储层特征
- 格式:pptx
- 大小:321.44 KB
- 文档页数:24
油气藏地质与储层特征分析在油气勘探与开发工作中,油气藏地质与储层特征的分析是十分重要的。
通过对油气藏的地质构造和储层条件进行分析,可以为勘探与开发提供科学依据,提高勘探与开发效果。
本文将对油气藏地质与储层特征进行详细的分析,以帮助读者更好地理解与应用。
一、地质构造与油气藏地质构造对于油气藏的形成与分布起着重要作用。
常见的油气藏形成方式包括构造油气藏、沉积油气藏和溶蚀油气藏。
构造油气藏主要分布在构造陷落区,沉积油气藏则与特定的沉积环境有关,溶蚀油气藏则形成于溶蚀岩层中。
通过对地质构造的研究,可以确定油气藏的形成机制与分布规律,为油气勘探与开发提供指导。
二、储层特征与油气藏储层特征对于油气藏的形成与储集起着决定性作用。
储层常见的特征包括孔隙度、渗透率、孔喉半径分布等。
孔隙度指的是储层中孔隙的体积占比,渗透率则是储层中流体流动的能力,孔喉半径分布则决定了流体在储层中的运移方式。
储层特征的研究可以帮助确定油气的储集情况和运移规律,为油气勘探与开发提供关键参数。
三、地质与储层特征分析方法地质与储层特征的分析需要借助一系列科学方法。
常见的分析方法包括地震勘探、测井解释、岩心分析等。
地震勘探通过分析地震波在地下的传播情况,可以探测地下油气藏的分布。
测井解释则通过测量井孔中的电磁、声波等物理性质,获取储层的特征参数。
岩心分析是指对地下取得的岩石样本进行物理、化学等分析,了解储层的组成与特征。
综合运用这些方法,可以全面地了解地质与储层特征,为油气勘探与开发提供准确的信息。
四、地质与储层特征分析的应用案例地质与储层特征的分析在实际工作中具有广泛的应用价值。
以某油田为例,通过地震勘探探测到该油田上方存在构造油气藏。
通过测井解释和岩心分析,显示该油田具备良好的储层特征,包括较高的孔隙度和渗透率。
基于这些分析结果,该油田成功地实施了钻探开发,在勘探与开发中取得了丰硕成果。
总结:油气藏的地质与储层特征分析对于油气勘探与开发至关重要。
页岩气储层主要特征及其对储层改造的影响页岩气是一种新兴的天然气资源,是通过对页岩中的天然气进行开采和利用而获得的一种天然气资源。
页岩气的开发相对比较复杂,需要对储层进行改造和优化,才能够有效地进行开采。
页岩气储层具有特殊的地质特征,对储层改造的影响也比较显著。
页岩气储层主要特征1. 低孔隙度和低渗透性:页岩气储层的孔隙度和渗透率相对较低,通常都处于0.1%~8%之间,渗透率也较低,通常在0.1md以下。
这意味着气体在储层中的运移难度较大,对储层改造带来了一定的困难。
2. 粘土矿物质含量高:页岩储层中含有大量的粘土矿物质,这些粘土矿物质往往会堵塞孔隙和裂缝,影响气体的运移和储层改造。
3. 复杂的裂缝结构:页岩气储层中常常具有复杂的裂缝结构,这些裂缝可以是天然形成的,也可以是在水力压裂过程中形成的。
这种裂缝结构对储层改造和增产具有重要的影响。
对储层改造的影响1. 水力压裂技术的应用:由于页岩气储层孔隙度低、渗透率小,传统的天然气开采技术难以满足开采需求,因此需要采用水力压裂技术对储层进行改造。
水力压裂技术可以有效地改善储层的渗透性和孔隙度,促进天然气的释放和运移,提高储层的产能。
2. 人工裂缝的形成:在页岩气储层开采中,人工裂缝的形成对储层改造至关重要。
通过水力压裂、酸洗和其他改造技术,可以在储层中形成一系列的人工裂缝,促进天然气的释放和运移,提高产能。
3. 改善气体运移途径:页岩气储层中由于粘土矿物质的存在,孔隙和裂缝常常会被堵塞,影响气体的运移。
需要采用合适的改造技术,改善气体的运移途径,减少堵塞,提高气体的采收率。
4. 降低开采成本:页岩气储层的开采成本相对较高,储层改造可以有效地降低开采成本。
通过改善储层的物性参数、提高储层的产能,可以降低钻井次数、减少材料和人工成本,降低开采成本。
页岩气储层改造是页岩气开采过程中非常重要的一环,对储层的改造和优化能够有效地提高储层的产能、降低开采成本、提高开采效率。
页岩储层微观孔隙结构特征
页岩储层具有不同于传统储层的微观孔隙结构特征,主要包括以下几
个方面:
1.多级孔隙结构:页岩储层具有多级孔隙结构,包括纳米级孔隙、亚
微米级孔隙和微米级孔隙等。
其中,纳米级孔隙是最主要的,其孔径在
1-100纳米之间,表面积极大,可导致高吸附和强吸附作用,是储层存储
和输出气体的主要通道。
2.次生孔隙:由于地层压实和自然作用,页岩储层中会产生次生孔隙,这些孔隙可能是裂缝、缝隙、微裂缝、微栓、解理缝等,其形态复杂,大
小和分布不均匀,对储层的渗透性和孔隙结构起着重要作用。
3.高孔隙度:页岩储层中孔隙度普遍较高,大约在2%-10%之间,孔
隙度高可提高储层的渗透性,但也容易导致相对较低的孔隙连通率,进而
影响输出能力。
4.多种孔隙类型:页岩储层中含有不同类型的孔隙,包括毛细管孔隙、微缝孔隙、孔洞孔隙等,这些孔隙类型的不同对储层的渗透性和输出能力
产生不同的影响。
综上所述,页岩储层中的微观孔隙结构非常复杂,其研究是深入理解
储层储存和输送天然气的关键。
地区层位 砂体类型 砂岩累厚 孔隙度 渗透率 伊 盟地 区西部 东 部西缘逆冲带天环北段陕北中段陕北南段渭北晋西4.3 储层物性特征争论区石炭~二叠系砂岩储层属于一套低渗、特低渗透致密型、非均质性格外强的储集层。
孔隙度一般<1%~21%,渗透率<0.01×10-3μm 2~561×10-3μm 2 之间,争论区南北,东西都具有很明显的差异。
不同的区块,不同的沉积相带, 储集物性差异较大(表5〕。
鄂尔多斯盆地上古生界各地区、不同沉积相带物性统计表 表5(m) 〔%〕 〔×10-3μm 2〕 下石盒子组 河道砂体 60~150 7~13 0.3~1.3 山西组 冲积扇砂体 20~80 5.5~8.0 0.1~0.6 太原组 扇三角洲砂体 40~90 6~11 0.1~0.4下石盒子组 河道砂体40~1008~20>0.6 山西组 冲积扇砂体 25~55 6~10 0.3~2.5 太原组 扇三角洲砂体 10~30 5~10 0.1~1.0 上石盒子组 湖泊三角洲砂体50~80 12~16 6.9 下石盒子组 河道砂体50~70 6~16 6.6 山西组 河道、分流河道砂体20~80 4~12 5.0 太原组 扇三角洲砂体 60~90 7~12 15.0 下石盒子组 扇三角洲砂体 50~60 5~8 0.3~2.8 山西组 近海三角洲砂体20~30 2~4 0.1~0.8 太原组 潮坪砂坝10~20 2~3 0.1~3.0 下石盒子组 河道砂体、分流河道砂体 40~80 6~11 0.3~2.0 山西组 分流河道砂体、河口砂坝 30~50 4.5~8.0 0.15~1.3 太原组 潮夕砂坪、障壁砂坝 10~20 5~10 0.25~2.0 下石盒子组 分流河道砂体、河口坝砂体 40~70 5~10 0.4~2.0 山西组 湖泊三角洲分流河道砂体25~50 4~8 0.15~0.12 太原组 三角洲前缘砂体 5~25 5~90.2~1.5 本溪组 河口坝砂体 0~10上石盒子组 浅湖三角洲砂体 30~50 4~6 0.1~0.6 下石盒子组 浅湖三角洲砂体 15~35 5~7 0.1~0.35 山西组 浅湖三角洲砂体 10~25 3~7 0.1~0.15 太原组 宾浅海障壁砂体 10~30 1.24 <0.01 下石盒子组 河道、三角洲砂体 30~70 / / 山西组 河道、三角洲砂体 30~50 //太原组 三角洲浅海砂体 10~15/ /本溪组海相三角洲、潮坪砂体4~8 6~1013.09〔据杨俊杰,2023年〕4.3.1 佳县—米脂地区:盒7孔隙度分布区间主要在6%~12%,平均8.9%, 渗透率分布区间〔0.1~0.5〕×10-3μm 2,平均0.18×10-3μm 2;盒8上部储层孔隙度分布区间4%~8%,平均6.21%,渗透率主要分布区间〔 0.1~0.2〕×10-3μm 2, 平均0.17×10-3μm 2;盒8下部砂岩储层孔隙度主要分布于 6%~10%之间,平均7.2%,渗透率主要分布区间〔0.2~0.5〕×10-3μm 2,平均0.3×10-3μm 2;山1孔隙度主要分布区间<4%~6%之间,平均4.97%,渗透率〔0.1~0.2〕×10-3μm 2,平均0.15×10-3μm 2;山2砂岩储层孔隙度主要介于4%~6%至8%~12%之间,平均6.41%,渗透率主要分布区间〔 0.2~0.5〕×10-3μm2,平均0.21×10-3μm2,盒8下、山2 砂体物性好于其它层位。
4.储层微观特征及分类评价4.1孔隙类型本次孔隙分类采用以孔隙产状为主,并考虑溶蚀作用,结合本区实际,将孔隙分类如下:1. 粒间孔隙粒间孔隙是指位于碎屑颗粒之间的孔隙。
它可以是原生粒间孔隙或残余原生粒间孔隙,即原生粒间孔隙在遭受机械压实作用、胶结作用等一系列成岩作用破坏后而保留下来的那一部分孔隙。
多呈三角形,无溶蚀标志。
另一方面它也可以是粒间溶蚀孔隙,即原生粒间孔隙经溶蚀作用强烈改造而成,或者是颗粒间由于强烈溶蚀作用的结果。
粒间空隙一般个体较大,连通性较好。
粒间孔隙是本区主要的孔隙类型。
2. 粒内(晶内)孔隙这类孔隙主要是砂岩中的长石、岩屑等非稳定组分的深部溶蚀形成的,在研究区深层砂岩中普遍存在。
长石等非稳定组分的溶蚀空隙可以进一步分为粒内溶孔和晶溶孔。
晶内溶孔是指长石颗粒内的溶孔,而粒内溶孔是指岩屑等碎屑内部的易溶组分在深部酸性流体作用下形成。
常常沿长石的解理缝、双晶纹和岩屑内矿物之间的接触部位等薄弱带进行溶蚀并逐渐扩展,因而常见沿解理缝和双晶结合面溶蚀形成的栅状溶孔。
长石、岩屑等非稳定组分的溶蚀孔的发育常常使彼此孤立的、或很少有喉管项链的次生加大晶间孔的连通性大为改进,而且,这类孔隙的孔径相对较大,从而优化了深部储层的储集性能。
3. 填隙物孔隙填隙物孔隙包括杂基内孔隙、自生矿物晶间孔和晶内溶孔。
杂基内孔隙多发育与杂基含量较高的(>10%)砂岩中,孔隙数量多,个体细小,连通性差。
自生矿物晶间孔隙发育在深埋条件下自生矿物,如石英、方解石、沸石、碳酸岩小晶体以及石盐晶体之间,个体小,数量多随埋深有增加之趋势。
但由于常生长于粒间孔隙中,连通性较好,又由于其晶体小,比表面积大,孔隙结构复杂,影响流体渗流。
因此在埋深3500米以下,孔隙度降低较慢,而渗透率降低很快。
这类晶间孔隙在徐东-唐庄地区相对发育。
另外,杜桥白地区深层还可见到丰富的碳酸盐晶内溶孔和石盐晶内溶孔。
4. 裂隙裂缝在黄河南地区较不发育,在桥24井沙三段3547.5米砂岩中见一构造裂缝,此外多见泥质粉砂岩或细砂岩中泥质细条带收缩缝。
储层物性特征范文储层物性特征指的是描述储层岩石和流体性质的一系列参数和特征。
这些特征对于石油和天然气储层的勘探、开发和生产具有重要意义。
下面将详细介绍储层物性特征,包括孔隙度、渗透率、饱和度、孔喉结构和岩石力学性质等。
首先,孔隙度是指储层岩石中的孔隙体积与总体积之比。
它是评价岩石贮藏岩石孔隙系统开发利用的重要物性参数。
高孔隙度的岩石具有更大的储层容量,可以储存更多的石油和天然气。
孔隙度通常使用插入管法、水饱法和密度法等方法进行测量。
其次,渗透率是指储层岩石中流体通过岩层的能力。
它反映了岩石对流体流动的阻力大小。
渗透率是衡量储层岩石储集性能的重要指标,也是评价岩石渗流性质和油气开采条件的关键参数。
渗透率的测量常使用压汞法、导纳法和核磁共振法等。
第三,饱和度是指储层中孔隙内所含有的有效流体体积与总孔隙体积之比。
饱和度可以分为原油饱和度和水饱和度。
它对评价石油和天然气藏的丰度和储层质量有着重要的意义。
测量饱和度的方法主要有物理推算法、测井法和实验测定法等。
此外,孔喉结构是指储层岩石中孔隙和孔喉的尺寸、形状和连通程度。
不同的孔隙结构对流体的储集和流动具有不同的影响。
例如,细颗粒和细孔喉可以增加流体的剪切力和黏滞力,降低渗透率和渗透能力。
孔隙结构的表征可以使用孔隙度、渗透率、孔喉直径分布和孔隙连通度等参数。
最后,岩石力学性质是指储层岩石的抗压强度、抗剪强度和变形特性。
它们对地层的稳定性和流体运移具有重要影响。
例如,岩石的抗压强度决定了储层的破坏压力,而抗剪强度则影响储层的剪切破裂。
测定岩石力学性质的常用方法包括三轴压缩试验、剪切试验和变形试验等。
综上所述,储层物性特征对于评价储层岩石的储集性能和开采条件具有重要意义。
通过测量和分析储层物性特征,可以更好地理解储层的储存能力、流动性质和稳定性,为石油和天然气的勘探、开发和生产提供科学依据。
页岩气储层主要特征及其对储层改造的影响页岩气储层是指由页岩岩性的地层中富集并产生的天然气储层,具有极高的含气量和丰富的资源潜力。
页岩气的储层主要特征包括储集岩性、孔隙结构、渗透率和孔隙度等方面,这些特征对页岩气的储层改造具有重要影响。
一、页岩气储层主要特征1. 储集岩性页岩气储层的储集岩性主要以页岩岩性为主,其岩石矿物组成以粘土矿物和石英为主,伴生有少量的长石、碳酸盐矿物和有机质。
页岩具有较高的压实度和较低的渗透率,且存在着较弱的全岩渗透性。
由于页岩自身的致密性和低渗透性,导致储层的气质分布不均匀,形成了特殊的储气机理。
2. 孔隙结构页岩气储层的孔隙结构主要由微观孔隙和裂缝构成,微观孔隙是指孔径小于0.1微米的孔隙,由于页岩的高压实度和低孔隙度,微观孔隙的孔隙度很低,裂缝是指因构造作用和地应力作用而形成的大于0.1毫米的天然裂缝,对页岩气的储层改造具有重要作用。
3. 渗透率页岩气储层的渗透率较低,一般在0.1md以下,主要受储层孔隙结构的影响,同时页岩气储层中存在大量的微细孔隙和裂缝,这些微细孔隙和裂缝能够提高页岩气的渗透率。
二、对储层改造的影响2. 孔隙度改造由于页岩气储层的孔隙度较低,通常需要采用多种方法进行孔隙度的改造,例如通过增加地层压力、提高地层温度、注入适当的酸性液体等方式,从而提高储层的孔隙度,增加气体的储集空间。
3. 裂缝改造页岩气储层中存在的裂缝对气体的固定和产能有着重要的影响,因此对裂缝的改造也是提高页岩气产能的关键。
通过注入适当的液体、施加水力压裂等方法,能够有效地改造页岩气储层中的裂缝,提高气体的产能。
碳酸盐岩储层特征
碳酸盐岩储层的岩性主要由碳酸盐类矿物组成,如石灰石、白垩、大理岩等。
这些岩石通常具有高含量的钙、镁、铁等元素,因此具有较高的韧性和耐磨性。
此外,碳酸盐岩储层还包括一些非碳酸盐岩,如黏土、砂岩等,这些非碳酸盐岩的存在会对储层特征产生影响。
碳酸盐岩储层的孔隙结构是其中一个最重要的特征。
碳酸盐岩通常具有多种多样的孔隙类型,包括晶间孔隙、颗粒孔隙、裂隙等。
晶间孔隙是由于岩石内部的碳酸盐类矿物互相之间的溶解形成的,其大小较小、分布较均匀。
颗粒孔隙是由岩石的颗粒之间的空隙形成的,通常大小较大、数量较少。
裂隙则是由于岩石变形和压力变化等因素造成的,其大小和形态各异,对储层的渗透性和储集性能有着重要的影响。
碳酸盐岩储层的渗透性是另一个重要的特征。
渗透性是指储层岩石中的孔隙和裂隙对流体流动的能力。
碳酸盐岩储层通常具有较低的渗透性,其主要原因是孔隙结构复杂、尺度小等。
然而,由于碳酸盐岩中晶间孔隙和裂隙的存在,它们仍然可以形成连通的渗流通道,使得储层具有一定的渗透性。
综上所述,碳酸盐岩储层具有特殊的岩性、孔隙结构、渗透性、韧性和脆性等特征。
深入了解和研究碳酸盐岩储层的特征,对于有效开发和利用该储层具有重要意义。
储层基本特征嘿,咱今儿就来说说储层基本特征这档子事儿。
你说储层像啥呢?就好比是一个大宝藏的藏身之处!储层啊,那可是地下的宝贝窝。
它就像是一个巨大的仓库,专门用来储存石油、天然气这些珍贵的资源。
咱先看看储层的渗透性吧。
这渗透性就好像是一条通畅的大道,油气能在里面欢快地流动。
要是渗透性不好,那不就像是路堵住了,油气想跑也跑不顺畅呀!这渗透性强的储层,就像那四通八达的高速公路,油气能快速地通过,给我们带来财富和能量。
再说说储层的孔隙度。
这孔隙度呢,就像是储层这个大仓库里的空间大小。
孔隙度大,那能装的油气就多呀,就好像一个大房间能放好多东西一样。
要是孔隙度小,那能存的油气自然就少啦。
你想想,要是仓库太小,能放的宝贝不就有限嘛。
储层的岩性也是很重要的哦!有的是砂岩,有的是碳酸盐岩。
砂岩就像是那种比较粗糙但很实在的材料,能让油气在里面有个安稳的家;碳酸盐岩呢,则像是有点特别的存在,有着自己独特的魅力和作用。
还有啊,储层的分布也是有讲究的。
有的地方储层多,有的地方就少得可怜。
这就好像有的地方宝藏多,有的地方找半天也找不到啥宝贝。
那我们怎么知道哪里有储层呢?这就得靠那些地质学家们的本事啦,他们就像是寻宝的高手,能通过各种方法找到这些隐藏的宝贝窝。
储层的厚度也不能小瞧呀!厚的储层就像一座大山,蕴含着无尽的潜力;薄的储层呢,就像是一个小土丘,虽然也有宝贝,但相对就少一些啦。
咱生活中很多东西都和储层有关系呢!你开的车,用的天然气,不都是从储层里来的嘛。
所以说呀,储层对我们的生活可重要啦!没有这些储层,我们的生活得少多少便利呀!总之呢,储层基本特征可太重要啦!它决定了我们能不能找到那些宝贵的油气资源,决定了我们的能源供应和生活质量。
我们可得好好了解它,珍惜它,让它为我们的生活发挥更大的作用!。
储层微观特征嘿,咱今儿就来聊聊储层微观特征这档子事儿。
你说这储层微观特征啊,就像是一个神秘的小世界。
想象一下,那里面有各种各样的通道和空隙,就好像是城市里的大街小巷。
这些通道有的宽,有的窄,就跟咱走的路有大道有小道一个样。
而那些空隙呢,就像是一个个小房间,里面藏着石油啊、天然气啊这些宝贝。
咱先说说这孔隙吧,这可是储层微观特征里的大主角之一。
孔隙就像是一个个小口袋,能把那些宝贵的资源装起来。
有的孔隙大得很,资源在里面能撒欢儿跑;有的孔隙就小得可怜啦,资源进去都得挤着。
那不同大小的孔隙对资源的储存和流动影响可老大了,你说神奇不神奇?还有这喉道呢,它就像是连接各个孔隙的小过道。
有的喉道直直的,资源通过得顺顺当当;有的喉道弯弯曲曲的,资源得费点劲儿才能过去。
这就好比咱走路,有的路笔直好走,有的路七拐八弯不好走。
要是喉道太窄或者堵塞了,那资源可就难出来啦,这不就跟路堵住了咱过不去一个道理嘛!咱再看看这颗粒吧,它们可是构建这个微观世界的基础呢。
颗粒有大有小,有圆有扁,就像咱们人有高有矮,有胖有瘦。
这些颗粒排列起来的方式也不一样,有的整整齐齐,有的乱七八糟。
这对储层的性质影响可大了去了,你说是不是很有意思?那储层微观特征对咱们有啥重要性呢?嘿,这可太重要啦!如果咱不了解它,怎么能知道哪里的储层好,哪里的储层差呢?怎么能有效地开采那些资源呢?就好比你要去一个陌生的地方,不先了解了解路怎么走,那不就容易迷路嘛!而且,通过研究储层微观特征,咱还能想办法让资源更容易开采出来,让它们更好地为咱们服务呀!总之呢,储层微观特征就像是一个充满奥秘的小宇宙,等待着我们去探索、去发现。
我们得好好研究它,才能更好地利用那些藏在地下的宝贝资源。
别小看了这个微观世界,它里面的门道可多着呢!你还等什么,赶紧去探索一番吧!。
页岩气储层的基本特征及其评价一、本文概述页岩气作为一种重要的非传统天然气资源,近年来在全球能源领域引起了广泛关注。
由于其储层特征的复杂性和评价方法的多样性,对页岩气储层的基本特征及其评价进行深入研究具有重要的理论和实践意义。
本文旨在全面概述页岩气储层的基本特征,包括地质特征、物理特征、化学特征以及工程特征等方面,并探讨相应的评价方法和技术手段。
通过对页岩气储层特征的深入剖析,本文旨在为页岩气勘探开发提供理论支撑和实践指导,推动页岩气产业的健康发展。
具体而言,本文首先介绍了页岩气储层的地质背景,包括地层分布、构造特征以及沉积环境等。
在此基础上,重点分析了页岩气储层的物理特征,如孔隙结构、渗透率、含气饱和度等,这些特征直接影响了页岩气的赋存状态和开采难易程度。
同时,本文还关注了页岩气储层的化学特征,如有机质含量、矿物杂质成分等,这些特征对于评估页岩气储层的品质和开采潜力具有重要意义。
在评价方法方面,本文综述了目前常用的页岩气储层评价方法,包括地球物理勘探、地球化学分析、岩石力学测试等。
这些方法和技术手段在页岩气储层评价中各有优缺点,需要根据具体的地质条件和勘探需求进行选择和应用。
本文还将介绍一些新兴的评价技术和方法,如页岩气储层数值模拟、微观孔隙结构表征等,这些新技术和方法的应用将进一步提高页岩气储层评价的准确性和可靠性。
本文旨在全面系统地介绍页岩气储层的基本特征及其评价方法,以期为页岩气勘探开发提供理论支持和实践指导。
通过深入研究页岩气储层的特征和评价方法,有助于更好地认识页岩气资源的分布规律和开发潜力,推动页岩气产业的可持续发展。
二、页岩气储层的基本特征物理性质:页岩储层一般具有较低的孔隙度和渗透率,这与其主要由粘土矿物、石英等细粒沉积物构成有关。
尽管孔隙度低,但页岩的裂缝发育丰富,这些裂缝为页岩气提供了有效的运移和储集空间。
页岩的层理结构明显,这种层状结构对页岩气的分布和运移有重要影响。
化学性质:页岩的化学性质多样,主要取决于其含有的矿物成分。
储层特征研究范文
储层特征研究是石油地质学中一个重要的研究方向,主要关注的是油
气储层的物性特征、空间分布规律以及储层演化等问题。
通过研究储层特征,可以有效评估和预测储层的储量、渗透率以及储层的可采性,为油气
勘探开发提供重要的科学依据。
在储层特征研究中,主要涉及以下几个方面的内容:
1.储层岩性特征:储层的岩性特征与岩石的成分、结构、纹理等密切
相关。
通过岩心、岩石薄片的观察和分析,可以了解储层的岩石种类、成分、孔隙类型及分布、孔隙度、渗透率等岩石物性参数。
2.储层物性特征:储层的物性参数包括渗透率、孔隙度、孔隙连通度、饱和度等。
这些参数对于评价储层的贮藏能力、流体运移特性和储层的可
采性具有重要意义。
3.储层空间分布规律:通过野外地质调查和地震勘探,可以获得储层
在空间上的分布规律。
研究储层的空间展布特征,可以考察储层的连通性
以及油气在储层中的分布情况,为有效勘探储量和预测储量提供依据。
4.储层演化过程:由于地质变动和沉积作用等因素的影响,储层的演
化过程会对储层特征产生重要的影响。
通过研究储层的演化过程,可以了
解储层的形成机制、演化历史和储层的保存条件,为储层预测和评价提供
科学依据。
总的来说,储层特征研究对于油气资源的开发和利用具有重要意义。
通过研究储层特征,可以更好地认识储层的物性参数和空间展布规律,对
储层的储量、渗透率以及可采性进行合理评估和预测,为油气勘探开发提
供科学依据,提高勘探的成功率和经济效益。