双单片机串口通信
- 格式:doc
- 大小:52.50 KB
- 文档页数:3
单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。
而单片机之间的通信则是实现复杂系统功能的关键之一。
其中,双机串口通信是一种常见且重要的通信方式。
什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。
想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。
串口通信,顾名思义,是通过串行的方式来传输数据。
这和我们日常生活中并行传输数据有所不同。
在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。
虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。
在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。
比如波特率,它决定了数据传输的速度。
就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。
常见的波特率有 9600、115200 等。
还有数据位、停止位和校验位。
数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。
为了实现双机串口通信,我们需要在两个单片机上分别进行编程。
编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。
初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。
比如设置波特率发生器的数值,以确定合适的波特率。
发送数据相对来说比较简单。
我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。
接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。
当有新数据时,从接收寄存器中读取数据,并进行相应的处理。
在实际应用中,单片机双机串口通信有着广泛的用途。
比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。
单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。
而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。
一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。
串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。
在串行通信中,数据是一位一位地按顺序传输的。
常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。
在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。
UART 协议包括起始位、数据位、奇偶校验位和停止位。
起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。
二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。
首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。
在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。
即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。
同时,还需要共地以保证信号的参考电平一致。
此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。
三、软件设计软件设计是实现双机串行通信的核心部分。
在本次课程设计中,我们使用 C 语言来编写单片机的程序。
对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。
然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。
对于接收方单片机,同样需要对 UART 模块进行初始化。
51单片机双机串行通信设计51单片机是一款广泛应用于嵌入式系统中的微控制器,具有高性能和低功耗的特点。
在一些场景中,需要使用51单片机之间进行双机串行通信,以实现数据传输和协同工作。
本文将介绍51单片机双机串行通信的设计,包括硬件连接和软件编程。
一、硬件连接1.串行通信口选择:51单片机具有多个串行通信口,如UART、SPI 和I2C等。
在双机串行通信中,可以选择其中一个串行通信口作为数据传输的接口。
一般来说,UART是最常用的串行通信口之一,因为它的硬件接口简单且易于使用。
2.引脚连接:选定UART口作为串行通信口后,需要将两个单片机之间的TX(发送)和RX(接收)引脚相连。
具体的引脚连接方式取决于所使用的单片机和外设,但一般原则上是将两个单片机的TX和RX引脚交叉连接。
二、软件编程1.串行通信初始化:首先需要通过软件编程来初始化串行通信口。
在51单片机中,可以通过设置相应的寄存器来配置波特率和其他参数。
具体的初始化代码可以使用C语言编写,并根据所使用的开发工具进行相应的配置。
2.发送数据:发送数据时,可以通过写入相应的寄存器来传输数据。
在51单片机中,通过将数据写入UART的发送寄存器,即可将数据发送出去。
发送数据的代码通常包括以下几个步骤:(1)设置发送寄存器;(2)等待数据发送完成;(3)清除数据发送完成标志位。
3.接收数据:接收数据时,需要通过读取相应的寄存器来获取接收到的数据。
在51单片机中,可以通过读取UART的接收寄存器,即可获取到接收到的数据。
接收数据的代码通常包括以下几个步骤:(1)等待数据接收完成;(2)读取接收寄存器中的数据;(3)清除数据接收完成标志位。
4.数据处理:接收到数据后,可以进行相应的数据处理。
根据具体的应用场景,可以对接收到的数据进行解析、计算或其他操作。
数据处理的代码可以根据具体的需求进行编写。
5.中断服务程序:在双机串行通信中,使用中断可以提高通信的效率。
单片机实现双机通信自己的单片机是一种集成电路芯片,可以实现各种功能。
双机通信是指两台或多台计算机通过网络或其他方式进行数据传输和通信的过程。
在很多应用中,需要使用单片机实现双机通信,以实现数据传输和信息交换等功能。
单片机实现双机通信的基本原理是通过通信端口(例如串口或网络接口等)进行数据的发送和接收。
在这个过程中,需要使用一些通信协议来规定数据的格式和传输的方式。
下面是一种基于串口通信的单片机双机通信的实现方法。
首先,我们需要确定通信的硬件配置。
通常情况下,可以通过串口连接两台单片机,其中一台设置为发送方,另外一台设置为接收方。
发送方将待发送的数据通过串口发送出去,接收方则接收这些数据。
在单片机程序代码的编写方面,我们需要首先配置串口的通信参数,例如波特率、数据位、停止位、奇偶校验等。
这些参数需要在发送方和接收方进行一致配置,以保证数据的正确传输。
接下来,我们需要实现发送和接收的程序。
首先,发送方需要将待发送的数据存储在发送缓冲区中,然后通过串口将数据发送出去。
接收方则需要实时监听串口接收缓冲区中是否有数据到达,并将接收到的数据存储在接收缓冲区中。
另外,为了保证数据的正确传输,通常还要实现一些数据校验机制,例如奇偶校验、循环冗余校验(CRC)等。
这些校验机制可以用于检测和纠正数据传输中的错误。
在程序编写的过程中,还需要考虑到程序的稳定性和容错性。
例如,在发送方发送数据时,可能会遇到发送缓冲区已满的情况,此时需要实现相应的处理机制,例如等待一段时间后再次发送。
同样,在接收方接收数据时,也可能会遇到接收缓冲区溢出的情况,此时需要及时处理,以避免数据的丢失。
最后,在实际应用中,还需要考虑一些高级的功能,例如数据压缩、加密、数据传输速度的控制等。
这些功能可以根据具体的需求进行实现。
总之,单片机实现双机通信是一项复杂的任务,需要考虑到硬件和软件两个方面的因素。
在程序编写的过程中,需要考虑到通信参数的配置、发送和接收的程序编写、数据校验、稳定性和容错性等方面的问题。
单片机用 Proteus 仿真双机串口通信总结体会本文介绍了使用 Proteus 仿真软件进行单片机双机串口通信的实验过程及总结体会。
下面是本店铺为大家精心编写的5篇《单片机用 Proteus 仿真双机串口通信总结体会》,供大家借鉴与参考,希望对大家有所帮助。
《单片机用 Proteus 仿真双机串口通信总结体会》篇1引言在单片机应用中,串口通信是一种重要的通信方式,它具有传输速率快、传输距离远、抗干扰能力强等优点。
Proteus 仿真软件是一种功能强大的电子电路仿真工具,可以用来模拟单片机串口通信的整个过程,为学习和实践提供方便。
本文将详细介绍使用Proteus 仿真软件进行单片机双机串口通信的实验过程及总结体会。
实验过程1. 硬件电路设计首先,我们需要设计一个简单的单片机硬件电路,包括电源电路、串口通信电路和 LED 显示电路。
电源电路可以使用电池或者稳压器来提供稳定的电压,串口通信电路可以使用 Proteus 提供的串口助手软件进行设计和调试,LED 显示电路可以使用 Proteus 提供的 LED 助手软件进行设计和调试。
2. 软件程序设计在软件程序设计中,我们需要编写两个程序:主程序和串口通信程序。
主程序主要负责初始化串口通信电路和 LED 显示电路,并将控制权转移到串口通信程序。
串口通信程序主要负责接收和发送数据,通过串口助手软件可以方便地进行调试和测试。
3. 仿真测试在仿真测试中,我们可以使用 Proteus 提供的仿真工具进行测试。
首先,我们需要将硬件电路和软件程序导入 Proteus 仿真软件中,并进行电路连接和程序编译。
然后,我们可以通过串口助手软件进行数据发送和接收,并通过 LED 显示电路进行数据展示。
总结体会通过使用 Proteus 仿真软件进行单片机双机串口通信实验,我们可以得出以下总结体会:1. Proteus 仿真软件是一种非常强大的电子电路仿真工具,可以用来模拟各种电路和通信方式。
单片机双机通信实验报告
实验目的:
1. 了解单片机之间的串口通信原理;
2. 掌握单片机之间的双机通信方法;
3. 实现单片机之间的数据互相传输。
实验器材:
1. 单片机开发板(两块);
2. USB转串口模块(两个);
3. 杜邦线若干;
4. 电脑。
实验步骤:
首先,将单片机开发板和USB转串口模块进行连接,具体的连接方法如下:
1. 将USB转串口模块的TXD引脚连接到单片机开发板的RXD引脚上;
2. 将USB转串口模块的RXD引脚连接到单片机开发板的TXD引脚上;
3. 将USB转串口模块的GND引脚连接到单片机开发板的GND引脚上;
4. 将USB转串口模块的VCC引脚连接到单片机开发板的VCC引脚上。
接下来的步骤如下:
1. 打开两台电脑上的串口调试助手软件,并分别将波特率设置为相同的数值(例如9600);
2. 在一台电脑上,发送数据给另一台电脑。
具体的操作是在串口调试助手软件上输入要发送的数据,然后点击发送按钮;
3. 在另一台电脑上,接收来自第一台电脑发送的数据。
具体的操作是在串口调试助手软件上点击接收按钮,然后可以看到接收到的数据。
实验结果:
通过实验可以看到,单片机之间成功地实现了数据的双向传输。
一台单片机发送的数据可以被另一台单片机接收到。
实验总结:
本实验通过串口通信的方式实现了单片机之间的双机通信。
通过这种方式,可以方便地实现单片机之间的数据互相传输,可以用于各种应用场景,如传感器与控制器之间的数据传输等。
同时要注意,串口通信的波特率要设置一致,否则数据将无法正确接收。
单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。
串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。
通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。
在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。
主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。
通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。
双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。
主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。
2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。
主机发送完所有数据位后,等待从机的响应。
3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。
4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。
从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。
5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。
从机发送完所有数据位后,等待主机的进一步操作。
6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。
7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。
单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。
实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。
常用的串行通信方式有同步串行通信和异步串行通信。
异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。
而同步串行通信是指通过外部时钟信号进行数据的同步传输。
实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。
2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。
3.在编程软件中,编写两个程序分别用于发送数据和接收数据。
4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。
然后利用串口发送数据的指令将数据发送出去。
5.在接收数据的程序中,同样要设置串口的参数。
然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。
实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。
发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。
实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。
否则,发送数据的单片机和接收数据的单片机无法正常进行通信。
同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。
实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。
掌握了串口的设置和使用方法,以及相关的指令和函数。
在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。
同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。
例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。
一、实验目的掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容(含程序)编写发送方和接受方单片机程序,让发送方单片机向接受方单片机循环发送几个两位十六进制数,并将发送的数显示在发送方和接受方的数码管上,要求串行口采用方式1进行通信,选用定时器T1作为波特率发生器,T1工作方式2,通信的波特率位9600。
硬件连接:发送发程序:#include<reg51.h>#define uint unsigned intuchar table[]={0xaa,0xB5,0xdd,0xa8,0xba,0xcc,0xf4,0xb0}; //要发送的数据void delay(uint x){uint i,j;for(i=x;i>0;i--)for(j=110;j>0;j--);}void main(){uchar i=0;TMOD=0x20;TH1=0xfd;TL1=0xfd;SM0=0;SM1=1;TR1=1;EA=1;ES=1;while(1){SBUF=table[i];P1=table[i];while(!TI);TI=0;i++;if(i==8)i=0;delay(800);}}接收方程序:#include <reg51.h>#define uchar unsigned charuchar a;void main(){TMOD=0x20;TH1=0xfd;TL1=0xfd;REN=1;TR1=1;SM0=0;SM1=1;EA=1;ES=1;while(1);}void ser() interrupt 4{RI=0;a=SBUF;P1=a;}三、实验结果及分析本实验需要完成两个程序,发送方和接受方的,但是并没有要求加入奇偶校验,因此难度不大,从实验结果可以明显看出,当发送方数码管显示要发送的数值时,接受方数码管也几乎同时显示出此数值,证明接受无误,实验结果正确。
单片机双机之间的串行通讯设计报告摘要:本文介绍了一种基于单片机的双机之间的串行通讯设计。
该设计使用两个单片机,通过串行通信协议进行数据传输。
通讯过程中,两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。
同时,本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。
通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。
关键词:单片机,串行通讯,中断方式,移位寄存器,串行口扩展一、引言串行通讯是计算机系统中常用的一种数据传输方式,它可以实现不同设备之间的数据传输。
在单片机应用中,串行通讯也是一种常见的数据传输方式。
本文介绍了一种基于单片机的双机之间的串行通讯设计,该设计使用两个单片机通过串行通信协议进行数据传输。
本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。
通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。
二、设计原理该串行通讯设计使用两个单片机,分别为发送单片机和接收单片机。
发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。
两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。
在串行通讯中,数据是通过串行口进行传输的。
串行口工作方式0 是一种常见的串行口工作方式,它使用移位寄存器进行数据接收和发送。
在移位寄存器中,数据被移位到寄存器中进行传输,从而实现了数据的串行传输。
三、设计实现1. 硬件设计在该设计中,发送单片机和接收单片机分别使用一个串行口进行数据传输。
发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。
两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。
硬件设计主要包括两个单片机、串行口、数据线和中断控制器。
其中,两个单片机分别拥有自己的串行口,并且都能够接收和发送数据。
数据线将两台单片机连接在一起,中断控制器用于处理数据的接收和发送。
51单片机双机通信原理(一)51单片机双机通信简介•什么是51单片机双机通信•双机通信的作用和应用场景基本原理•单片机串口通信原理–串口通讯协议–数据帧的构成•串口通信的硬件连接–引脚连接方式–串口信号格式设置单向通信实现•主从模式–主机发送数据–从机接收数据•编程实现–主机端程序设计–从机端程序设计双向通信实现•主从模式–主机发送数据–从机接收数据–主机接收数据–从机发送数据•编程实现–主机端程序设计–从机端程序设计通信协议的设计•自定义通信协议–协议的格式–数据的解析与封装高级功能扩展•多机通信实现•数据加密与解密•异常处理与误码纠错总结•51单片机双机通信的基本原理和实现方式•可能遇到的问题及解决方案•双机通信的进一步应用展望简介51单片机双机通信是指使用51系列单片机实现两台或多台单片机之间的数据传输和通信。
双机通信可以实现在多个单片机之间传递数据、完成控制指令的下发、数据的采集和处理等功能。
在各种电子设备和嵌入式系统中,双机通信被广泛应用,可以实现设备之间的互联和协同工作,提高系统的灵活性和智能化水平。
基本原理单片机串口通信原理串口通信是一种将数据通过串行线路进行传输的通信方式。
在51单片机的串口通信中,常用的是UART(通用异步收发传输器)通信协议。
UART通信采用的是异步传输方式,数据按照固定的数据帧格式进行传输。
串口通信的硬件连接在51单片机的串口通信中,需要将主机和从机的UART引脚连接起来。
常用的连接方式是通过一对直线的串行数据线(TXD和RXD)连接主从机,其中TXD是发送数据的引脚,RXD是接收数据的引脚。
为了确保数据的正确传输,还需要进行串口信号格式的设置,包括波特率、数据位数、停止位数和校验位等。
单向通信实现主从模式在单向通信中,主机负责发送数据,从机负责接收数据。
主机通过串口发送数据帧,从机通过串口接收数据帧,并进行相应的处理。
编程实现在主机端程序设计中,需要配置串口通信的参数,并使用串口发送数据的相关函数来发送数据。
单片机间的串口通信连接方法单片机间的串口通信是一种常见的通信方式,它可以实现不同单片机之间的数据传输和控制。
下面是关于单片机间串口通信连接的十条方法及详细描述:1. 直连方式:通过两个单片机的串口引脚(TX和RX)直接相连,形成一个点对点连接。
其中一个单片机的TX引脚连接到另一个单片机的RX引脚,而另一个单片机的TX引脚连接到第一个单片机的RX引脚。
2. 串口转接板方式:使用串口转接板(如MAX232)将单片机的逻辑电平转换为标准的RS-232电平。
将串口转接板的TX、RX引脚与两个单片机的对应引脚相连。
3. TTL互连方式:如果两个单片机的串口电平都是TTL电平(0V和5V),可以直接将它们的TX和RX引脚相连。
4. 使用RS-485通信:将两个单片机的TX和RX引脚连接到RS-485芯片的A和B端,通过RS-485总线进行数据传输。
5. 使用RS-422通信:类似于RS-485,将两个单片机的TX和RX引脚连接到RS-422芯片的A和B端。
6. 使用I2C通信:将两个单片机的SDA和SCL引脚连接到I2C总线上,通过I2C协议进行通信。
7. 使用SPI通信:将两个单片机的MISO(Master In Slave Out)、MOSI(Master Out Slave In)、SCK(时钟)和SS(片选)引脚进行连接,通过SPI协议进行通信。
8. 使用CAN通信:将两个单片机的CAN_H(高电平)和CAN_L(低电平)引脚连接到CAN总线上,通过CAN协议进行通信。
9. 使用USB转串口方式:通过USB转串口模块将单片机的串口信号转换为USB信号,实现单片机间的USB通信。
10. 无线串口方式:使用无线模块(如蓝牙、Wi-Fi、RF模块等)将两个单片机的串口信号通过无线方式进行传输和通信。
单片机双机之间的串行通信设计1.引言单片机双机之间的串行通信是指两个或多个单片机之间通过串口进行数据传输和通信的过程。
串行通信是一种逐位传输数据的方式,与并行通信相比,它占用的硬件资源更少,且传输距离较远。
本文将介绍单片机双机之间串行通信的设计过程,包括硬件设计和软件编程。
2.硬件设计串行通信需要使用到两个主要的硬件部件:串口芯片和通信线路。
串口芯片负责将要发送或接收的数据转换成串行数据流,并通过通信线路进行传输。
通信线路通常包括两根传输数据的线路(TX和RX)、地线和时钟线。
2.1串口芯片的选择常用的串口芯片有MAX232、MAX485、CH340等。
选择合适的芯片需要考虑通信距离、通信速率、系统的功耗等因素。
对于较短的通信距离和较低的通信速率,可以选择MAX232芯片;而对于长距离通信和较高的通信速率,可以选择MAX485芯片。
2.2通信线路设计通信线路的设计需要考虑信号的传输质量和抗干扰能力。
通常使用双绞线或者屏蔽线路来减小信号的串扰和干扰。
对于短距离通信,双绞线即可满足需求;而对于长距离通信,需要采用屏蔽线路来减小串扰和干扰。
3.软件设计串行通信的软件设计主要包括通信协议的制定和数据包的格式规定。
3.1通信协议的选择通信协议是指数据传输的一套规则和约定,它规定了数据的格式、传输顺序、误码校验等内容。
常用的通信协议有UART、RS232、SPI、I2C等。
UART是最常用的通信协议,它一般使用异步通信方式,并具有较高的通信速率和稳定性。
3.2数据包的格式规定数据包是一组有意义的数据的集合,它包括起始位、数据位、停止位和校验位等。
起始位用于标识一个数据包的开始,通常为逻辑低电平;数据位用于存储要传输的数据;停止位用于标识数据包的结束,通常为逻辑高电平;校验位用于检测数据传输过程中是否发生错误。
校验位可以是奇校验、偶校验、无校验等。
4.实验步骤4.1连接硬件根据硬件设计部分的要求,将串口芯片和通信线路连接到单片机上。
单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。
二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。
数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。
2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。
3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。
通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。
4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。
5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。
三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。
2. 实验软件:Keil C51集成开发环境。
四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写发送端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。
(4)循环发送指定的数据。
2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写接收端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。
两个mcu串口通信电路设计在电子技术领域,MCU(微控制器)串口通信是一种非常重要的通信方式。
它不仅可以实现设备之间的数据传输,还可以实现设备与计算机之间的通信。
下面我将详细介绍如何设计一个两个MCU串口通信的电路。
首先,我们需要了解MCU串口通信的基本原理。
MCU串口通信是指通过MCU的串行接口进行数据传输的一种通信方式。
它通常包括发送和接收两部分,其中发送部分负责将MCU内部的数据转换为串行信号并发送出去,而接收部分则负责接收外部的串行信号并将其转换为MCU可以识别的数据。
接下来,我们开始设计电路。
首先,我们需要准备两个MCU,一个作为发送端,另一个作为接收端。
然后,我们需要为每个MCU配备一个串行接口,以便它们可以通过串口进行通信。
在硬件连接方面,我们将发送端MCU的TX引脚(发送数据)连接到接收端MCU的RX引脚(接收数据),并将接收端MCU的TX引脚连接到发送端MCU 的RX引脚。
这样,就可以实现两个MCU之间的串口通信了。
在软件编程方面,我们需要为每个MCU编写相应的程序。
对于发送端MCU,我们需要编写一个程序,用于将需要发送的数据转换为串行信号,并通过TX引脚发送出去。
对于接收端MCU,我们需要编写一个程序,用于接收通过RX引脚传来的串行信号,并将其转换为可以被MCU识别的数据。
在实际应用中,我们还需要考虑一些其他因素,如波特率、数据位数、停止位数等。
这些参数都需要根据具体的应用需求来设定。
总的来说,设计一个两个MCU串口通信的电路并不复杂,只需要准备好必要的硬件设备,正确连接好电路,并编写好相关的程序即可。
但需要注意的是,由于串口通信的速度较慢,所以在某些高速数据传输的应用中可能不太适用。
单片机原理及接口技术课程设计报告设计题目:两个单片机通信,甲乙可以相互控制学号:姓名:指导教师:信息与电气工程学院二零一四年六月单片机串口通信设计单片机行业已经有了很久的历史,随着科学技术的进步和社会的发展,单片机行业更加迅速的发展起来。
不论在工业还是民也上都有很好的发展和应用,得到大家很好的认可和高度的评价。
单片机的通信接口是各台仪表之间或仪表与计算机之间进行信息交换和传输的联络装置。
主要有五种类型,串行通信接口、并行通信接口、USB接口、现场总线接口以及以太网接口。
串行通信按同步方式可分为异步通信和同步通信两种基本通信方式。
它是在数字化的基础上用微处理器装备起来,是计算机技术与电子仪器相结合的产物。
它具有数据存储、运算、逻辑判断能力,能根据被测参数的变化自选量程,可自动校正,自动补偿,自寻故障等,可以做一些需要人类的智慧才能完成的工作,既具备了一定的智能,故称为智能仪器。
人们习惯将这种内含微型计算机并带有GP-IB等通信接口的电子仪器称为智能仪器。
1. 设计任务结合实际情况,基于AT89C51单片机设计一个两个单片机通信系统。
该系统应满足的功能要求为:(1) 统一用Proteus软件进行仿真,统一用C语言编程,并且每段程序必须要有注解;硬件仿真图必须准确无误,作图规范;(2) 单片机任意选择,但必须是51或者AVR中的一种;(3) 甲机控制乙机的LED亮灭,同时乙机控制甲机的LED亮灭。
主要硬件设备:AT89C51单片机、拨码开关、LED灯、11.0592M晶振、若干电容和电阻。
2. 整体方案设计基本功能:两片单片机之间进行串行通信,发送端将0~f循环发送到接收端,并在接收端显示。
原理图:2.1.数据传输方案比较与选择在串行通信中,数据是在两个站之间传送的。
按照数据传送方向,串行通信可采用三种方案。
1)方案一:单工制式单工制式是指甲乙双方通信只能单向传送数据。
单工制式如图2图2-1-1 单工制式2 )方案二:半双工制式半双工制式是指通信双方都具有发送器和接收器,双方既可发送也可接收,但接收和发送不能同时进行,即发送时就不能接收,接收时就不能发送。
单片机双机串口通信程序设计发布: 2009-4-03 23:56 | 作者: cepark | 查看: 92次利用方式1实现单片机双机通信,主频为6M,波特率为2400bps,电路见图5 -10。
当两个单片机距离较近时,甲、乙两机的发送端与接收端分别直接相联,两机共地。
执行程序,甲机将亮灯信号发送给乙机,若通信正常,乙机接收到信号后点亮20个发光二极管。
乙机采用查询与中断两种工作方式。
当然20个LE D乙机可单独控制,也可接受甲机的控制,并执行甲机指令,还需要进一步完善程序.甲机发送程序:org 0000hsta: mov tmod,#20h ;设置波特率mov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#40h ;置工作方式1clr timov a,#00hmov sbuf,a ;发送亮灯信号wait: jbc ti,cont ;发送成功清标志ajmp wait ;等待发送完毕cont: sjmp sta ;重复发送end乙机查询工作方式接收:org 0000hmov tmod,#20h ;设置通信波特率mov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#40hclr risetb ren ;允许接收wait: jbc ri,read ;接收成功清标志ajmp wait ;接收未完等待read: mov a ,sbufmov p1,a ;接收亮灯信号送P1口sjmp $end乙机中断工作方式接收org 0000hajmp mainorg 0023hajmp zd ;转串口中断程序START: MOV TMOD,#20hmov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#50hclr rimov ie,#90h ;开中断MAIN:sjmp $ 主程序zd: clr ri ;清接收标志;==============中断程序还要再完善============== mov a ,sbuf ;读接收信号mov p1,aMOV R1,A ;将收到的信号送缓存reti ;中断返回end<单片机双机串口通讯原理图>采用方式2 通信,数据帧格式是11位的,TB8为奇偶校验位,接收过程要求判断RB8,若出错置F0标志为1,正确则置F0标志为0,然后返回。
一、实验目的
掌握单片机串口通信的设计方法,了解双单片机通信的原理。
二、实验内容
(1)已知8051的串行口采用方式1进行通信,晶振频率为11.0592MHZ,选定定时器T1作为波特率发生器,T1工作于方式2,要求通信的波特率为9600.计算出T1的初始值为FDH。
(2)编写发送程序,接收方程序。
三、实验步骤
打开Keil程序,执行菜单命令“Project”->”New Project”创建“双单片机串口通信”
项目,并选择单片机型号为AT89C51。
执行菜单命令“File”->”New”创建文件,输入源程序,保存为“双单片机串口通信.A51”。
在“Project”栏的File项目管理窗口中右击文件组,选择“Add Files to Group’Source Group1’”将源程序“双单片机串口通信.A51”添加到项目中。
执行菜单命令“Project”->”Options for Target ‘Target1’”,在弹出的对话框中选择“Output”选项卡,选中“Creat HEX File”。
执行菜单命令“Project”->”Build Target”,编译源程序。
如果编译成功,则在“Output Window”窗口中显示没有错误,并创建了“双单片机串口通信.HEX”文件。
在protues仿真平台上建立参考图系统,并将程序上载到虚拟芯片上运行。
四、实验调试及结果
五、实验分析
实验结果显示,两块单片机是显示同样的数据,几乎是同时显示的,并且接收方多次接收没有出错,证明实验结果正确,达到了预期的结果。
六、实验思考与总结
串行通信是指数据按位顺序传送的通信。
串行数据传送的特点是:通信线路简单,最多只需一对传输线即可实现通信,成本低但速度慢,其通信线路既能传送数据信息,又能传送控制信息。
它对信息的传送格式有固定要求,具体分为异步和同步两种信息格式.与此相应有异步通信和同步通信两种方式;在串行通信中,对信息的逻辑定义与TTL不兼容,需要进行逻辑电平转换:计算机与外界的数据传送大多是串行的,其传送的距离可以从几米到几千公里。
单片机中使用的串行通信通常都是异步方式的。
本实验两个单片机都使用串口方式1进行通信,并且必须保证两单片机通信波特率完全一致,否则接受不到正确的数。
用8051串行接口通信,如果两台8051单片机之间的距离很近(不超过1.5m),可以采用直接将两台8051单片机的串行接口直接相连,利用其自身的TTL电平(0-5V)直接传输数据信息。
通过本次实验,我双单片机串口通信有了更清楚的认识,数据从一块单片机传入另一单片机,串口通信是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。
这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,但其传输速度比并行传输低。