级语言编写程序,不需要了解底层电路的细节,开发门槛较低,适合初学者学习和使用。
二、单片机的应用领域单片机在各个领域都得到了广泛的应用,下面将介绍几个典型的应用领域:1. 家用电器:单片机被广泛应用于家用电器中,如空调、洗衣机、冰箱等。
通过单片机的控制,可以实现自动化、智能化的功能,提高用户体验。
2. 汽车电子:单片机在汽车电子领域有着重要的应用,如发动机控制系统、车身控制系统等。
通过单片机的控制,可以提高车辆的安全性、舒适性和燃油效率。
3. 工业控制:单片机在工业控制领域被广泛应用,如自动化生产线、工厂设备等。
通过单片机的控制,可以提高生产效率、降低劳动力成本。
4. 通信设备:单片机在通信设备中起着重要的作用,如手机、路由器等。
通过单片机的控制,可以实现无线通信、数据处理等功能。
三、单片机的发展趋势随着科技的不断发展,单片机也在不断演进和进步。
下面将介绍单片机的几个发展趋势:1. 高性能:随着半导体技术的不断进步,单片机的处理能力越来越强大,可以处理更复杂的任务。
2. 低功耗:随着对节能环保的要求越来越高,单片机的功耗也在不断降低,以满足电池供电等低功耗应用的需求。
单片机的三个发展阶段
单片机(Microcontroller Unit, MCU)是一种集成电路芯片,它将微处理器、存储器和输入/输出(I/O)接口等功能集成在一个芯片上,用于控制电子设备。
单片机的发展可以分为三个主要阶段:
1.初级阶段(1970-1980)
这个阶段的单片机通常具有较低的处理能力和较小的存储空间。
它们主要使用4位或8位处理器,如Intel的8048和8051系列。
应用领域相对有限,主要用于简单的控制任务,如家用电器和工业控制系统。
2.发展阶段(1980-2000)
随着半导体技术的进步,单片机的处理能力和功能得到了显著提升。
出现了16位和32位的处理器,如Motorola的68HC16和ARM架构的单片机。
存储器容量增加,I/O接口更加丰富,支持更多的外设。
应用领域扩展到汽车电子、医疗设备、通信设备等更复杂的系统。
3.高级阶段(2000-现在)
这个阶段的单片机具有更高的处理速度、更大的存储空间和更复杂的功能。
出现了64位处理器和更高级的ARM Cortex系列单片机。
集成了更多的外设,如USB、以太网、Wi-Fi、蓝牙等通信接口。
支持更高级的编程语言和开发环境,如C/C++、Python等。
应用领域进一步扩展,包括智能家居、物联网(IoT)、可穿戴设备、高级驾驶辅助系统(ADAS)等。
随着技术的发展,单片机正朝着更高的集成度、更低的功耗和更
强的计算能力的方向发展,以满足日益增长的市场需求。
同时,随着物联网和人工智能等新兴技术的发展,单片机在智能化设备中的应用将越来越广泛。
单片机的简介单片机(Microcontroller Unit,简称MCU)是一种集成了微处理器核心、存储器、输入输出接口和定时器等功能于一体的集成电路芯片。
它具有体积小、功耗低、成本低廉等特点,广泛应用于各种电子设备中。
本文将对单片机的基本特点、应用领域以及优缺点进行简要介绍。
一、单片机的基本特点单片机主要由中央处理器(CPU)、存储器、输入输出接口(I/O)和定时器等组成。
其核心部分是CPU,负责执行程序,处理数据。
常见的单片机有8位、16位和32位等不同位数的CPU。
存储器包括程序存储器(ROM)和数据存储器(RAM),用于存储程序和数据。
输入输出接口(I/O)用于与外部设备进行通信,可实现数据输入、输出等功能。
定时器用于产生精确的时间延迟。
单片机具有体积小、功耗低的特点,由于其集成度高,外部元器件少,因此相对于传统的电路设计方案,可以大大减小产品体积和功耗。
此外,单片机具有较高的可编程性,可以根据需求进行程序设计,实现各种功能。
其性价比也较高,适合大规模生产。
二、单片机的应用领域由于单片机具有体积小、功耗低、成本低等特点,因此在各个领域都有广泛的应用。
1. 家电控制:单片机广泛应用于家用电器,如洗衣机、冰箱、电视等。
通过控制单片机,可以实现温度控制、计时器功能等。
2. 工业自动化:单片机在工业设备和自动化领域也有重要应用。
例如,可以通过单片机实现对机器设备的监控和控制,提高生产效率和质量。
3. 交通领域:单片机在交通领域有着广泛的应用,如智能交通信号灯、车辆控制系统等。
通过单片机的智能控制,可以提高交通流量和安全性。
4. 医疗设备:单片机在医疗设备中具有重要地位,如心电图仪、血压计等。
通过单片机的高精度控制和数据处理,可以提高医疗设备的性能和准确性。
5. 智能家居:随着物联网的发展,单片机在智能家居领域有着广泛应用。
通过单片机的控制,可以实现家庭安防、远程控制等功能。
三、单片机的优缺点1. 优点:a. 体积小、功耗低:由于单片机的集成度高,体积相对较小,适合应用于体积有限的电子设备中,并且其功耗低,有助于延长电池寿命。
单片机是什么单片机?这玩意儿可有意思啦!咱先来说说,啥是单片机。
简单讲,单片机就像是一个超级迷你的小电脑,不过它可没有咱们平时用的电脑那么大块头,而是小小的、藏在各种电子设备里面的“大脑”。
比如说,家里的电饭煲,它怎么知道什么时候该煮饭、什么时候饭煮好了呢?这就得靠单片机啦。
还有小朋友玩的遥控小汽车,你按一下遥控器,小汽车就能跑起来、转弯,这也是单片机在发挥作用。
我记得有一次,我家的一个小风扇坏了。
我好奇地拆开一看,嘿,里面就有一个单片机。
当时我就想,这小家伙要是出了问题,风扇可不就罢工啦。
于是我拿着万用表,一点点地检测,就像侦探在寻找线索一样。
最后发现,原来是单片机连接的一个小电阻烧掉了。
我换了个新电阻,风扇又欢快地转起来了,那一刻,我可太有成就感了!单片机虽然小,但它的本事可不小。
它里面有处理器、存储器、输入输出接口等等。
处理器就像是它的“思维中心”,负责计算和处理各种信息;存储器呢,就像是它的“小书包”,用来存放数据和程序;输入输出接口呢,就像是它的“小手和小脚”,跟外面的世界交流。
单片机的应用那可真是无处不在。
像咱们每天坐的电梯,能准确地停在每一层,靠的就是单片机的控制;马路上的交通信号灯,红黄绿的切换,也是单片机在安排;甚至医院里的一些医疗设备,比如血压计、血糖仪,也都有单片机的身影。
再说说单片机的编程吧。
这可不像咱们平时用电脑敲代码那么简单,得精打细算,因为单片机的资源有限,得把每一个字节都用在刀刃上。
有时候为了节省那么一点点空间,程序员们可是绞尽脑汁。
而且,单片机的发展速度也是超快的。
以前的单片机可能功能比较单一,现在的可就强大得多啦,能处理更复杂的任务,速度也更快。
总的来说,单片机虽然小,但它在我们的生活中扮演着超级重要的角色。
没有它,好多方便又好玩的电子设备可就没法工作啦。
说不定未来,单片机还会变得更厉害,给我们的生活带来更多的惊喜呢!。
一.单片机概述单片机是单片微型计算机SCMC(Single Chip MicroComputer)的译名简称,在国内常简称为“单片微机”或“单片机”。
单片机就是把组成微型机算计的各功能部件:包括中央处理器CPU、随机存储器RAM、只读存储器ROM/EPROM、中断系统、定时器/计数器、并行及串行口输入输出I/O接口电路等等部件集成在一块半导体芯片上,所构成的一个完整的微型机算机。
即是一个不带外围设备的单芯片微型计算机的电路系统。
随着大规模集成电路的发展,单片机内还可包含A/D、D/A转换器、高速输入/输出部件、DMA通道、浮点运算等特殊功能部件。
由于单片机的结构和指令功能都是按工业控制要求设计的,特别适合于工业控制及与控制有关的数据处理场合,国外称其为微控制器(Mirocontroller)。
除了工业控制领域,单片微机在家用电器、电子玩具、通信、高级音响、图形处理、语言设备、机器人、计算机等各个领域迅速发展。
目前单片微机的世界年产量已达100亿片,而在中国大陆地区单片微机的年应用量已达6亿片左右,截止2001年4月,由中国大陆地区自行设计和生产的单片微机也已达到2000万片。
综观二十多年的发展过程,单片微机正朝多功能、多选择、高速度、低功耗、低价格、扩大存储容量和加强I/O功能及结构兼容方向发展。
单片机是典性的嵌入式系统,单片机系统的体系结构和指令系统结构,是按照嵌入式控制应用而设计的。
作为嵌入式应用时,即嵌入到对象环境、结构、体系中作为其中的一个智能化控制单元,如洗衣机、电视机、VCD、DVD等家用电器,打印机、复印机、通讯设备、智能仪表、现场控制单元等。
构成各种嵌入式的应用电路,统称为单片机应用系统。
二.DJ-598KC实验系统相关知识1.认识DJ-598KC+单片机开发系统的结构2.系统主要特点(1)系统自动识别CPU:40芯扁平电缆RS232PC机仿真DJ-598K1单片机开发系电源598KC是集51、96、8088三大系列CPU于一体的三合一实验系统,内置51/96单片机仿真器和8088实验系统。
单片机发展史【摘要】单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
单片机作为微型计算机的一个重要分支,应用面很广,发展很快。
自单片机诞生至今,已发展为上百种系列的近千个机种。
目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。
关键词微型计算机 8位单片机发展趋势一、单片机发展历程(1)SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。
“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。
在开创嵌入式系统独立发展道路上,Intel公司功不可没。
(2)MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。
它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。
从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。
在发展MCU方面,最著名的厂家当数Philips 公司。
Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。
因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。
(3)单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。
随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。
因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。
二、以8位单片机为起点(1)第一阶段(1976-1978):单片机的控索阶段。
以Intel公司的MCS – 48为代表。
MCS – 48的推出是在工控领域的控索,参与这一控索的公司还有Motorola、Zilog等,都取得了满意的效果。
这就是SCM的诞生年代,“单机片”一词即由此而来。
(2)第二阶段(1978-1982)单片机的完善阶段。
Intel公司在MCS – 48基础上推出了完善的、典型的单片机系列MCS –51。
它在以下几个方面奠定了典型的通用总线型单片机体系结构。
①完善的外部总线。
MCS-51设置了经典的8位单片机的总线结构,包括8位数据总线、16位地址总线、控制总线及具有很多机通信功能的串行通信接口。
②CPU外围功能单元的集中管理模式。
③体现工控特性的位地址空间及位操作方式。
④指令系统趋于丰富和完善,并且增加了许多突出控制功能的指令。
(3)第三阶段(1982-1990):8位单片机的巩固发展及16位单片机的推出阶段,也是单片机向微控制器发展的阶段。
Intel公司推出的MCS – 96系列单片机,将一些用于测控系统的模数转换器、程序运行监视器、脉宽调制器等纳入片中,体现了单片机的微控制器特征。
随着MCS – 51系列的广应用,许多电气厂商竞相使用80C51为内核,将许多测控系统中使用的电路技术、接口技术、多通道A/D 转换部件、可靠性技术等应用到单片机中,增强了外围电路路功能,强化了智能控制的特征。
(4)第四阶段(1990—):微控制器的全面发展阶段。
随着单片机在各个领域全面深入地发展和应用,出现了高速、大寻址范围、强运算能力的8位/16位/32位通用型单片机,以及小型廉价的专用型单片机。
三、单片机的发展趋势(1)CMOS化近年,由于CHMOS技术的进小,大大地促进了单片机的CMOS化。
CMOS芯片除了低功耗特性之外,还具有功耗的可控性,使单片机可以工作在功耗精细管理状态。
这也是今后以80C51取代8051为标准MCU芯片的原因。
因为单片机芯片多数是采用CMOS(金属栅氧化物)半导体工艺生产。
CMOS电路的特点是低功耗、高密度、低速度、低价格。
采用双极型半导体工艺的TTL电路速度快,但功耗和芯片面积较大。
随着技术和工艺水平的提高,又出现了HMOS(高密度、高速度MOS)和CHMOS工艺。
CHMOS和HMOS工艺的结合。
目前生产的CHMOS电路已达到LSTTL的速度,传输延迟时间小于2ns,它的综合优势已在于TTL电路。
因而,在单片机领域CMOS正在逐渐取代TTL电路。
(2)低功耗化单片机的功耗已从Ma级,甚至1uA以下;使用电压在3~6V 之间,完全适应电池工作。
低功耗化的效应不仅是功耗低,而且带来了产品的高可靠性、高抗干扰能力以及产品的便携化。
(3)低电压化几乎所有的单片机都有WAIT、STOP等省电运行方式。
允许使用的电压范围越来越宽,一般在3~6V范围内工作。
低电压供电的单片机电源下限已可达1~2V。
目前0.8V供电的单片机已经问世。
(4)低噪声与高可靠性为提高单片机的抗电磁干扰能力,使产品能适应恶劣的工作环境,满足电磁兼容性方面更高标准的要求,各单片厂家在单片机内部电路中都采用了新的技术措施。
大容量化以往单片机内的ROM为1KB~4KB,RAM为64~128B。
但在需要复杂控制的场合,该存储容量是不够的,必须进行外接扩充。
为了适应这种领域的要求,须运用新的工艺,使片内存储器大容量化。
目前,单片机内ROM最大可达64KB,RAM 最大为2KB。
(5)高性能化主要是指进一步改进CPU的性能,加快指令运算的速度和提高系统控制的可靠性。
采用精简指令集(RISC)结构和流水线技术,可以大幅度提高运行速度。
现指令速度最高者已达100MIPS(Million Instruction Per Seconds,即兆指令每秒),并加强了位处理功能、中断和定时控制功能。
这类单片机的运算速度比标准的单片机高出10倍以上。
由于这类单片机有极高的指令速度,就可以用软件模拟其I/O功能,由此引入了虚拟外设的新概念。
(6)小容量、低价格化与上述相反,以4位、8位机为中心的小容量、低价格化也是发展动向之一。
这类单片机的用途是把以往用数字逻辑集成电路组成的控制电路单片化,可广泛用于家电产品。
外围电路内装化这也是单片机发展的主要方向。
随着集成度的不断提高,有可能把众多的各种处围功能器件集成在片内。
除了一般必须具有的CPU、ROM、RAM、定时器/计数器等以外,片内集成的部件还有模/数转换器、DMA控制器、声音发生器、监视定时器、液晶显示驱动器、彩色电视机和录像机用的锁相电路等。
串行扩展技术在很长一段时间里,通用型单片机通过三总线结构扩展外围器件成为单片机应用的主流结构。
随着低价位OTP(One Time Programble)及各种类型片内程序存储器的发展,加之处围接口不断进入片内,推动了单片机“单片”应用结构的发展。
特别是I C、SPI等串行总线的引入,可以使单片机的引脚设计得更少,单片机系统结构更加简化及规范化。
四、总结随着半导体集成工艺的不断发展,单片机的集成度将更高、体积将更小、功能将列强。
在单片机家族中,80C51系列是其中的佼佼者,加之Intel公司将其MCS –51系列中的80C51内核使用权以专利互换或出售形式转让给全世界许多著名IC制造厂商,如Philips、 NEC、Atmel、AMD、华邦等,这些公司都在保持与80C51单片机兼容的基础上改善了80C51的许多特性。
这样,80C51就变成有众多制造厂商支持的、发展出上百品种的大家族,现统称为80C51系列。
80C51单片机已成为单片机发展的主流。
专家认为,虽然世界上的MCU品种繁多,功能各异,开发装置也互不兼容,但是客观发展表明,80C51可能最终形成事实上的标准MCU 芯片。
单片机发展史1.1 单片机简介单片机是一种集成电路芯片。
它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。
所以说,一片单片机芯片就具有了组成计算机的全部功能。
由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。
然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。
单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。
不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。
这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。
软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。
开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。
要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。
单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电器、智能仪器仪表、过程控制和专用控制装置等等,单片机的应用领域越来越广泛。
诚然,单片机的应用意义远不限于它的应用范畴或由此带来的经济效益,更重要的是它已从根本上改变了传统的控制方法和设计思想。
是控制技术的一次革命,是一座重要的里程碑。
1.2 单片机发展概述1946年第一台电子计算机诞生至今,依靠微电子技术和半导体技术的进步,从电子管——晶体管——集成电路——大规模集成电路,使得计算机体积更小,功能更强。
特别是近20年时间里,计算机技术获得飞速的发展,计算机在工农业,科研,教育,国防和航空航天领域获得了广泛的应用,计算机技术已经是一个国家现代科技水平的重要标志。
单片机诞生于20世纪70年代,象Fairchild公司研制的F8单片微型计算机。
所谓单片机是利用大规模集成电路技术把中央处理单元(Center Processing Unit,也即常称的CPU)和数据存储器(RAM)、程序存储器(ROM)及其他I/O通信口集成在一块芯片上,构成一个最小的计算机系统,而现代的单片机则加上了中断单元,定时单元及A/D转换等更复杂、更完善的电路,使得单片机的功能越来越强大,应用更广泛。