当前位置:文档之家› 遗传算法-matlab

遗传算法-matlab

遗传算法-matlab
遗传算法-matlab

4.2遗传算法MATLAB程序设计

4.2.1程序设计流程及参数选取

4.2.1.1遗传算法程序设计伪代码

BEGIN

t = 0 ; %Generations NO.

初始化P(t) ; %Initial Population or Chromosomes

计算P(t) 的适应值;

while (不满足停止准则) do

begin

t = t+1 ;

从P(t-1)中选择P(t) ; % Selection

重组P(t) ; % Crossover and Mutation

计算P(t) 的适应值;

end

END

4.2.1.2遗传算法的参数设计原则

在单纯的遗传算法当中,也并不总是收敛,即使在单峰或单调也是如此。这是因为种群的进化能力已经基本丧失,种群早熟。为了避免种群的早熟,参数的设计一般遵从以下原则[5]:

(1)种群的规模:当群体规模太小时,很明显会出现近亲交配,产生病态基因。而且造成有效等位基因先天缺乏,即使采用较大概率的变异算子,生成具有竞争力高阶模式的可能性仍很小,况且大概率变异算子对已有模式的破坏作用极大。同时遗传算子存在随机误差(模式采样误差),妨碍小群体中有效模式的正确传播,使得种群进化不能按照模式定理产生所预测的期望数量;种群规模太大,结果难以收敛且浪费资源,稳健性下降。种群规模的一个建议值为0~100。

(2)变异概率:当变异概率太小时,种群的多样性下降太快,容易导致有效基因的迅速丢失且不容易修补;当变异概率太大时,尽管种群的多样性可以得到保证,但是高阶模式被破坏的概率也随之增大。变异概率一般取0.0001~0.2。

(3)交配概率:交配是生成新种群最重要的手段。与变异概率类似,交配概率太大容易破坏已有的有利模式,随机性增大,容易错失最优个体;交配概率太小不能有效更新种群。交配概率一般取0.4~0.99。

(4)进化代数:进化代数太小,算法不容易收敛,种群还没有成熟;代数太大,算法已经熟练或者种群过于早熟不可能再收敛,继续进化没有意义,只会增加时间开支和资源浪费。进化代数一般取100~500。

(5)种群初始化:初始种群的生成是随机的;在初始种群的赋予之前,尽量进行一个大概的区间估计,以免初始种群分布在远离全局最优解的编码空间,导致遗传算法的搜索范围受到限制,同时也为算法减轻负担。

4.2.1.3适应度函数的调整

(1)在遗传算法运行的初期阶段

群体中可能会有少数几个个体的适应度相对其他个体来说非常高。若按照常用的比例选择算子来确定个体的遗传数量时,则这几个相对较好的个体将在下一代群体中占有很高的比例,在极端情况下或当群体现模较小时,新的群体甚至完全由这样的少数几个个体所组成。这时交配运算就起不了什么作用,因为相同的两个个体不论在何处发生交叉行为都永远不会产生新的个体。这样就会使群体的多样性降低,容易导致遗传算法发生早熟现象(或称早期收敛),使遗传算法所求到的解停留在某一局部最优点上。因此,我们希望在遗传算法运行的初期阶段,算法能够对一些适应度较高的个体进行控制,降低其适应度与其他个体适应度之间的差异程度,从而限制其复制数量,以维护群体的多样性。

(2)在遗传算法运行的后期阶段

群体中所有个体的平均适应度可能会接近于群体中最佳个体的适应度。也就是说,大部分个体的适应度和最佳个体的适应度差异不大,它们之间无竞争力,都会有以相接近的概率被遗传到下一代的可能性,从而使得进化过程无竞争性可言,只是一种随机的选择过程。这将导致无法对某些重点区域进行重点搜索,从而影响遗传算法的运行效率。因此,我们希望在遗传算法运行的后期阶段,算法能够对个体的适应度进行适当的放大,扩大最佳个体适应度与其他个体适应度之间的差异程度,以提高个体之间的竞争性。

4.2.2 MATLAB遗传算法工具箱

4.2.2.1 GA工具箱版本

为了省略艰深难懂的遗传算法数学理论和降低程序开发的难度,MATLAB软件已经将遗传算法命令进行了封装,做成专门的遗传算法工具箱(GA Toolbox),方便用户调用。关于遗传算法工具箱,需要说明三点:

①目前基于MATLAB环境下遗传算法工具箱的版本较多,各版本的功能和用法也不完全相同,需要加以区分。倘若想要使用某个工具箱,但是MATLAB没有自带,则用户需要自行安装。目前GA Toolbox主要有下列几种:

MATLAB 7.x Version

Genetic Algorithm and Direct Search Toolbox2.0.1;

MATLAB 6.x(or 7.x) Version +GAOT

GAOT:Genetic Algorithm Optimization Toolbox;

美国North Carolina State University开发;

MATLAB 6.x(or 7.x) Version +GEATbx

GEATbx: Genetic and Evolutionary Algorithm Toolbox。

英国The University of Sheffield开发,目前此工具箱功能最完善性能最优越。

②少数非常规、非主流的盗版MATLAB软件,其自身所带的遗传算法工具箱可能会没有。原因在于盗版软件在破解安装注册序列号过程中,主程序可以正常使用,但是部分工具箱功能在破解过程中被丢失。不同的破解版本,工具箱丢失的种类和程度会有所差异。

③遗传算法工具箱已经将常用的遗传运算命令进行了集成,用户使用很方便。但是封装的工具箱的内部命令不能根据特殊需要进行相应调整和修改。从这个角度上说,具有人工智能性质的GA Toolbox是一种“傻瓜式的智能”或“智能式的傻瓜”。作者建议尽量不要使用工具箱,尝试编写遗传算法源程序去解决问题。

本章基于MATLAB 7.0 Version自带的遗传算法与直接搜索工具箱(Genetic Algorithm

and Direct Search Toolbox)来优化目标函数。使用的方法是:在命令窗口输入>> gatool指令然后在弹出的GUI界面上填写相关参数和函令句柄或使用M文件进行程序设计。遗传算法与直接搜索工具箱有ga和gaoptimset两个核心函数。

4.2.2.2工具箱核心函数用法

(1)ga函数

【语法格式】[x,fval,reason]=ga(@fitnessfun,nvars,options)

其中,x——经过遗传进化以后自变量最佳染色体返回值;

fval——最佳染色体的适应度;

reason——算法停止的原因;

@fitnessfun——适应度句柄函数;

nvars——目标函数自变量的个数;

options——算法的属性设置,该属性是通过函数gaoptimset赋予的。

【实现功能】对目标函数进行遗传运算。

(2)gaoptimset函数

【语法格式】options=gaoptimset(‘PropertyName1’,’ PropertyValue1’ ,

‘PropertyName 2’,’ PropertyValue 2’ ,‘PropertyName 3’,’ PropertyValue 3’……)

【实现功能】设置遗传算法的参数和句柄函数,表4-4介绍常用的11种属性。

由于遗传算法本质上是一种启发式的随机运算,算法程序经常重复运行多次才能得到理想结果。鉴于此,可以将前一次运行得到的最后种群作为下一次运行的初始种群,如此操作会得到更好的结果:

[x,fval,reason,output,final_pop]=ga(@fitnessfcn,nvars);

最后一个输出变量final_pop返回的就是本次运行得到的最后种群。再将final_pop作为ga函数的初始种群,语法格式为:

options=gaoptimset('InitialPopulation',finnal_pop);

[x,fval,reason,output,finnal_pop2]=ga(@fitnessfcn,nvars,options);

4.2.2.3 Genetic Algorithm and Direct Search Toolbox适应度函数设计

Case 1 遗传算法和直接搜索工具箱中的ga函数是求解目标函数的最小值,所以求目标函数最小值的问题,可直接令目标函数为适应度函数(注意这里是求最小值,与上节求最大

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

(实例)matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B], 如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm'] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如['normGeomSelect'] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

遗传算法典范MATLAB代码

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % %

%--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵,

matlab自带优化工具箱遗传算法中文解释

matlab自带优化工具箱遗传算法中文解释 problem setup and results设置与结果 problem fitness function适应度函数 number of variable变量数 constraints约束 linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量 bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量 nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式 integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码 run solver and view results求解 use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果 population population type编码类型 double vector实数编码,采用双精度 bitstring二进制编码对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用 scattered singlepoint,twopoint或custom不能使用hybrid function和nonlinear constraint function custom 自定义 population size:种群大小 creation function:生成函数,产生初始种群 constraint dependent:约束相关,无约束时为uniform,有约束时为feasible population uniform:均匀分布 feasible population :自适应种群,生成能够满足约束的种群 initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的 initial scores:初始值,如果不指定,则有计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示 initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限 fitness scaling:适应度尺度 rank:等级。将适应度排序,然后编号 proportional:按比例 top:按比例选取种群中最高适应度的个体,这些个体有等比例的机会繁衍,其余的个体被淘汰 shift linear:线性转换

简单的遗传算法MATLAB实现

遗传算法是对达尔文生物进化理论的简单模拟,其遵循“适者生存”、“优胜略汰”的原理。遗传算法模拟一个人工种群的进化过程,并且通过选择、杂交以及变异等机制,种群经过若干代以后,总是达到最优(或近最优)的状态。 自从遗传算法被提出以来,其得到了广泛的应用,特别是在函数优化、生产调度、模式识别、神经网络、自适应控制等领域,遗传算法更是发挥了重大的作用,大大提高了问题求解的效率。遗传算法也是当前“软计算”领域的重要研究课题。 本文首先结合MATLAB对遗传算法实现过程进行详细的分析,然后通过1个实际的函数优化案例对其应用进行探讨。 1. 遗传算法实现过程 现实生活中很多问题都可以转换为函数优化问题,所以本文将以函数优化问题作为背景,对GA的实现过程进行探讨。大部分函数优化问题都可以写成求最大值或者最小值的形式,为了不是一般性,我们可以将所有求最优值的情况都转换成求最大值的形式,例如,求函数f(x)的最大值,

若是求函数f(x)的最小值,可以将其转换成 g(x)=-f(x),然后求g(x)的最大值, 这里x可以是一个变量,也可是是一个由k个变量组成的向量,x=(x1, x2, …, x k)。每个x i,i=1,2,…,k, 其定义域为D i,D i=[a i, b i]。 一般规定f(x)在其定义域内只取正值,若不满足,可以将其转换成以下形式, 其中C是一个正常数。 1.1 编码与解码 要实现遗传算法首先需要弄清楚如何对求解问题进行编码和解码。对于函数优化问题,一般来说,有两种编码方式,一是实数编码,一是二进制编码,两者各有优缺点,二进制编码具有稳定性高、种群多样性大等优点,但是需要的存储空间大,需要解码过程并且难以理解;而实数编码直接用实数表示基因,容易理解并且不要解码过程,但是容易过早收敛,从而陷入局部最优。本文以最常用的二进制编码为例,说明遗传编码的过程。

手把手教你学matlab遗传算法

基于遗传算法求解函数最优值 1.选择函数形式:y=10*sin(5*x)+7*abs(x-5)+10 2.函数直观图像: 3.函数理论最大值: X=0.286,Y=52.8990 4.Matlab函数实现: the best X is--->>0.32 the best Y is--->>52.73

5.Matlab程序 5.1-------------------------------------------------------------- %-------------函数说明---------------- % %主函数 %--------------------------------------- function main() clear clc popsize=100;%种群大小 chromlength=10;%二进制编码长度 pc=0.6;%交叉概率 pm=0.001;%变异概率 pop=initpop(popsize,chromlength);%初始种群 for i=1:100 [objvalue]=cal_objvalue(pop);%计算适应度值(函数值)fitvalue=objvalue; [newpop]=selection(pop,fitvalue);%选择操作

[newpop]=crossover(newpop,pc);%交叉操作 [newpop]=mutation(newpop,pm);%变异操作 pop=newpop;%更新种群 [bestindividual,bestfit]=best(pop,fitvalue);%寻找最优解x2=binary2decimal(bestindividual); x1=binary2decimal(newpop); [y1]=cal_objvalue(newpop); if mod(i,10)==0 figure; fplot('10*sin(5*x)+7*abs(x-5)+10',[010]); hold on; title(['迭代次数为n='num2str(i)]); plot(x1,y1,'*'); end end fprintf('the best X is--->>%5.2f\n',x2); fprintf('the best Y is--->>%5.2f\n',bestfit); 5.2----------------------------------- %-------------函数说明---------------- %初始化种群大小 %输入变量: %popsize:种群大小 %chromlength:染色体长度--》转化的二进制长度 %输出变量: %pop:种群 %--------------------------------------- function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); 5.3-------------------------------------- %-------------函数说明---------------- %二进制转化十进制函数 %输入变量: %二进制种群 %输出变量: %十进制数值 %--------------------------------------- function pop2=binary2decimal(pop)

用Matlab实现遗传算法

用GA找到函数最小值 x = ga(fitnessfcn,nvars) 局部无约束最小值,x是目标函数的适应度函数,nvars是适应度函数的尺寸(设计变量的数量)。目标函数和适应度函数接受了1×N大小的x矢量,在x返回一个标量的计算值。 x = ga(fitnessfcn,nvars,A,b) 在线性不等式约束下,适应度函数的局部最小值。如果这个问题有m个线性不等式和n个变量,则A是m×n矩阵,b是m×1矩阵。 注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。x = ga(fitnessfcn,nvars,A,b,Aeq,beq) 存在线性等式约束下,适应度函数的局部最小值。如果没有不等式存在,设置A=[] 和 b=[]。如果问题存在r个线性等式约束和n个变量,那么Aeq 是r ×n矩阵的大小,beq是r大小的矢量。 注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB) 定义了一系列设计变量x的最小和最大边界。以至于在范围内找到一个解。如果没有边界存在,LB 和 UB设置为空矩阵。如果x(i)无下界,设置LB(i) = -Inf;如果x(i)无上界,设置UB(i) = Inf。 x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon) 服从在非线性约束条件下的最小值,非线性函数接收x,返回C和Ceq向量,分别代表非线性的不等式和等式。GA最小化适应度函数,在C(x)≤0和 Ceq(x)=0的条件下。如果无边界存在,设置 LB=[] 和 UB=[]。 注意:当人口类型选项设置为“位串”或者“自定义”,非线性约束不满足。 x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options) 用在结构选项中的值代替默认的优化参数来进行最小化,它也可以用gaoptimset函数来创建,具体参考gaoptimset的用法。 x = ga(problem) 在problem下找到最小值,problem是包含下表的结构。

遗传算法的原理及MATLAB程序实现

1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点 遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传

遗传算法的MATLAB程序实例讲解学习

遗传算法的M A T L A B 程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

matlab基本遗传算法应用实例

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

遗传算法MATLAB仿真程序

function [pso F] = PSO_2D() % FUNCTION PSO --------USE Particle Swarm Optimization Algorithm %global present; % close all; pop_size = 10; % pop_size 种群大小 part_size = 2; % part_size 粒子大小, ** =n-D gbest = zeros(1,part_size+1); % gbest 当前搜索到的最小的值 max_gen = 80; % max_gen 最大迭代次数 region=zeros(part_size,2); % 设定搜索空间范围 region=[-3,3;-3,3]; % **每一维设定不同范围 rand('state',sum(100*clock)); % 重置随机数发生器状态 arr_present = ini_pos(pop_size,part_size); % present 当前位置,随机初始化,rand()的范围为0~1 v=ini_v(pop_size,part_size); % 初始化当前速度 pbest = zeros(pop_size,part_size+1); % pbest 粒子以前搜索到的最优值,最后一列包括这些值的适应度 w_max = 0.9; % w_max 权系数最大值 w_min = 0.4; v_max = 2; % **最大速度,为粒子的范围宽度 c1 = 2; % 学习因子 c2 = 2; % 学习因子 best_record = zeros(1,max_gen); % best_record记录最好的粒子的适应度。 % ———————————————————————— % 计算原始种群的适应度,及初始化 % ———————————————————————— arr_present(:,end)=ini_fit(arr_present,pop_size,part_size); % for k=1:pop_size % present(k,end) = fitness(present(k,1:part_size)); %计算原始种群的适应度 % end pbest = arr_present; %初始化各个粒子最优值[best_value best_index] = min(arr_present(:,end)); %初始化全局最优,即适应度为全局最小的值,根据需要也可以选取为最大值 gbest = arr_present(best_index,:);

MatLab-的遗传算法实例

遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 % % % % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

使用MATLAB遗传算法工具实例(详细) (1)【精品毕业设计】(完整版)

最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。 本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。 8.1 遗传算法与直接搜索工具箱概述 本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。 8.1.1 工具箱的特点 GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。 使用语句 type function_name 就可以看到这些函数的MATLAB代码。我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。 工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。 遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。 遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。 8.1.1.1 功能特点 遗传算法与直接搜索工具箱的功能特点如下: 图形用户界面和命令行函数可用来快速地描述问题、设置算法选项以及监控进程。 具有多个选项的遗传算法工具可用于问题创建、适应度计算、选择、交叉和变异。 直接搜索工具实现了一种模式搜索方法,其选项可用于定义网格尺寸、表决方法和搜索方法。 遗传算法与直接搜索工具箱函数可与MATLAB的优化工具箱或其他的MATLAB程序结合使用。 支持自动的M代码生成。 8.1.1.2 图形用户界面和命令行函数 遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置算法选项、对优化问题进行详细定义。 133

相关主题
文本预览
相关文档 最新文档