2017广西国家公务员考试行测备考充:如何速解排列组合
- 格式:doc
- 大小:48.00 KB
- 文档页数:3
国家公务员考试每年有超过一百万人参加,竞争程度百里挑一,因此很多考生早早就启动了国考的备考工作。
国家公务员招考科目主要为《行政能力测验》、《申论》,青海中公教育整理国家公务员学习指导精华文章,帮助考生顺利备考。
更具体的,我们来看看国家公务员考试课程是如何设置教学的。
点击这里可以 >>> 在线咨询。
排列组合是行测考试中很多考生心中很难对付的题,一方面排列组合的题目条件复杂,有些元素限制较多;另一方面计算量看起来比较大。
中公教育专家认为,只要学会利用分类分步的思想去思考这些题目,就能很快地理清思路,再加以一定练习,排列组合题目就手到擒来了。
一、分类分步的解题原理何为分类分步,简单来说,从长沙去北京,完成这样一件事情三类方法:一是坐火车过去,有3趟不同的火车;二是坐汽车过去,有2趟不同的汽车;三是坐飞机过去,有4趟不同的航班,那么我从长沙到北京就一共有3+2+4=9种不同的方法。
三类方法每一类都能单独完成从长沙到北京这件事情,所以把每一类的方法数相加,这是分类相加的原理。
如果我需要从长沙先到武汉,然后到北京,假设从长沙到武汉有4种方法,从武汉到北京有3种方法,那么总方法数就有4×3=12种。
这是分步相乘的原理。
其特点是每一步都不可缺少,且每一步都不能单独完成任务。
二、真题演练分类分步是相辅相成的,做题的时候一般是先考虑分类再考虑分步。
【例1】由1-9组成没有重复数字的三位数共有多少个?A.432B.504C.639D.720【中公解析】三维数可以分成个、十、百三步去完成,首先完成个位,可以放任意的数字,一共有9种方法;然后完成十位,因为不能和个位一样,所以去掉个位之后还剩下8个数字,共有8种方法;最后填百位,不能和十位以及个位相同,一共有7种方法。
根据分步这道题相对来说比较简单,但是再加工一下就变得比较复杂了,如下题:【例2】由0-9十个数字组成的没有重复数字的三位偶数共有多少个?A. 392B.432C.450D.630【中公解析】分析一下这道题,题目要求是三位数,那么0这个数字就不能放在百位上了,也就是说百位共有9种方法,而十位可以任意的放置,共有10种方法,个位必须是偶数,只有0、2、4、6、8这5种方法。
公务员行测数量关系答题技巧:排列组合不再难一、优限法对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。
【例】某宾馆有6个空房间,3间在一楼,3间在二楼。
现有4名客人要入住,每人都住单间,都优先选择一楼房间。
问宾馆共有多少种安排?A 24B 36C 48D 72中公教育【例】:奶奶有6块不同的糖,如今要把糖平均分给三个孙子,一共有多少种分法?A.360B.90C.45D.15行测数量关系模拟题及答案 1、用抽签的方法从3名同学中选1名去参加音乐会,准备3张一样的小纸条,并在1张纸条画上记号,其余2张纸条不画.把3张纸条折叠后放入一个盒子中搅匀,然后让甲、乙、丙依次去摸纸条,他们抽到画有记号的纸条的概率记P甲、P乙、P丙,那么( )A.P甲》P乙》P丙B.P甲C.P甲》P乙=P丙D.P甲=P乙=P丙2、学校要举行夏令营活动,由于名额有限,需要在符合条件的5个同学中通过抓阄的方式选择出两个同学去参加此次活动。
于是班长就做了5个阄,其中两个阄上写有“去”字,其余三个阄空白,混合后5个同学依次随机抓取。
计算第二个同学抓到“去”字阄的概率为( )A.0.2B.0.25C.0.4D.0.11、【答案】D。
解析:利用我们前面所学到总结到的结论,我们可以判断出不管这3名同学按照怎么的顺序进展摸纸条,最终的概率都是一样,所以这道题目我们直接选择D选项。
2、行测数学运算备考辅导:特殊计数问题行测数量关系备考辅导:速解抽屉问题行测逻辑判断备考辅导:假言命题之附属关系行测真题行测答案行测答题技巧行测题库模拟试题。
公务员考试逻辑判断技巧之排列组合题型解题技巧(优秀版)word资料公务员考试逻辑判断技巧之:排列组合题型解题技巧排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。
一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。
一共有9种填法,故选B二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四、消序例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。
五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。
首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。
2017年国家公务员行测数量关系技巧:排列组合常用方法排列组合最近几年一直都是国考的热门考点,所以在备考时希望引起大家的重视。
排列组合除了基本的计数原理和排列数、组合数计算之外,还需要大家了解一些常用的解题方法。
这些方法主要有:优限法、捆绑法、插空法、隔板法和环形排列。
今天就由中公教育资深专家带领大家学习下解排列组合类型的题目时常用的优限法。
【基础训练】6个人站成一排拍照,已知小李不愿意站在排头和排尾,其他人随便站,问这6人一共有多少种排列的方式?A.120种B. 360种C. 480种D.720种【答案】C。
解析:由题意可知小李只能在6个位置中间的4个位置里面选一个,【基础训练】用1、2、3、4、5这五个数字能组成多少个没有重复数字的两位数的偶数?A.4个B.6个C.8个D.12个【答案】C。
解析:由题意可知要想组成偶数则这个两位数的个位数字必须是偶数,1至5这五个数字中只有2和4是偶数则个位数字有2种可能,又要求没有重复出现的数字则十位上的数字从剩下的4个数中选一个即可,则十位数字有4种情况,总的情况数是2×4=8种。
选C。
【考点点拨】在排列组合类型的题目求解时要注意题目中隐含的限制条件,这道题目中的偶数隐含了这个数的个位数字必须为偶数这一限制条件。
常见的隐含条件除了偶数之外还有奇数、五的倍数(末尾数必须是0或者5的数)等。
【真题再现】一次会议某单位邀请了10名专家,该单位预定了10个房间,其中一层5间、二层5间。
已知邀请专家中4人要求住二层,3人要求住一层,其余3人住任一层均可,那么要满足他们的住房要求且每人1间,有多少种不同的安排方案?【2014-国考】A. 75B. 450C. 7200D. 43200【答案】D。
解析:共有10人,4人要求住二层,优先考虑这4人的要求将4人安排到【考点点拨】将分房间的解决办法分成3步,先考虑有特殊要求的元素即先分要求住二层的4个人,再分要求住一层的3个人,最后考虑没有特殊要求的元素,分步计算要用乘法。
公务员考试行政能力测试数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。
那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用的解题方法和策略。
解决排列组合问题有几种相对比较特殊的方法。
下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。
【解析】首先,从题中之3个节目固定,固有四个空。
所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。
二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。
综上所述,共有12+8=20种。
二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。
【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。
公考排列组合问题的解题思路及方法摆列组合成绩是公事员测验傍边常常考查的一种题型,也是良多考心理解的不是很清楚的一类题型,所以经由过程几篇文章具体阐发一下摆列组合成绩的解题思绪息争题方式,但愿对考生的备考有所帮忙。
解答摆列组合成绩,起首必需当真审题,明白是属于摆列成绩仍是组合成绩,或属于摆列与组合的夹杂成绩,其主要捉住成绩的素质特点,矫捷应用根基道理和公式停止阐发,同时还要注重讲求一些战略和方式技能。
上面引见几种经常使用的解题方式和战略。
1、公道分类与精确分步法(操纵计数道理)解含有束缚前提的摆列组合成绩,应按元生性质停止分类,按工作产生的持续进程分步,包管每步自力,到达分类尺度明白,分步条理清晰,不重不漏。
例1、五小我排成一排,此中甲不在排头,乙不在排尾,分歧的排法有()A.120种B.96种C.78种D.72种阐发:由题意可先放置甲,并按其分类会商:1)若甲在末尾,剩下四人可自在排,有A=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数道理,排法共有24+54=78种,选C。
解摆列与组归并存的成绩时,普通采取先选(组合)后排(摆列)的方式解答。
2、特别元素与特别地位优待法对有附加前提的摆列组合成绩,普通采取:先斟酌知足特别的元素和地位,再斟酌其它元素和地位。
例2、从6名自愿者当选出4人别离从事翻译、导游、导购、保洁四项分歧的任务,若此中甲、乙两名自愿者都不克不及从事翻译任务,则分歧的遴派方案共有()(A)280种(B)240种(C)180种(D)96种阐发:因为甲、乙两名自愿者都不克不及从事翻译任务,所以翻译任务就是“特别”地位,是以翻译任务从剩下的四名自愿者中任选一人有种分歧的选法,再从其他的5人中任选3人从事导游、导购、保洁三项分歧的任务有种分歧的选法,所以分歧的遴派方案共有=240种,选B。
3、插空法、绑缚法对某几个元素不相邻的摆列成绩,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两头空地中拔出便可。
行测考试中排列组合题的解题好方法在公职考试的行测试卷中,排列组合类问题是考查得较为频繁的一类题型。
对于解决行测排列组合问题,常用的方法包括优限法、捆绑法、插空法等等,而插板法常被考生遗忘,其实这也是一种需要大家掌握的便捷方法。
在此,教育专家就同大家一起来研究下这种方法。
对于插板法,它的实质就是解决相同元素的不同分堆问题,题目中往往会出现“……至少……,……个相同的……分给……”这样的字眼,因此,大家要注意插板法的适用环境相当严格,必须同时满足以下三个条件:要分堆的元素必须完全相同;要分的元素必须分完,决不允许有剩余;每个对象至少分1个,决不允许出现分不到元素的对象。
核心公式:把n个相同元素分给m个不同的对象,每个对象至少1个元素,总的分法数为种。
在考试过程中,往往会遇到题干难以满足插板模型的第3个条件,但我们可以通过转换使之满足。
先来看下题干满足插板模型所有条件情况下的简单应用:【例1】有10个相同的篮球,分给7个班,每班至少一个,有多少种分配方案?A. 36B.64C.84D.210【答案】C【解析】此题满足插板模型的所有条件,直接套用公式,共有种分配方案。
但是考试题中往往会出现题干并不满足插板模型的第3个条件的情况,接下来我们看下插板模型的两种变形:【例2】某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。
问一共有多少种不同的发放方法?( )A.7B.9C.10D.12【答案】C【解析】从题干条件不难看出,这里的30份学习材料代表30个相同的元素,发放给3个部门,每个部门至少发放9份材料,那么我们可以把它转化成给3个部门至少发1份材料。
如何转化呢?可以先给这三个部门每个部门分发8份材料,这样就只需要再给这三个部门分发一份材料就能满足题目要求。
30份材料分发给3个部门各8份材料,还剩下6份材料,则问题转化为对剩下的6份材料分堆,利用插板法可得,【例3】有5个相同的篮球,分给3个班,总共有多少种分配方案?A. 10B. 28C. 56D.60【答案】B【解析】从题干不难看出,没有“至少一个”的要求,因此并不符合插板法的第三个要求,那么我们可以想办法凑第3个条件,我们可以从3个班中先各借一个篮球,就可以把问题转化为8个篮球分给3个班,且每个班至少发一个,再依据所给公式,总的分配方案为结合教育专家以上列举的两道题目不难发现,在考试过程中一般不会考查完全符合插板法三个条件的题目,往往不符合插板法第3个条件,因此考试时考生要灵活应对。
国家公务员行测高频考点排列组合解答技巧国家公务员行测考试中,排列组合也是一个比较常见的考点。
这部分的内容的特点是题型的种类很多,单独看排列组合的形式,常考的也有6种以上的题型。
据分析,近几年虽然没有直接的考察排列组合,但是这个知识点和概率的考察现在紧密的联系在一起,另外就是和最值问题考察,这也符合近几年行测试题的难度变化。
拿排列组合来说,题型有很多种,解答的方法有“优限法”、“捆绑法”、“插空法”、“间接法”、“穷举法”等,每一种方法是针对一种题型而设置,而且这些方法之间并不是单独存在的,有些时候一道题需要几种方法的混合使用,虽然这种题目的难度不大,但是综合性很强。
这里就拿“捆绑法”、“插空法”来说,“相邻问题”捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序。
“不邻问题”插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?。
公务员行政能力考试测验排列组合之解题方法精要在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。
这三种方法有特定的应用环境,华图公务员录用考试研究中心行政职业能力测验研究专家沈栋老师通过本文以实例来说明三种方法之间的差异及应用方法。
一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。
解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。
为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,外语书排序方法数为。
而三者之间是分步过程,故而用乘法原理得。
【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙两个人也有顺序要求,方法数为,因此站队方法数为。
【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。
如下面的例题。
【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。
2017国家公务员考试行测备考:“隔板法”解决同素分堆问题2017年的国考即将到来,现在备考时间相对较长,中公教育专家在这里给大家分享行测数量关系中大家觉得最难的一部分——排列组合中的同素分堆。
同素分堆问题是求方法数问题的一种基本题型。
它的最基本的模型是:“把n个相同的元素分成m堆,每堆至少1个,问有多少中不同的分法?”这里的“同素”即“相同的元素”,在这个模型中,最关键的是“每堆至少1个”这句话,必须是每堆至少一个,才可用我们接下来要讲的解决这类问题的方法:隔板法。
【例1】把10本相同的书分给3个班级,每班至少1个,问有多少种不同的分法?【中公解析】本题中“同素”:是10本相同的书,故n=10;分给3个班级:即将书分成3堆,故m=3;每班至少1本。
故本题为同素分堆问题的最基本的模型。
【解决方法】隔板法。
把10本书排成一排,因为书是相同的,不存在排列顺序问题。
要把这10本书分成三堆,只要在这10本书形成的空隙中插入2个隔板即可。
10本书排成一排,形成了11个空。
但是,因为要求每班至少分一本书,所以最前面的空和最后一个空是不能插板的,则只能在中间形成的9个空中插入2个隔板,即从9个空中选择2个空插入隔板。
即种,也即把10本相同的书分给3个班级,每班至少1个,共有种方法。
【例2】把10本相同的书分给3个班级,每班至少2本,问有多少种不同的分法?【中公解析】题干要求的是“每班至少2本”。
而应用隔板法解决同素分堆问题时,要求必须是“每堆至少1个”。
因此想办法把“每班至少多于1个”转化成“每堆至少1个”,可以通过先每班分一本书,然后还剩7本书,此时题目转化成“把7本相同的书分给3个班级,每班至少一本,问有多少中不同的分法?”故有种不同的分法。
【例3】把10本相同的书分给3个班级,三个班级分得的书数分别不小于1,2,3,问有多少种不同的分法?【中公解析】应用隔板法解决同素要求必须是“每堆至少1个”。
因此想办法把“每班至少多于1个”转化成“每堆至少1个”。
2017广西国家公务员考试行测备考充:如何速解排列组合2017国家公务员考试(广西区)《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,通过测试选拔出能够胜任公共管理工作的优秀人才。
内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。
广西中公教育整理了新的备考资料,点击查看:行测学习频道,供考生备考学习。
我要了解更多,想和老师直接沟通>>>在线咨询。
排列组合问题是公务员考试行测试卷中为数不多的高中知识考点,相对于其他题型,排列组合问题更加抽象和模型化。
我们在解题的过程中,不仅需要掌握最基础的排列组合知识,更需要把不同类型的题型转化成固定的模型。
下面,广西中公教育专家将带领大家一起来玩转排列组合里的一个重要考点——同素分堆模型。
同素分堆模型:把相同的元素物品,分给几个不同的对象,且元素必须分完。
解题方法:隔板法;把这些元素看成是物品排成一排,然后再中间放入板子。
放一块板子就相当于分成2堆,放两块板子就被分成3堆,所以分给N给人时,就放(N-1)快板子即可。
随着板子在不同的空移动,每个对象分得的物品就不一样。
【例题1】把10台相同的电脑,分给3所希望小学,且每所学校至少分得1台。
有多少种不同的分配方式?
【中公解析】10台电脑中间形成9个空,分给3所学校就在中间放2块板子。
所以方法数:。
【例题2】10台相同的电脑,分给三所希望小学,每个学校至少分得2台。
有多少种不同的分配方式?
【中公解析】每个学校至少分得两台,但是隔板过程中只能保证每堆至少有一个元素。
所以,我们先给每个学校分一台电脑。
此时还剩下7台电脑,且每个学校只需分得1台电脑。
即方法数:。
【例题3】10台相同的电脑分给三所希望小学,要求A校至少分得1台、B校至少分得2台、C校至少分得3台。
有多少种不同的分配方式?
【中公解析】每个学校要求不一致,但思路一样——转化成每个学校至少分得1台的情况。
所以先给B校1台、C校2台。
剩下7台电脑再分配时,需给每个学校1台。
所以方法数:。
【例题4】10台相同的电脑分给三所希望小学,有学校可以不分得但必须分完。
有多少种不同的分配方式?
【中公解析】当有对象可以不分得时,我们可以先从3所学校各借1台电脑。
变成有13台电脑去分给3所学校,且每个学校至少分得1台电脑。
那么这样就变成跟最简单的模型一样。
方法数:。
以上就是广西中公教育专家列举的四类同素分堆模型问题,基本上穷尽了各类变形。
相信大家对于这个小题型也一定能够充分理解、掌握。
不仅仅是同素分堆模型,其实数量关系里面还有很多题
型他们都可以分解成一系列的小题型,然后我们各个击破,在考场上把数量关系的分数尽收囊中。
中公教育公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!公务员考试题库系统邀请您一同刷题!。