《全等三角形的判定HL》 ppt课件
- 格式:ppt
- 大小:1.16 MB
- 文档页数:37
人教版数学八年级上册12.2.4 用“HL”判定直角三角形全等课件(共21张PPT)(共21张PPT)12.2.4全等三角形的判定——HL(斜边、直角边)学习目标1.探索并理解直角三角形全等的判定方法“HL”.(难点)2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.(重点)新课导入我们已经学过判定全等三角形的方法有哪些?1.边边边(SSS)3.角边角(ASA)4.角角边(AAS)2.边角边(SAS)复习导入判断:如图,具有下列条件的Rt△ABC与Rt△DEF(其中△C=△F=90°)是否全等?若全等,在( )里填写理由;若不全等,在( )里打“×”:①AC=DF,△A=△D;( )②AC=DF,BC=EF;( )③AB=DE,△B=△E;( )④△A=△D,△B=△E;( )⑤AC=DF,AB=DE. ( )练一练ASASASAAS×HL问题:满足斜边和一条直角边对应相等的两个直角三角形是否全等呢?新课导入ABCA′B′C′1.两个直角三角形中,斜边和一个锐角对应相等,这两个直角三角形全等吗?为什么?2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三角形全等吗?为什么?3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等吗?为什么?动脑想一想如图,已知AC=DF,BC=EF,△B=△E,△ABC△△DEF吗?我们知道,证明三角形全等不存在SSA定理.ABCDEF新课导入讲授新课1直角三角形全等的判定(“斜边、直角边”定理)问题任意画一个Rt△ABC,使△C =90°,再画一个Rt△A′B′C′,使△C′=90°,B′C′=BC,A′B′=AB,然后把画好的Rt△A′B′C′剪下来放到Rt△ABC上,你发现了什么?讲授新课ABC(1)画△MC′N =90°;(2)在射线C′M上取B′C′=BC;(3)以B′为圆心,AB为半径画弧,交射线C′ N于点A′;(4)连接A′B′.现象:两个直角三角形能重合.说明:这两个直角三角形全等.画法:A′NMC′B′“斜边、直角边”判定方法:文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:ABCA ′B′C ′△Rt△ABC △ Rt△ A′B′C′ (HL).AB=A′B′,BC=B′C′,“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1如图,AC△BC,BD△AD,AC﹦BD,求证:BC﹦AD.证明:△ AC△BC,BD△AD,△△C与△D都是直角.AB=BA,AC=BD .在Rt△ABC 和Rt△BAD 中,△ Rt△ABC△Rt△BAD (HL).△ BC﹦AD.ABDC应用“HL”的前提条件是在直角三角形中.这是应用“HL”判定方法的书写格式.利用全等证明两条线段相等,这是常见的思路.直角三角形全等的应用:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角△B和△F的大小有什么关系?解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .△ Rt△ABC△Rt△DEF (HL).△△B=△DEF(全等三角形对应角相等).△ △DEF+△F=90°,△△B+△F=90°.例2证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.总结当堂练习1. 下列条件不能使两个直角三角形全等的是()A.斜边和一锐角对应相等B.有两边对应相等C.有两个锐角对应相等D.有一直角边和一锐角对应相等C2. 如图,O是△BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO△△AFO的依据是()A.HL B.AAS C.SSS D.ASAA3. 如图所示,BE△AC,CF△AB,垂足分别是E,F.若BE=CF,则图中全等三角形有( )A.1对B.2对C.3对D.4对C4. 如图所示,在△ABC中,AB=AC,D是BC的中点,DE△AB,DF△AC,垂足分别为E,F.则图中全等三角形共有( )A.2对B.3对C.4对D.5对B当堂练习当堂练习5. 如图,在△ABC中,△BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,BD=CE,BD的延长线交CE于点F.求证:BF△CE.证明:在Rt△BAD和Rt△CAE中,△Rt△BAD△Rt△CAE(HL).△△ABD=△ACE.又△△BDA=△CDF,△△CFD=△BAD=90°,即BF△CE.当堂练习AFCEDB6. 如图,AB=CD,BF△AC,DE△AC,AE=CF. 求证:BF=DE.证明: △ BF△AC,DE△AC, △△BFA=△DEC=90 °.△AE=CF,△AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.△ Rt△ABF△Rt△CDE(HL).△BF=DE.当堂练习7. 如图,两根长度为12 m的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.BD=CD.△△ADB=△ADC=90°,AB=ACAD=AD△Rt△ABD△Rt△ACD(HL),△ BD=CD.解:8. 如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD =AF,AC=AE. 求证:BC=BE.证明:△AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,△Rt△ADC△Rt△AFE(HL).△CD=EF.△AD=AF,AB=AB,△Rt△ABD△Rt△ABF(HL).△BD=BF.△BD-CD=BF-EF.即BC=BE.重难点突破课堂小结“斜边、直角边”内容斜边和一条直角边对应相等的两个直角三角形全等.前提条件在直角三角形中使用方法只须找除直角外的两个条件即可(两个条件中至少有一个条件是一对对应边相等)判定直角三角形全等的“四种思路”:(1)若已知条件中有一组直角边和一组斜边分别相等,用“HL”判定.(2)若有一组锐角和斜边分别相等,用“AAS”判定.(3)若有一组锐角和一组直角边分别相等:①直角边是锐角的对边,用“AAS”判定;②直角边是锐角的邻边,用“ASA”判定.(4)若有两组直角边分别相等,用“SAS”判定.课堂小结谢谢大家。