永磁操动机构的最大特点是简单可靠
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
真空断路器用单稳态永磁机构概述贺天元;刘仲晔【摘要】本文对单稳态永磁机构与传统机构以及双稳态永磁机构的特点进行了对比,对其结构与工作原理进行了简单说明,并对其发展前景进行了简要探讨.%This paper compares monostable PMA to traditional actuator and bi-stable PMA. The structure and working principle is simply explained. The development prospect is also discussed.【期刊名称】《船电技术》【年(卷),期】2015(035)010【总页数】4页(P41-44)【关键词】单稳态永磁机构;结构;改进;智能化【作者】贺天元;刘仲晔【作者单位】海军驻湖南地区军事代表室,湖南湘潭 411101;海军驻湖南地区军事代表室,湖南湘潭 411101【正文语种】中文【中图分类】TM464断路器对电力系统起着控制、保护、调节的作用,其能否正常、可靠地工作直接维系着整个系统的安全与稳定。
其中断路器的机械结构是决定其性能的核心部分,从国际、国内对断路器的故障统计数字来看,机械故障占总故障的70%,所以世界各地研究人员一直在努力尝试改进断路器的结构,以使其具有更高的性能与可靠性。
真空断路器的结构在发展过程中大约经历了电磁操动机构、弹簧操动机构和永磁操动机构三个阶段。
在早期使用的电磁操动机构中,当断路器合闸时,电磁线圈通入电流,电磁铁受到端面的吸力开始逐渐向端面移动,并随着电磁铁与端面的距离越来越近,其所受到吸力也越来越大,这也与断路器所需的机械特性相匹配,但是其需要采用机械锁扣来保持合闸位置,由于在合闸过程中,磁路电感变化较大,其产生的反电动势对合闸线圈中的电流增长产生了很强的阻碍作用,并且这种阻碍作用随着合闸速度的增大而增大,使得需要提供数百安培的直流电流才能完成合闸动作,要求的操作功率很大。
永磁同步曳引机优缺点论文摘要:永磁同步无齿轮曳引机并不是当今电梯优化设计的唯一方案,与其它类型的无机房电梯(如薄型有齿轮曳引机、行星齿轮曳引机、摆线针轮曳引机、皮带传动曳引机)相比各有利,但它毕竞没有任何传动结构(没有机械磨损),而是将电动机的转矩直接传递给电梯(没有传动损耗)。
在设计和材料都理想的情况下,它属于制造、装配、安装和维护都是最简单的一种驱动方式,其前景是无限广阔的。
1 永磁同步无齿轮曳引机的优点1.1 永磁同步无齿轮曳引机,一经面世就显示了它的勃勃生机永磁同步无齿轮曳引机,无传动结构,体现如下儿点好处:①磨损低。
无齿轮曳引机的最大优势在于没有任何传动结构,除了电机转子轴(它同时又是曳引轴)上有一组轴承之外,没有机械磨损,延长了曳引机使用寿命。
②节能。
无齿轮曳引机没有传动结构,也就没有了机械方面的功率损耗,相对来讲,也就节省了能量和运行开支。
以载荷1000kg、梯速1.00m/s变频调速电梯为例:OTIS有齿曳引机(曳引比为1:1)需11kW;韦伯无齿曳引机(曳引比为2:1)只需6.7kW。
③安装简便。
由于曳引轮直接固定在电动机的轴上,结构紧凑体积小、重量轻,便于吊装、运输,现场安装容易,仍以载荷1000kg、梯速1.00m/s变频调速电梯为例:OTIS有齿曳引机17CT,自重1300kg;韦伯无齿曳引机WEB-1.0-1000,自重300kg。
④运行平稳。
由于没有传动结构,也就没有皮带传动的丢转、打滑,电梯平层精度高、运行可靠;没有齿轮啮合的噪音和震动,电梯运行平稳、噪音低,这也是电梯绿色革命的突出特点。
⑤省油。
无齿轮曳引机没有传动结构、就省去了传统减速箱中的润滑油,轴承内存有足量的润滑脂。
日常维保不存在更换润滑油的烦琐,避免了润滑油泄露带来的污染和维护难度,节省了润滑油费用。
⑥使用方便。
由于无齿轮曳引机没有液态润滑油、亦无泄漏,没有污染,可以任意姿态安装,比如底脚朝上悬挂于井道板处。
永磁真空断路器安装使用说明书一、永磁真空断路器概述:永磁真空断路器是我公司自主研发的一款新型产品,分界断路器是集真空断路器、分界断路器、分段器,隔离开关四大开关于一体的多功能智能化装置产品,主要配置由真空分界断路器本体、型控制器、外置电压互感器(注:配网自动化环网线路中可选双侧PT )三大部分组成,产品广泛用于10kV 城市、农村配电网架空环网线路中作分段隔离开关 联络开关、可实行环网线路负荷调配的 自动化开关装置,在大用户供电的分支线路中可作为分界开关(俗称看门狗),馈线架空配电 网络作分界断路器分段器之用,真空分界断路器具有远程管理模式,保护控制功能及通讯 功能。
能可靠判断、检测界内零序电流及相间短路故障电流,实现自动切除单相接地 故障和相间短路故障。
本安装使用说明书规定了分界断路器的引用标准、使用环境条件、型号和额定参数、结构特点、工作原理、订货须知、以及操作、安装、使用、维护的方法等内容。
二、永磁真空断路器产品型号及含义:户外真空断路器设计序号额定电压()分界型额定电流()额定短路开断电流(□-□三、永磁真空断路器使用的环境条件3.1海拔高度:≤2000米3.2环境温度:户外-30℃~+55℃最高年平均气温20℃最高日平均气温30℃3.3相对湿度:95%(25℃)3.4抗震能力:地面水平加速度:0.3g地面垂直加速度0.15g3.5地震强度:7级3.6最大日温差:25℃3.7日照强度(风速0.5m/s时):0.1W/cm23.8最大风速:34m/s3.9最大覆冰厚度:10mm3.10安装位置:户外、10kV架空线路用户责任分界点处3.11接地方式:中性点不接地、经消弧线圈接地及低电阻接地。
四、永磁真空断路器控制器及分界断路器的功能4.1 控制器的功能◇速断保护◇过流保护◇三次重合闸◇重合闸后加速◇涌流保护◇零序保护◇实时时钟◇事件记录◇实时状态查询◇智能掌上电脑控制◇ GSM短信控制4.2 控制器的特点◇可带485/232通讯接口,或通过智能掌上机、GSM短信无线实现远距离监控;◇重合闸后加速功能:当开关重合于永久性故障时,会加速跳闸;◇三次重合闸延时时间可以调整;◇跳合闸回路采用防误动设计,并具有防跳功能;◇零序电流可以区分区内和区外故障;遥控分合闸采用了防止误动设计;4.3 控制器结构特点a) 控制器为微机型的继电保护及监控装置;b) 控制器具有耐候性强、抗凝露的防护特点;c) 通过航空接插件与开关本体进行连接;d) 连接可靠性好、防护等级高。
VYGM型永磁机构真空断路器安装使用说明书目录1 概述 (1)1.1总则 (1)1.2产品型号的表示方式 (1)2 引用标准 (2)3 使用条件 (2)3.1正常的使用条件 (2)3.2特殊工作条件 (2)4 主要规格及技术参数 (2)5 产品结构及工作原理 (4)5.1本体的结构(见图1) (4)5.2真空灭弧室的灭弧原理 (4)6 操动机构的结构 (5)6.1单稳态永磁机构的工作原理 (5)6.2永磁机构控制器的特点 (6)6.3永磁机构的储能模块 (7)7防误联锁 (7)8 外形尺寸及电气接线原理图 (8)8.112kV手车式断路器外形尺寸(见图3、图4) (8)8.212kV固定式断路器外形尺寸(见图5、图6) (10)8.3手车式电气接线原理图(交直流两用) (12)8.4固定式电气接线原理图(交直流两用) (13)9 维护与保养 (14)10 储存与运输 (14)11 产品随机文件及附件 (15)12 订货须知 (15)1 概述1.1总则VYGM型户内高压真空断路器系户内高压开关设备,适用于额定电压12~24kV、频率50/60Hz的三相交流电力系统中,作为保护和控制电器使用。
广泛应用于户内空气绝缘开关柜(如KYN28及KYN96等)。
其符合GB1984-2003、DL/T403-2000及IEC62271-100:2001等相关标准的规定,性能达到C2-E2-M2级断路器的要求。
在正常使用条件下及断路器的技术参数范围内,VYGM真空断路器可以满足电网在正常或事故状态下的各种操作,包括关合和开断负荷电流及短路电流。
VYGM型高压真空断路器的三个极柱,采用自动压力凝胶工艺(APG),将真空灭弧室及上下出线端子用环氧树脂浇注成型,减少了断路器的调整环节,可有效防止真空灭弧室受外界撞击、污秽和凝露的损害,无相间闪络,并增大了主回路的外爬距,提高了断路器的可靠性。
VYGM户内真空断路器既可用于中置式手车柜中,也可用于箱型固定式开关柜。
磁控操作机构的工程应用分析摘要:本文对比了弹簧、永磁、电磁和磁控等几种典型操作机构的动作原理和技术特点,优选磁控操作机构进行工程实用化应用分析,剖析磁控机构的结构组成、工作原理和技术优点,基于磁控操作机构的速动性展开磁控开关的五级级差保护方案研究与工程应用分析。
关键词:磁控操作机构;速动性;磁控开关;五级级差保护0 引言随着经济的高速发展,配电网负荷越来越大,配电线路的停电所带来的经济损失以及社会影响越来越严重,如何提升配网供电可靠性,减少线路故障停电时间,成为了电网公司的迫切需求。
文章对比弹簧、永磁、电磁和磁控等几种典型配电开关操作机构的动作原理和技术特点,重点针对新型磁控操作机构展开工程应用分析,提出基于磁控开关的五级级差保护应用方案,对磁控开关的推广应用,提升配网线路的供电可靠性具有重要的指导意义。
1 配电开关典型操作机构对比1.1弹簧操作机构弹簧操作机构合闸时,先通过储能电机对合闸弹簧进行储能,再由合闸脱扣器解锁机械锁扣装置,释放合闸弹簧中能量,通过输出凸轮驱动开关合闸,合闸完成后由合闸锁扣装置实现保持;分闸时由分闸脱扣器解锁机械锁扣装置,开关将在分闸弹簧、触头弹簧的作用力驱动下完成分闸动作。
优点是合分闸电流较小,操作功耗小;缺点是结构复杂,传动、锁扣、脱扣装置多,机械零部件数量多,易损坏,机械寿命一般在1万次。
1.2永磁操作机构永磁操作机构由于采用永磁体实现合分闸位置的保持,取消了机械锁扣装置,进一步简化了结构,由合闸电流通过合闸线圈产生电磁力驱动动铁芯,完成合闸动作后,由永磁体的磁力吸附动铁芯,实现合闸保持。
分闸时,在合闸线圈或者中通以反向电流,产生分闸方向的电磁力,抵消永磁体磁力,驱动动铁芯,完成分闸动作后,利用分闸弹簧或者分闸端永磁体实现分闸保持。
优点是结构简单,体积小,可靠性高,机械寿命一般在3万次以上;缺点操作电流大,操作功耗高,操作高度依赖控制系统。
1.3电磁操作机构电磁操作机构结构也比较简单,合闸时由合闸电流在合闸线圈中产生的电磁力来驱动动铁芯,动铁芯推动运动支架带动开关进行合闸,当合闸完成后由维持线圈中的电磁力实现保持。
一、VS1真空断路器原理图二、以下是两种vs1真空断路器介绍:VS1真空断路器- 西安森源珠海自动化公司西安森源配电自动化设备有限公司提供的VS1真空断路器是空气绝缘的户内式开关设备元件。
断路器符合GB1984、DL/T403及IEC60056等标准的规定。
在正常使用条件下,只要在断路器的技术参数范围内,它就可以保证安全、可靠地运行于相应电压等级的电网中。
VS1真空断路器可在工作电流范围内进行频繁的操作或多次开断短路电流;机械寿命可高达30,000次,满容量短路电流开断次数可达50次。
VS1真空断路器适于重合闸操作并有极高的操作可靠性与使用寿命。
VS1真空断路器(普通型)采用了立式的绝缘筒防御各种气候的影响;且在维护和保养方面,通常仅需对操作机构做间或性的清扫或润滑。
VS1真空断路器(极柱型)采用了固体绝缘结构—集成固封极柱,实现了免维护。
VS1真空断路器在开关柜内的安装形式既可以是固定式,也可以是可抽出式的,还可安装于框架上使用。
一、断路器主体结构●普通型断路器主体部分导电回路设置在用绝缘材料制成的圆柱状绝缘筒内。
这种结构可以使得真空灭弧室免受外界环境影响和机械的损害。
断路器主体安装在做成托架状的断路器操动机构外壳的后部。
视使用场所情况,可在绝缘筒上增装一个防尘盖(作为附加装置),这种设计有助于防止闪络的发生,并作为断路器内部污秽的附加保护。
在实际使用当中,额定电流1250A 及以下等级在运行时可不必去除,额定电流1600A及以上等级运行时则必须去除。
●极柱型断路器极柱设计为圆柱形,安装在作成托架状的操作机构外壳的后部。
断路器极柱的导电部分封闭在环氧树脂套筒内,以免受冲击和外部环境影响。
二、断路器操动机构的结构操动机构为弹簧储能操作机构,一台操动机构操作三相真空灭弧室。
操动机构主要包括两个储能用拉伸弹簧、合闸储能装置、传力至各相灭弧室的连板、拐臂以及分闸脱扣装置,此外,在框架前方还装有诸如储能电动机、脱扣器、辅助开关、控制设备、分合闸按钮、手动储能轴、储能状态指示牌、合分闸指示牌等部件。
永磁调速装置与变频器调速的对比摘要:本文从调速原理、技术特点、寿命周期、改造费用等四个方面对永磁调速装置与变频调速进行了综合比较。
结果表明,永磁调速装置相对于变频器调速具有可靠性高、使用寿命长、改造费用低、无谐波污染、环境适应性强、安装维护简单等显著优势,可以在钢铁、电力、石化等众多领域推广应用。
关键词:永磁调速装置;变频器;调速原理;技术特点;改造总成本一、引言近年来,离心式风机和水泵大量的应用于工业生产中,其每年消耗的电能总量占全国发电总量的20%以上。
但是在实际的生产中,水泵和风机的设计量通常要大于现场生产工况所需的量,现场常采用阀门调节方式进行流量或压力调节以满足现场生产工艺。
这样的调节方式将大量能量消耗在了阀门挡板上,造成了能量浪费。
然而利用传动装置调节转速方式调节水泵和风机的流量、压力,在降低压力的同时减小流量,则此时水泵或风机仍然在高效区间内运行,可达到既节约电能又不影响系统稳定运行的目的。
根据国家节能减排规划的要求,推进使用永磁调速装置和变频器进行风机和水泵的节能改造,逐步淘汰阀门控制方式。
本文将就永磁调速装置和变频器的调速原理、技术特点和改造费用等方面进行综合的比较和分析。
二、调速装置简介2.1 永磁调速装置简介永磁调速装置是一款纯机械结构的传动装置,它主要由永磁调速装置本体和电动执行机构组成。
永磁调速装置本体为盘式结构,由连接在电机侧的导体盘和连接在负载侧的永磁体盘组成,导体盘和永磁体盘通过空气连接,无刚性连接。
电机侧导体盘转动通过磁力作用带动永磁体盘侧的负载转动,系统通过电动执行机构调节导体盘和永磁体盘直接的间隙,从而实现对负载转速的调节。
永磁传动技术实现了能量的空中传递,从而颠覆了传统的传动理念,实现了传动技术的绿色节能,该技术集高科技、节能、环保、低碳排放于一身,被誉为传动史上的一次革命,是世界领先和独家占有的革命性技术。
永磁调速装置结构示意图如图1所示:永磁调速装置结构示意图2.2 变频器简介变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
EVSP(ZN63S) 固封式高压真空断路器产品简介高压真空断路器(VS1/VSM/VSP/VSK/VSMP/VSMK/EVSP/EVSP1/EVSP2/VS2/)、GZS1(KYN28a)开关柜、SBT开关特性测/SWT断路器专家诊断系统 - 西安森源配电自动化设备有限公司,西安亿能森源电力设备有限公司概述:EVSP系列固封式高压真空断路器是西安森源配电自动化设备有限公司组织国内外技术专家、在充分考虑了进口断路器优点的基础上而设计的小型化新一代真空断路器。
EVSP系列固封式高压真空断路器采用成熟的APG 工艺将真空灭弧室、主导电回路固封在绝缘筒中、彻底解决了绝缘部分由于受环境影响而降低电压水平的问题,确保了真空灭弧室可以适用于较恶劣的环境。
EVSP系列固封式高压真空断路器采用新型弹簧操作机构稳定可靠、操作简便、机构输入力矩比值大,机械效率高。
产品既可作为固定单元安装使用,也可配用专用的推进小车组成手车单元使用。
主要特点:良好的产品互换性和持久可靠性。
完善的五防联锁设计要求,同时支持正反联锁及五防联锁要求。
固定式断路器灵活方便的机械联锁方式和方便的出线连接设计。
配置触头测温功能。
使用寿命延长为3万次。
零部件表面的强化工艺处理,适应沿海等恶劣的使用环境。
正常使用条件按GB/T11022、IEC60694 《高压开关设备和控制设备标准的共同技术条件》中的规定,下面列出EVSP系列固封式真空断路器使用条件的限额值:周围空气温度:上限不高于+40 ℃ 、下限不低于-45 ℃ ;海拔高度:不超过1000m、使用在7.2KV 系统中时,适用海拔可提高达3000m;日相对湿度:日平均值不大于95 % ,月平均值不大于90%;日饱和蒸汽压:日平均值不大于2.2 x 103 Mpa ,月平均值不大于1.8x103Mpa ,在湿度期内温度急降时,可能凝露(分地区);安装地:应无经常性的剧烈震动;周围空气:应不受腐蚀或可燃气体、水蒸汽的明显污染;安装场所:可适用于效恶劣的环境及高原高寒地区;地震烈度:不超过8 度。
操动机构的发展及各阶段的特点交操动机构是衡量真空断路器性能优劣的重要方面之一,影响真空断路器可靠性的主要原因就是操动机构的机械特性。
根据操动机构的发展可分为以下几类:3.1 手动操动机构(CS)靠手动直接合闸的操动机构称为手动操动机构,它主要用来操动电压等级低、额定开断电流很小的断路器。
除工矿企业用户外,电力部门中手动机构已很少采用。
手动操动机构结构简单、不要求配备复杂的辅助设备及操动电源,缺点是不能自动重合闸,只能就地操作,不够安全。
因此,手动操动机构已几乎被手力储能的弹簧操动机构所代替。
3.2 电磁操动机构(CD)靠电磁力合闸的操动机构称为电磁操动机构。
配合国产ZN28-12型产品发展的有CD17型机构,结构上也采用与真空灭弧室前后布置的方式。
电磁操动机构的优点是机构简单、工作可靠、制造成本低,缺点是合闸线圈消耗的功率太大,需要备价格昂贵的蓄电池、合闸电流较大、结构比较笨重、动作时间较长,市场占有量逐渐减少。
3.3 弹簧操动机构(CT)弹簧操动机构是利用储能的弹簧为动力使开关实现合闸动作。
它可采用人力或小功率、直流电机来驱动,因而合闸功基本不受外界因素〔如电源电压、气源气压、液压源液压〕的影响,既能够获得较高的合闸速度,又能够实现快速自动重复合闸操作;另外,与电磁操动机构相比,弹簧操动机构成本低,价格便宜,是真空断路器中最常用的一种操动机构,其厂家也比较多,在不断的完善和改进中。
典型的有CT17、CT19机构,与之相配备使用的有ZN28-17、VS1、VG 1.一般弹簧操动机构有上百个零件,且传动机构较为复杂,故障率较高,运动部件多,制造工艺要求较高。
另外,弹簧操动机构的结构复杂,滑动摩擦面多,而且多在关键部位,在长期运行过程中,这些零件的磨损、锈蚀以及润滑剂的流失、固化等都会导致操作失误。
主要存在着以下缺点:1) 断路器拒动,即给断路器发出操作信号而不合闸或分闸;2) 合不上闸或合上后即分断;3) 事故时继电保护动作、断路器分不下来;4) 烧坏合闸线圈。
永磁机构工作原理 随着电气化铁路运营里程的增长,高速、重载已成为电气化铁路发展的方向,这就要求牵引供电系统为电力机车提供更安全、经济、可靠和高质量的电能,自动过分相技术应运而生,但由于换相过程中极易产生过电压和合闸涌流,对牵引变压器的冲击很大,极大制约自动过分相技术的发展。 自动过分相转换装置的核心部件是真空负荷开关,而真空负荷开关的长寿命和可靠性是急需解决的问题。从技术上讲,真空灭弧室技术的发展,使其电寿命大大增加。其机械寿命从传统的两千次跃增为几万次,因此,与其配合的操动机构的机械寿命及可靠性成为较突出的问题。传统的弹簧操动机构,结构复杂,零件数量多,且加工精度要求高;电磁机构虽然机构相对简单,零件数量少,但电源电压波动对合闸速度影响较大,操作电流大,无法调控分合闸速度和相位;使用寿命没有根本突破,对电力系统操作的过电压和合闸涌流的控制更无从谈起。永磁机构采用一种全新的工作原理和结构,工作时主要运动部件只有一个,无需机械脱、锁扣装置,故障源少,可靠性较高,且使用寿命长,一般达十万次以上,同时控制分合闸相位,实现同步控制,从而减少过电压和涌流对系统的冲击,减少系统保护的投入,提高系统整体寿命。 因此永磁操作机构是智能选相真空开关的必然选择. 1 永磁机构工作原理 当该机构处于合闸位时,线圈中无电流通过,由永磁作用保持动铁心在上端。分闸时,特定方向的电流通过操作线圈,该电流在动铁心上端产生与永磁体磁场相反的磁场,使动铁心受到的磁吸力减小,当动铁心受到的向上的合力小于弹簧的拉力时,动铁心向下运动,实现分闸。当处于分闸位置,操作线圈中通过与分闸操作相反的电流。该电流在静铁心上部产生与永磁体磁场方向相同的磁场,在动铁心下部产生与永磁体磁场相反的磁场,使动铁心下端所受到的磁吸力减小。当操作电流增大到一定值时,向上的电磁合力大于下端的吸力与弹簧的反力,动铁心向上运动,实现合闸。 2 智能选相原理 智能选相(同步关合技术)就是开关在电流或电压的过零点进行分、合闸操作,断路器分合闸时间的稳定性是实现同步开断的基本要求.由于永磁机构的机构简单,传动部件少,相对弹簧机构而言,其分合闸时间的分散性较小,有利于发展为同步关合的断路器。断路器在进行关合之前,因发生预击穿而使回路导通,即实现合闸,所以必须考虑预击穿对同步关合的影响,关合目标相位的选择应按一定的计算方法,根据断路器的关合速度进行确定断口间电压。 3 影响智能选相的因素及解决措施 智能选相(同步关合)技术的关键是操作精确性问题,影响开关操作精度的主要因素为合闸相位角精度。合闸相位角精度主要取决于合闸时间的离散性、合闸控制信号的离散性和预击穿的影响,其中合闸时间的离散性又分为机械和电气两部分,具体原因分析和对应的措施如下: 1)机械部分的合闸时间离散性主要由传动环节的能量损耗的离散性,多次开断后触头表面烧损和温度变化引起永磁体矫顽力变化造成。传动环节过多使能量损耗和机构运动速度的影响因素增多,进而影响开关的关合速度离散性;触头烧损引起合闸时触头间距离发生变化导致合闸时间变化;永磁机构在使用中,永磁体的矫顽力随温度升高而降低,保持力相应由大变小,进而影响合闸起动时间和合闸速度。 解决措施: ①采用独立操动、永磁机构与真空灭弧室直线布置的操动方式,减少传动环节,降低运动部件动能损耗的离散性,使开关每相均具有较好的机械合闸特性; ②在永磁机构控制模块中加入一组自动校正单元,自动测量每一次操作,并依据这一测量结果,自动调整下一次操作的相关数据,使得开关的关合精度始终保持最佳状态。 ③由于永磁机构合闸时,永磁体的吸力只有在机构静铁芯间距极小时起作用,对关合时末速度的影响很小,如采用单稳态机构,永磁体矫顽力的变化对关合起始速度无影响,故可降低至忽略不计。 2)电气部分的合闸时间离散性由控制电压变化造成。永磁机构所采用的控制电压通常是电解电容充电后的电压,其大小直接影响合闸线圈中放电电流,因此必然对合闸时间产生影响。控制电路的设计方案和环境温度变化均造成控制电压的波动。不合理的电路设计使控制电压随电源电压的变化而波动;温度变化也将使电容器的电容量发生变化。 解决措施: ①选择电容量随温度变化小的电解电容器; ②合理设置稳压电路,使电解电容两端电压有效值稳定在设计值; ③选择合适的大容量充电电容,以增大其放电电量,减小起始运动时放电电流的波动造成的起始运动时刻的波动。 3)控制信号的离散性是由测量误差和运算误差等因素构成。 解决措施: ①在设计永磁机构控制单元时采用全电子智能化控制,由主开关电源、控制电源、电容器组、推挽驱动MOSFET开关器件、分合闸位置检测器、光隔离器、开关电压检测器等组成。 ②控制单元根据断口电压信号的采样,通过逻辑计算后发出分合闸指令。 ③通过高性能的电子元器件选用、严格的工艺和调试控制、合理的测量电路及运算电路设计来减小控制信号的离散。 4)预击穿的影响对于低压真空开关来说,在关合容性负载和感性负载时触头的预击穿时间均忽略不计。对于高压真空开关来说,在关合容性负载时,关合相位选在系统电压零点,由于在电压零点附近,电压较低,预击穿时间也可忽略不计;仅考虑高压时关合感性负载触头间预击穿的影响。 解决措施: ①采用高绝缘性能真空灭弧室,使灭弧室内电场分布均匀合理,提高其耐压水平,减小灭弧室预击穿时触头间的距离; ②高压真空开关在关合感性负载时,合闸相位选择在电压峰值后某一时刻,使触头发生预击穿时,即电路导通时电压正好处于峰值。 4 结论 智能选相真空断路器是为电气化铁路27.5kV牵引变电所系统的要求而研制的,它采用永磁作机构,具有全新的工作原理和结构,工作时主要运动部件只有一个,无需机械脱、锁扣装置,故障源少,可靠性较高和长使用寿命,一般机械寿命达十万次以上,同时可以控制分合闸相位,实现同步控制,减少过电压和涌流对系统的冲击,减少系统保护的投入,提高系统整机寿命。面向牵引变电所的新一代真空断路器,它以体积小、长寿命、免维护等特点,并通过选相投切来抑制过压、过流对电器设备的危害等贴近现场运行的实际需要为基本设计原则,为电气化铁路电容随机补偿,相分段自动转换技术,馈线智能保护提供设备基础。
10kV真空断路器永磁机构工作原理一、概述10kV真空断路器是电力系统中常用的一种开关设备,用于在电路中断开或闭合电流,以保护电力设备和电网的安全运行。
在10kV真空断路器中,常采用永磁机构作为控制和操作装置,本文将介绍10kV 真空断路器永磁机构的工作原理。
二、永磁机构的作用10kV真空断路器中的永磁机构主要起到控制和操作断路器的作用。
其主要功能包括:1. 断路器的开启和闭合控制:永磁机构通过施加磁场来控制断路器的触头开闭,从而实现电路的断开和闭合。
2. 断路器的故障保护:永磁机构通过监测电流和电压等参数,可以及时判断电路中是否发生故障,从而保护断路器和电网的安全运行。
三、永磁机构的结构10kV真空断路器永磁机构通常由永磁铁、线圈、触头等部件组成,其中永磁铁是永磁机构的核心部件,其结构如下:1. 永磁铁:是永磁机构的主体部件,通常采用稀土永磁材料制成,具有较强的磁场稳定性和耐高温性能。
2. 线圈:用于控制永磁铁的磁场强度和方向,从而实现对触头的控制。
3. 触头:是断路器开闭控制的关键部件,通过永磁机构的磁场控制触头的状态,从而实现断路器的开闭操作。
四、永磁机构的工作原理10kV真空断路器永磁机构的工作原理主要包括两个方面:磁场产生和触头控制。
1. 磁场产生:当线圈通电时,产生磁场,该磁场作用在永磁铁上,使永磁铁产生磁化,形成较强的磁场。
2. 触头控制:永磁机构的磁场作用在触头上,控制触头的开闭状态。
当线圈通电时,通过改变线圈的电流方向和大小,可以调节磁场的强弱和方向,从而实现对触头的控制。
五、永磁机构的工作过程10kV真空断路器永磁机构的工作过程通常包括触头闭合和触头断开两个阶段。
1. 触头闭合:线圈通电,通过控制磁场的强度和方向,使触头闭合,电路接通。
2. 触头断开:线圈断电,使触头断开,电路断开。
六、永磁机构的应用与发展10kV真空断路器永磁机构由于其结构简单、可靠性高等优点,已经得到了广泛的应用,并在不断发展和完善中。
电机行业求职平台
直流有刷电机工作电流受到电刷换流影响会产生波动,因此通过电机电流谐波分析可以获得电机的转速。
基于此原理本文提出了一种对智能车模小型有刷直流电机性能检测方法。
根据简化的直流电机模型,电机在稳定运行时,输入电压、电流与电机转速之间的关系如公式(1)所示:
C e是与电机结构有关的常数; U是工作直流电源电压;是磁极气隙磁通;R为线圈电阻。
当C e、、R、U稳定不变时,电机转速-电流之间是简单的线性函数。
两
个系数包含了电机主要特性。
特别是截距参数对应了电机堵转时的电流值,它的大
小与电机最大输出功率成正比。
测量电机转速-电流系数需要在恒定工作电压下,测量电机不同转速和工作电流之间的一组数据,通过线性拟合获得。
测量方法
采集电机工作电流信号是测量电机参数的基础。
电机参数测量电路如图1所示。
测量电路中的电流检测和采集电路是核心,它需要将电机的工作电流转换成电压并进行采集。
根据待测电机的工作电流范围和转速范围确定电流采集电路的方案:电流采集方式、电流采集频率和转换精度。
电机工作电流采集电路
采集电机工作电流首先需要将电流转换成电压,然后进行AD转换。
采用霍尔电流传感器可以减少电流采集电路对于测量的影响。
CQ-2093是一款交流电流霍尔传感器。
它只需要5V电源供电,电流测量范围是20安培。
由于模型车电机工作电流较小,所以需要将CQ-2093输出信号进行放大20倍后进行AD 转换。
使用Freescale公司的DSC F8013单片机采集电流信号,然后通过RS 232串口发送到计算机进行分析处理。
F8013的AD转换精度为12bit,可以满足电机电流采集的精度需要。
图2给出了电流采集电路。
信号采集频率
电机行业求职平台根据采样定理,为了使得信号经过采样不发生频率混叠,采样频率需要大于信号中最高频率分量的两倍。
通过示波器对于实际电机电流波形进行测量,确定电流波动频率范围。
选择智能车模A型车模所使用的RS380电机进行测量。
利用图2给出的电流采集电路,测量运放U2输出信号。
为了比较电流波动频率与电机转速之间的关系,还使用了光电传感器对于电机输出轴转速进行测量。
测量波形如图3所示。
图3中的电流波形显示,电机转速与电流波动周期之间存在倍数关系。
电机旋转一周,由于电刷换流引起的电流波动次数是电机的极对数两倍。
RS-3 80SH电机是三对极,因此电机旋转一周,电流波动六次。
所以电流信号中最低谐波频率是电机转速的六倍。
(此文转自一览电机英才网)。