论我国高速铁路精密工程测量技术体系及特点
- 格式:docx
- 大小:48.27 KB
- 文档页数:6
高速铁路精密工程测量技术体系的建立及特点摘要:随着社会经济以及科学技术的快速发展,国内各个行业得到长足的发展,尤其是铁路领域的建设,在国家政府的大力支持下取得了突破性的进展,与国际化的高速铁路建设水平实现良好的对接。
在铁路建设工程中,铁路测绘是一个比较关键的施工环节,尤其是高精度的测量技术在该领域的工程中起到了重要的支撑作用。
故此,高速铁路精密工程测量技术一直是行业内研究的热点问题。
本文针对这一技术进行了详细的讲述,并进一步剖析了该测量技术特点,望对业界人士提供参考。
关键词:高速铁路;精密工程测量技术体系;建立;特点;前言:在任何一个地区的发展中,交通运输领域的发展成绩是影响该地区的关键因素,所以针对每个地区适当的强化资源的投入,不断完善交通线路的建设和发展那,为当地的经济建设提供良好的支持。
所以在高速铁路建设工程中,不断进行技术的革新,提升铁路工程测量技术的水平,实现我国高速铁路的建设规划。
1关于高速铁路精密工程测量体系的概况高速铁路精密工程测量的内容1.1在告诉铁路建工程中的施工、设计以及维护验收都需要精密工程测量技术的大力应用,使得高速铁路的建设更加高效快捷。
细分开来高速铁路精密工程测量技术在告诉铁路平面搞成控制以及轨道施工的测量,还有就是日常的维护环节都发挥了巨大的作用,对于提升高速铁路工程的整体质量具有重要的参考意义。
高速铁路精密工程测量的目的1.2高速铁路精密工程测量技术的具体应用可以为相关的工作人员提供精确的数据参考,使得铁路建设各个工作环节得以有准确的数据参考,指导工作的顺利前行。
比如在一般路基以及建筑物的测量环节,测量精度必须要控制在mm范围内,使得整体的建设工程统一精度。
2高速铁路精密度测量体系在铁路建设中的特点2.1建立CPO框架控制网通过对各地高速铁路得到的平面控制测量数据可知,呈带状分布的平面控制网具有线路长且地区跨幅度大的特点。
CPO框架控制网的概念逐步出现在人们的视线中,并得到了人们的关注和重视。
浅谈高速铁路精密测量技术摘要:近年来,随着我国高铁建设的快速发展,高铁高精度工程测量技术已逐步形成,这一技术已为高铁的优化设计提供了重要基础,并为高铁项目的质量管理提供了有力保证。
随着我国高铁建设步伐的加快,为了适应日益增长的工程勘察精度需求,必须对传统的控制测量方式进行改革,开发和改进高铁精密测量工程,从而从本质上提高高铁勘测的质量,保证高铁施工的质量能够满足高铁施工的安全性和舒适性。
通过对我国高铁工程施工技术体系的研究,对高铁工程施工目标、施工内容等方面进行了系统的研究,并对其主要特征进行了探讨,以期对高铁工程施工行业的发展具有一定的借鉴意义。
关键词:高速铁路;精密工程;测量技术1.我国高速铁路精密工程测量技术概念及建立过程1.1高速铁路精密工程测量技术概述“高铁精密工程测量的首要目标是构建不同层次的平面和高程控制网络,以保障高铁项目按设计线型施工,保障高铁线路铺轨的准确性,从而保障高铁的平稳和安全运行”[1]。
由于我国高铁运行速度在250-350km/h间,对高铁运行的平稳性和安全性提出了更高的要求,因而引起了有关人员的关注。
在高铁线路布线精度研究中,对高铁线路布线精度研究具有重要意义。
在高铁线路的铺设过程中,需要注意两个问题:一是要严格按照高铁线路的设计线型,即在铺设高铁线路的过程中,要保证高铁线路的几何参数的准确性和可靠性;另一方面,为保证高铁铺轨的平顺性,需要对线路线型参数进行合理的调整,通常在毫米量级,以保证铺轨的平顺性。
1.2我国高速铁路精密工程测量技术体系建立过程高铁以其相对较高的运行速率,满足了人们对出行的需求,是一种主要的交通工具。
为保证高铁运行的安全与舒适,高铁轨道必须满足良好的乘坐舒适性,这对高铁工程施工提出了更高的要求,即采用毫米级别的测量精度,并采用标准的几何线形测量参数。
现有的工程测绘技术与手段已无法适应高铁施工的需要,其测绘精度亟待全面提升。
随着我国无砟轨道建设的不断深入,我国已逐渐形成了一套完善的高铁工程测量技术体系。
分析高速铁路精密工程测量技术体系的建立及特点摘要:随着社会的发展,人们对交通出行的需求越来越大,由于我国有着人口众多,地域广大等特点,所以铁路交通被选为第一出行工具,但是随着人们对交通质量的要求不断提高,传统的铁路交通已经不能达到人们的要求。
高速铁路的诞生满足了人们的出行需要,所以建设高速铁路成了我国铁路发展的主要方向。
测量学作为铁道工程中的主要控制技术,在高速铁路的建设中倍受重视,本人曾经参加过沪杭高速铁路测控点埋设、及测控工作,在本文以实际工作经验对高速铁路精密工程测量技术体系的建立及特点进行分析,望广大同行给予指导。
关键词:控制网设置等级中图分类号:u238 文献标识码:a 文章编号:引言:高速铁路的设计时速为300~350km/h,精密测量技术可以有效保证列车在运行状态下的安全性和舒适性。
高速铁路的测量误差控制在0.01毫米的范围内,所以传统的铁路测量技术已经不能适用于高速铁路的建设要求,所以为了实现高速铁路的平稳性,就必须应用新的测量技术。
一.工程概况沪杭高速铁路的的设计时速为300km/h,全长158.8公里,线路由无砟轨道和无缝钢管组成,轨道正线距离为5m。
最大坡度为2%。
沪杭高铁工程广泛采用了新技术、新结构、新工艺。
全线软土分布广泛深厚,成因复杂,多处存在区域地面沉降,地基处理和工后沉降控制极为困难,全线桥梁总长占线路长度比重高达90%。
所以测量控制技术繁重,尤其在控制点埋设,和控制网测量等方法都存在着重大技术难题。
二.高速铁路精密测量体系的特点高速铁路通常采用三网合一的监测方法,高速铁路的监测体系将大地水准测量、平面测量相互结合,并形成了勘测控制网、施工测控网、维护控制网。
由于高速铁路属于无砟轨道。
所以对施工技术要求很高,将工程测量网等级分为三个即cpi控制网、cpⅱ控制网、cpiii控制网。
这三个控制网在不同的施工环境下都有着不同的应用。
例如在勘测阶段所使用的监测网为cpi和cpii,这两种监测网主要为设计和地质部门提供基础测量数据,以供对线路进行设计和规划使用。
高铁工程建设中的精密工程测量技术摘要:通常来说,速度至少达到250km/h的专线铁路或达到200km/h的既有线铁路被称为高速铁路。
高铁凭借其安全性高、稳定性好、速度快的优势迅速在我国交通运输中占领重要地位,要想继续提升高铁运行的平稳舒适,则需要在轨道的平整度、施工工艺、材质和尺寸的精准上精益求精,而传统的测量技术已无法满足发展的需求,一定程度上阻碍了高铁的发展。
因此需要运用精密工程测量技术来弥补方法与精度上的缺陷。
本文对高铁工程建设中精密工程测量技术的内容、要求和具体应用进行简要分析,了解精密工程测量技术在高铁工程建设中的重要性。
关键词:高铁工程建设;精密工程;测量技术1精密工程测量技术概述1.1精密工程测量技术的内容精密工程测量技术广泛应用于高速铁路工程建设的前期设计、中期施工和后期运营验收维护。
测量内容涵盖平面高程控制、高铁轨道建设、运营维护等测量,高铁建设项目占地面积大、跨度大,经常受地形地质影响。
为了实现相关参数的精确测量,需要在设计过程中根据特性制定设计方案,并对坐标系和基准进行精确预测,以确保精确测量的准确性。
1.2应用精密工程测量技术的目的在高速铁路建设中应用精密工程测量技术的目的是使开发人员和技术人员能够在高速铁路运营前通过高速铁路平面高程控制网的设计和调整,研究和解决高速铁路工程中的具体问题,以保证高速铁路轨道的位置精度和平顺性。
同时,要求高铁项目建设必须严格遵循线性设计,保持几何线性设计方案的参数和精度。
通常,参数范围以毫米为单位。
如果要求偏差控制在10mm以内,则需要确保高铁建设的高要求,提高高铁运营的舒适性和安全性,并协助我国的高铁运输项目。
1.3传统测量技术与精密工程测量技术的比较在铁路工程,传统的测量方法采用的是以位置测量中心线控制桩作为坐标数据,但随着施工的结束,中心线控制桩便会损坏,若想重新测量则要重新构造测量方法。
对于普通铁路工程建设来说,这一缺陷并无大碍,但高铁工程建设涉及范围较广,外部环境复杂,测控数据变数较多且测控数据通常要超过规定的精度数据的范围,精密工程测量技术可以通过构建精确的精密测量和控制系统来实现随时随地可操纵的测量,以实现毫米水平测量和控制的目标。
我国高速铁路周密工程测量技术标准的科学性分析XX:伴随着我国高铁无咋轨道工程的建设,我国高速铁路工程测量技术标准也逐渐完善。
告诉铁路要在运行速度比较快的条件下保证列车乘客的舒适和安全,就一定要有精确以及高平顺性的几何线性参数,这些参数包括轨道的内外几何尺寸,轨向、水平、高低、轨距、设计高程、扭曲以及中线的偏差,其精度也要严格操纵在1-2mm内。
所以,在建设高速铁路过程中,建立周密的工程测量标准是很关键的。
一、高速铁路周密工程测量的特点高速铁路周密工程测量技术标准的主要研究内容有:实现各个精度指标的保证体系;确定高速铁路的各个精度指标。
在测量操纵XX的建立中,要论证和研究精度阈值,操纵XX设计的精度准则已经操纵XX精度计算方法等。
研究和确定高程操纵XX以及平面操纵XX的精度要求,保证高速铁路平稳安全运行,满足高速铁路施工操纵的需求,是高速铁路周密工程测量技术标准的核心。
和一般铁路测量相比较,高速铁路工程测量有更高的精度要求,更强的系统性。
研究和确定高程和平面操纵的相关精度指标,是解决高速铁路建设问题的关键之一。
二、确立高速铁路周密工程测量技术标准的前提要选择平面操纵测量的基准,就是要选择平面操纵测量的平差参考系,也就是给操纵XX的平差提供一系列必须的起始数据来求平差问题的唯一解。
要确定这个基准,主要包括平面起算数据的确定以及平面坐标系的确定这两个内容。
要研究好平面操纵测量基准,要解决的问题就是怎样选择起始数据才可以满足高速铁路操纵测量的要求问题。
高速铁路工程测量施工因为其较高的精度需求,要求现场实测值和由坐标反算的边长值一直,这就是尺度统一的意思。
但传统铁路运用的是五四坐标系的投影,因为存在高程投影变形以及高斯投影变形,导致现场实测值和由坐标反算的边长值不一样,无法满足高速铁路工程测量的要求。
为了保证高速铁路各阶段测量成果的一致性以及铁路平面操纵XX的稳定性,高速铁路的工程测量要用强基准固定数据平差。
高速铁路精密工程测量技术体系的建立及特点研究发表时间:2018-12-21T15:51:43.460Z 来源:《建筑学研究前沿》2018年第29期作者:赵海龙[导读] 另外在高速铁路的运行中,也需要对铁路进行巡检,该过程中也需要应用精密工程测量技术,保证高速铁路能够正常稳定运行。
中铁十九局集团第五工程有限公司辽宁省大连市 116000摘要:高速铁路作为我国工程基建的重要代表,在工程建设中已经开发出精密工程测量技术,全面提升工程建设的精密性和工程运行的安全性。
基于对高速铁路精密工程测量技术的了解和探究,结合对相关精密工程测量技术特点的了解,本文提出了精密工程测量技术体系的建设方法,进一步提升高速铁路建设完整性与精密性。
关键词:高速铁路;精密工程测量技术;体系建设引言在高速铁路的建设过程中,涉及大量的精密工程。
常见的如铁轨铺设精密度、路线规划的精密度等内容,为了保证高速铁路能够安全稳定运行,在这些工程建设过程中需要保证能够与设计方案全面匹配,从根本上保证系统能够正常稳定运行。
另外在高速铁路的运行中,也需要对铁路进行巡检,该过程中也需要应用精密工程测量技术,保证高速铁路能够正常稳定运行。
1 高速铁路精密工程测量技术体系的内容和意义1.1高速铁路精密工程测量技术体系的内容在高速铁路的建设过程中,涉及的工作包括环境勘察、铁路设计和铁路正式施工三个过程,在这些工作的推行中,都需要应用精密工程测量技术对设计方案进行讨论,并对整个施工过程进行监测,另外在高速铁路的运行过程中,也需要对铁路的运行情况进行测量,通过对该技术体系的应用能够找到高速铁路中存在的安全隐患。
例如在该技术的应用中,能够测量铁轨的高程差等因素,当发现该项参数高于标准误差时,工作人员会将该信息进行及时反馈,从而让技术人员对该故障进行有效排除与解决[1]。
1.2高速铁路精密工程测量技术体系的建设意义在铁路建设中,已经开发出了一些测量技术,由于高速铁路对各项因素的精密度要求更高,传统的测量技术与高速铁路的适配性较低,可以说传统的测量技术无法满足高速铁路在建设与维护中的精密性要求。
高速铁路中的精密工程测量技术精密工程测量是工程测量的分支,是测绘科学在大型工程、高新技术工程和特种工程等精密工程建设中的应用。
精密工程测量主要研究精密工程测量技术的理论和方法,突出“高精度”和“可靠性”,代表了工程测量的最新发展和先进技术。
他是传统工程测量的发展和延伸,应用先进的高精度的仪器、设备进行测角、测距、测高、定向、定位从而获得个点的三维坐标或进行施工放样。
其测量精度一般为1-2mm,相对精度高于10-6。
我国建国半个多世纪以来,随着社会主义现代化建设的发展,同样促进了精密工程测量的蓬勃发展,而正在建设的高速铁路对测量技术的特殊要求也加速了测量技术的发展。
现对高速铁路建设中的精密测量技术的应用做一简单论述。
一、高速铁路建设中精密测量技术的重要性高速铁路以其输送能力大、速度快、安全性好、舒适方便等优点开始在我国进入了高速发展阶段。
高速铁路设计时速高达200km/h~350km/h,运行目标是高安全性和高乘坐舒适性,任何一个小小的颠簸,都会给旅客列车带来严重的安全事故。
因此,要求轨道结构必须具备高平顺度和高稳定性。
而轨道具备高平顺性和高稳定性的条件,除轨道结构的合理外形尺寸、良好的材质和制造工艺外,轨道的高精度铺设是实现轨道初始高平顺性的保证。
而这些必须依靠精密测量才能完成。
进入高铁时代的铁路测量,也随着高铁的要求发生了重大变革,由于高铁比普通铁路线路变得更直、曲线长度变得更长、隧道和桥梁的增加、轨道演变为无砟轨道测量、测量控制网的变化、沉降监控量测的高精度和持久性、测量工作时间的变化等等,给铁路建设维护中的精密工程测量带来很多新课题,测量的理论、方法、规范、仪器都需要革新和变化。
二、高速铁路施工测量的精度标准高速铁路工程测量执行的国家规范有《高速铁路工程测量规范》(TB10601 —2009)、《铁路工程卫星定位测量规范》(J1088-2010)、《铁路工程测量规范》(TB10101-2009)及《国家一、二等水准测量规范》(GB/T12897-2006)。
论我国高速铁路精密工程测量技术体系及特点卢建康摘要:本文对我国高速铁路精密工程测量技术体系的特点进行研究,重点对高速铁路精密工程测量的内容,高速铁路轨道的内部几何尺寸定位精度,高速铁路精密工程测量的布网原则、坐标基准,“三网合一”的测量体系进行了体系的论述。
提出了高速铁路测量平面控制网应在框架控制网(CPO)基础上分三级布设、高程控制网分二级布设的方法,平面坐标系统应采用边长投影变形值≤10mm/km的工程独立坐标系以及应按“三网合一”的原则进行高速铁路精密工程测量的观点。
关键词:高速铁路;精密测量;技术体系前言我国的高速铁路工程测量技术体系是伴随着我国高速铁路无砟轨道工程的建设而逐步建立完善的。
2004年,中铁二院与西南交大合作在遂渝线开展了无砟道铁路工程测量技术的研究,并建立了遂渝无线无砟道综合试验段精密工程测量控制网。
2006年随着京津城际、武广、郑西客运专线无砟轨道铁路的全面开工建设,原有的铁路测量体系和技术标准已不能适应客运专线无砟轨道建设的形势,根据铁建设函【2005】1026号《关于编制2006年铁路工程建设标准计划的通知》的要求,在铁道部建设管理司和铁道部经济规划院主持下,由中铁二院主编完成了《客运专线无碴轨道铁路工程测量暂行规定》,由铁道部于2006年10月16日发布实施。
初步形成了我国高速铁路精密工程测量的技术标准体系。
2008年根据铁道部经济规划院《关于委托编制2008年铁路工程建设标准及标准设计的函》(经规计财函【2008】8号)的要求,由中铁二院主编,中铁一院、铁三院、中铁四院、中铁咨询院、中铁二局、中铁大桥勘测设计院、西南交通大学等单位参编,在现行《客运专线无碴轨道铁路工程测量暂行规定》的基层上,以近年来高速铁路工程测量科研成果为支撑,认真总结京津、武广、郑西、哈大、京泸、广深等高速铁路高速工程测量的实践经验,于2009年8月完成了《高速铁路工程测量规定》(TB10601-2009)的编制,由铁道部于2009年12月1日发布实施。
《高速铁路工程测量规范》(TB10601-2009)的发布实施,形成了一套具有自主知识产权的高速铁路工程测量技术标准。
由于高速铁路行车速度高(250~350km/h),为了达到在高速行驶条件下,旅客列车的安全和舒适性,高速铁路轨道必须具有非常高的平顺性和精确的几何线性参数,精度要保持在毫米级的范围以内。
要求高速铁路测量精度达到毫米级,传统的铁路工程测量技术已不能满足高速铁路建设的要求。
高速铁路的测量方法、测量精度与传统的铁路工程测量完全不同。
我们把适合高速铁路工程测量的技术称为高速铁路精密工程测量;把高速铁路测量中的各级平面高程控制网称为高速铁路精密测量控制网,简称“精测网”。
2、高速铁路精密工程测量的内容和目的2.1 高速铁路精密工程测量的内容高速铁路精密工程测控贯穿于高速铁路工程勘测设计、施工、竣工验收及运营维护测量全过程,包括以下内容:(1)高速铁路平面高程控制测量;(2)线下工程施工测量;(3)轨道施工测量;(4)运营维护测量。
2.2 高速铁路精密工程测量的目的高速铁路精密工程测量的目的是通过建立各级平面高程控制网,在各级精密测量控制网的控制下,实现线下工程按设计线型准确施工和保证轨道铺设的精度能满足旅客列车高速、安全行驶。
高速铁路旅客列车行驶条件下,旅客列车的安全性和舒适性,要求:(1)线路严格按照设计的线型施工,即保持精确的几何线型参数;(2)轨道必须具有非常高的平顺性,精度要保持在毫米级的范围以内。
为了满足上述要求,应根据线下工程和轨道铺设的精度要求设计高速铁路的各级平面高程控制网测量精度。
2.3 高速铁路轨道铺设的精度要求高速铁路轨道施工的定位精度决定着高速铁路的平顺性,高速铁路轨道铺设应满足轨道内部几何尺寸(轨道自身的几何尺寸)和外部几何尺寸(轨道与周围建筑物的相对尺寸)的精度要求。
其中内部尺寸描述轨道的几何形状,外部几何尺寸体现轨道的空间位置和标高。
2.3.1 轨道的内部几何尺寸轨道内部几何尺寸体现出轨道的形状,根据轨道上相邻点的相对位置关系就可以确定,表现为轨道上各点的相对位置。
轨道内部几何尺寸的各项规定是为了给列车的平稳运行提供一个平顺的轨道,即通常提到的平顺性。
因此,除轨距和水平之外,还规定了轨道纵向高低和方向的参数,这些参数能保证轨道的实际形状是否与设计形状相符,轨道内部几何尺寸的测量也称之为轨道的相对定位。
高速铁路轨道铺设内部几何尺寸精度标准如表1所示。
2.3.2 轨道的外部几何尺寸轨道的外部尺寸是轨道在空间三维坐标系中的坐标和高程,由轨道中线与周围相邻建筑物的关系来确定。
轨道外部几何尺寸的测量也称之为轨道的绝对定位,轨道的绝对定位必须与路基、桥梁、隧道、站台等线下工程的空间位置坐标和高程相匹配协调。
轨道的绝对定位精度要求如表2所示。
轨道的绝对定位精度必须满足轨道相对定位精度的要求,即轨道平顺性的要求。
由此可见,高速铁路各级测量控制网测量精度应同时满足足线下工程施工和轨道工程施工的精度要求,即必须同时满足轨道绝对定位和相对定位的精度要求。
3 高速铁路精密工程测量的特点3.1 高速铁路各级平面高程控制网精度应满足勘测设计、线下工程施工、轨道施工及运营养护的要求表2 高速铁路轨道轨面高程、轨道中线、线间距允许偏差由于过去铁路建设的速度目标值较低,对轨道的线型和平顺性要求不高,传统的铁路工程测量在勘测、施工中没有要求建立一套适合勘测、施工、运营维护的完善的控制测量系统。
控制网测量的精度指标主要是根据满足线下土建工程的施工控制要求而制定,轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设,这种铺轨方法由于测量误差的积累,往往造成轨道的几何参数与设计参数相差甚远。
3.2 高速铁路精密测量控制网按分级布网的原则布设高速铁路工程测量平面控制网应在框架控制网(CPO)基础上分三级布设,第一级为基层平面控制网(CPI),主要为勘测、施工、运营维护提供坐标基准;第二级为线路平面控制网(CPⅡ),主要为勘测和施工提供控制基准;第三级为轨道控制网(CPⅢ),主要为轨道铺设和运营维护提供控制基准。
三级平面控制网之间的相互关系如图1所示。
图1 高速铁路三级平面控制网示意图高速铁路工程测量高程控制网分二级布设,第一级线路水准基点控制网,为高速铁路工程勘测设计、施工提供高程基准;第二级轨道控制网(CPⅢ),为高速铁路轨道施工、维护提供高程基准。
高速铁路建立框架控制网CPO,是在总结京津城际铁路、郑西、武广、哈大、京泸、石武高速铁路平面控制测量实践经验基础上提出的。
由于高速铁路线路长、地区跨越幅度大且平面控制网沿高速铁路呈带状布设,为了控制带状控制网的横向摆动,沿线必须每隔一段距离联测高等级的平面控制点。
但是由于沿线国家的高级控制点之间的精度较低,基础平面控制网CPI经国家点约束后使高精度的CPI控制网发生扭曲,大大降低了CPI控制点间的相对精度,个别地段经国家点约束后的CPI控制点间甚至不能满足1/180000的要求。
在测量中不得不采用一个点和一个方向的约束方式进行CPI控制网平差,但这种平差方式给CPI控制网复测带来不便。
为此在京津城际铁路、哈大、京沪、石武高速铁路平面控制测量中首先采用GPS精密定位测量方法建立高精度的框架控制网CP0,作为高速铁路平面控制测量的起算基准,不仅提高了CPI控制网的精度,也为平面控制网复测提供了基准。
高速铁路工程测量平面控制网应在框架控制网(CPO)基础上分三级布设,是因为测量控制网的精度在满足线下工程施工控制网测量要求的同时必须满足轨道铺设的精度要求,使轨道的几何参数与设计的目标位置之间的偏差保持在最小。
而轨道的铺设施工和线下工程路基、桥梁、隧道、站台等工程的施工放样是通过由各级平面高程控制网组成的测量系统来实现的,为了保证轨道与线下工程路基、桥梁、隧道、站台的空间位置坐标、高程相匹配协调。
必须按分级控制的原则建立高速铁路测量控制网。
3.3高速铁路工程测量平面坐标系统应采用边长投影变形值≤10mm/km的工程独立坐标系高速铁路工程测量精度要求高,施工中要求由坐标反算的边长值与现场实测值应一致,即所谓的尺度统一。
由于地球是个椭球曲面,地面上的测量数据需投影到施工面上,由曲面的几何图形在投影到平面时,不可避免会产生变形。
采用国家3°带投影的坐标系统,在投影带边缘的边长投影变形值达到340mm/km,这时无砟轨道的施工是很不利的,对工程施工的影响呈系统性。
从理论上来说,边长投影变形值越小越有利。
德国高速铁路采用MKS定义的特殊技术平面坐标系统。
MKS可根据需要把地球表面正形投影到设计和计算平面上,发生的(不可避免的)长度变形限定在10mm/km的数量级上,即投影变形误差控制在1/100 000以内。
在京津城际高速铁路工程测量中,平面坐标系统投影变形值按1/100 000控制。
根据武广线、郑西线无砟轨道CPⅢ控制网的测量实践表明,在满足边长投影长度变形值不大于10mm/km的条件下,线下工程施工时,可不进行边长投影改正直接利用坐标反算距离进行施工放线,CPⅢ观测距离不需进行投影改化进行平差计算就可以满足CP Ⅲ控制网的精度要求。
3.4高速铁路精密工程测量“三网合一”的测量体系高速铁路工程测量的平面、高程控制网,按施测阶段、施测目的及功能不同分为了勘测控制网、施工控制网、运营维护控制网。
我们把高速铁路工程测量这三个阶段的控制网,简称“三网”勘测控制网包括:CPⅠ控制网、CPⅡ控制网、二等水准基点控制网。
施工控制网包括:CPⅠ控制网、CPⅡ控制网、水准基点控制网、CPⅢ控制网。
运营控制网包括: CPⅡ控制网、水准基点控制网、CPⅢ控制网、加密维护基标为保证控制网的测量成果质量满足高速铁路勘测、施工、运营维护三个阶段测量的要求,适应高速铁路工程建设和运营管理的需要,三阶段的平面、高程控制测量必须采用统一的基准。
即勘测控制网、施工控制网、运营维护控制网均采用CPⅠ为基础平面控制网,以二等水准基点网为基础高程控制网。
简称为“三网合一”。
“三网合一”的内容和要求如下:3.4.1 勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一在高速铁路的勘测设计、线下施工、轨道施工及运营维护的各阶段均采用坐标定位控制。
因此必须保证三网的坐标高程系统的统一,才能使高速铁路发勘测设计、线下施工、轨道施工即运营维护工作顺利进行。
如果勘测控制网与线下工程施工控制网坐标高程系统不统一,则无法按照设计的坐标高程施工,线位偏离设计位置,高程净空限界不足:在武广、郑西客专建设中,由于原勘测控制网的精度和边长投影变形值不能满足无砟轨道施工测量的要求,后来按《客运专线无砟轨道铁路工程测量暂行规定》的要求建立了CPⅠ、CPⅡ平面控制网和二等水准高程应急网。