2018版高中数学第二章圆锥曲线与方程2.2.2椭圆的简单几何性质(1)学案新人教A版选修2_1
- 格式:doc
- 大小:386.51 KB
- 文档页数:13
2018版高中数学第二章圆锥曲线与方程2.1.2 椭圆的简单几何性质第1课时椭圆的简单几何性质学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章圆锥曲线与方程2.1.2 椭圆的简单几何性质第1课时椭圆的简单几何性质学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章圆锥曲线与方程2.1.2 椭圆的简单几何性质第1课时椭圆的简单几何性质学案新人教A版选修1-1的全部内容。
2.1.2 第1课时椭圆的简单几何性质1。
掌握椭圆的简单几何性质,能用椭圆的简单几何性质求椭圆方程.(重点)2.掌握椭圆离心率的求法及a,b,c的几何意义。
(难点)3。
理解长轴长、短轴长、焦距与长半轴长、短半轴长、半焦距的概念。
(易混点)[基础·初探]教材整理椭圆的简单几何性质阅读教材P37观察~P40例4以上部分,完成下列问题。
1。
椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)范围-a≤x≤a,-b≤y≤b-b≤x≤b,-a≤y≤a顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c对称性对称轴为坐标轴,对称中心为(0,0)离心率e=错误!2.离心率性质离心率e的范围是(0,1).e越接近于1,椭圆越扁;e越接近于0,椭圆就越接近于圆。
第1课时 椭圆的简单几何性质[A 基础达标]1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6D .10、6、0.6解析:选B.把椭圆的方程写成标准形式为x 29+y 225=1,知a =5,b =3,c =4.所以2a =10,2b =6,ca=0.8.2.一椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则该椭圆的标准方程是( )A.x 216+y 29=1或x 29+y 216=1 B.x 225+y 29=1或y 225+x 29=1 C.x 225+y 216=1或y 225+x 216=1 D .椭圆的方程无法确定解析:选C.由题可知,a =5且c =3,所以b =4, 所以椭圆方程为x 225+y 216=1或y 225+x 216=1.3.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( )A.x 24+y 216=1或x 216+y 24=1B.x 24+y 216=1 C.x 216+y 24=1 D.x 216+y 220=1 解析:选C.由已知a =4,b =2,椭圆的焦点在x 轴上,所以椭圆方程是x 216+y 24=1.故选C.4.已知焦点在x 轴上的椭圆:x 2a2+y 2=1,过焦点作垂直于x 轴的直线交椭圆于A ,B两点,且|AB |=1,则该椭圆的离心率为( )A.32B.12C.154D.33解析:选A.椭圆的焦点坐标为(±a 2-1,0),不妨设A ⎝ ⎛⎭⎪⎫a 2-1,12,可得a 2-1a 2+14=1,解得a =2,椭圆的离心率为e =a 2-1a =32.故选A.5.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若存在点P 为椭圆上一点,使得∠F 1PF 2=60°,则椭圆离心率e 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫0,22 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎭⎪⎫12,22 解析:选C.在△PF 1F 2中,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,得(2c )2=m 2+n 2-2mn cos 60°,配方得(m +n )2-3mn =4c 2,所以3mn =4a 2-4c 2,所以4a 2-4c 2=3mn ≤3·⎝ ⎛⎭⎪⎫m +n 22=3a 2,即a 2≤4c 2,故e 2=c 2a 2≥14,解得12≤e <1.故选C.6.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________. 解析:依题意得椭圆的焦点坐标为(0,5),(0,-5),故c =5,又2b =45,所以b =25,a 2=b 2+c 2=25,所以所求椭圆方程为x 220+y 225=1.答案:x 220+y 225=17.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的标准方程为________.解析:设椭圆的长半轴长为a ,由2a =12知a =6. 又e =c a =32,故c =33, 所以b 2=a 2-c 2=36-27=9.所以椭圆标准方程为x 236+y 29=1.答案:x 236+y 29=18.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点.已知点P (a ,b ),△F 1PF 2为等腰三角形,则椭圆的离心率e =________.解析:设F 1(-c ,0),F 2(c ,0)(c >0),由题意得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c .把b 2=a 2-c 2代入,整理得2⎝ ⎛⎭⎪⎫c a 2+ca-1=0,解得c a =-1(舍去)或c a =12.所以e =c a =12.答案:129.求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)短轴的一个端点与两焦点组成一个正三角形,且焦点到长轴上同侧顶点的距离为3.解:(1)由题意知,2c =8,c =4,所以e =c a =4a =12,所以a =8,从而b 2=a 2-c 2=48,所以椭圆的标准方程是y 264+x 248=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.从而b 2=9,所以所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1. 10.如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.解:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).如题图所示,则有F 1(-c ,0),F 2(c ,0),A (0,b ),B (a ,0),直线PF 1的方程为x =-c ,代入方程x 2a 2+y 2b2=1,得y =±b 2a ,所以P ⎝⎛⎭⎪⎫-c ,b 2a . 又PF 2∥AB , 所以△PF 1F 2∽△AOB .所以|PF 1||F 1F 2|=|AO ||OB |,所以b 22ac =ba,所以b =2c .所以b 2=4c 2,所以a 2-c 2=4c 2,所以c 2a 2=15.所以e =c a =55. [B 能力提升]11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:选C.由题意得F (-1,0),设点P (x 0,y 0),则y 20=3⎝ ⎛⎭⎪⎫1-x 204(-2≤x 0≤2), OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14(x 0+2)2+2,当x 0=2时,OP →·FP →取得最大值为6.12.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),则由∠BFC =90°得BF →·CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2·⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫-b 22=0⇒3c 2=2a 2⇒e =63.答案:6313.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c . 所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 1(-c ,0),F 2(c ,0). 其中,c =a 2-b 2,设B (x ,y ). 由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32⇒b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.14.(选做题)已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B ,过F ,B ,C 三点作⊙P ,且圆心在直线x +y =0上,求此椭圆的方程.解:设圆心P 的坐标为(m ,n ),因为圆P 过点F ,B ,C 三点,所以圆心P 既在FC 的垂直平分线上,也在BC 的垂直平分线上,FC 的垂直平分线方程为x =1-c2.① 因为BC 的中点为⎝ ⎛⎭⎪⎫12,b 2, k BC =-b ,所以BC 的垂直平分线方程为y -b 2=1b ⎝⎛⎭⎪⎫x -12②由①,②联立,得x =1-c 2,y =b 2-c2b ,即m =1-c 2,n =b 2-c2b.因为P (m ,n )在直线x +y =0上, 所以1-c 2+b 2-c2b =0,可得(1+b )(b -c )=0, 因为1+b >0,所以b =c ,结合b 2=1-c 2得b 2=12,所以椭圆的方程为x 2+y 212=1,即x 2+2y 2=1.。
2018版高中数学第二章圆锥曲线与方程2.1.2 椭圆的简单几何性质第2课时椭圆方程及性质的应用学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章圆锥曲线与方程2.1.2 椭圆的简单几何性质第2课时椭圆方程及性质的应用学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章圆锥曲线与方程2.1.2 椭圆的简单几何性质第2课时椭圆方程及性质的应用学案新人教A版选修1-1的全部内容。
2。
1。
2 第2课时椭圆方程及性质的应用1.掌握直线与椭圆的位置关系。
(重点)2。
通过一元二次方程根与系数关系的应用,解决有关椭圆的简单综合问题.(重点)3。
能利用椭圆的有关性质解决实际问题。
(难点)[基础·初探]教材整理1 点与椭圆的位置关系设点P(x0,y0),椭圆x2a2+错误!=1(a>b>0)。
(1)点P在椭圆上⇔错误!+错误!=1;(2)点P在椭圆内⇔错误!+错误!<1;(3)点P在椭圆外⇔错误!+错误!>1。
已知点(2,3)在椭圆x2m2+错误!=1上,则下列说法正确的是________①点(-2,3)在椭圆外②点(3,2)在椭圆上③点(-2,-3)在椭圆内④点(2,-3)在椭圆上【解析】由椭圆的对称性知点(2,-3)也在椭圆上。
【答案】④教材整理2 直线与椭圆的位置关系1。
直线与椭圆的位置关系及判定直线y=kx+m与椭圆错误!+错误!=1(a>b>0)联立错误!消去y得一个一元二次方程。
位置关系解的个数Δ的取值相交两解Δ>0相切一解Δ=0相离无解Δ<02。
第1课时 椭圆的简单几何性质1.掌握椭圆的几何性质,了解椭圆标准方程中a 、b 、c 的几何意义.(重点)2.会用椭圆的几何意义解决相关问题.(难点)[基础·初探]教材整理1 椭圆的简单几何性质阅读教材P 43~P 45“思考”以上部分,完成下列问题.【答案】 a 2+b2=1(a >b >0) -a ≤x ≤a 且-b ≤y ≤b -b ≤x ≤b 且-a ≤y ≤a 2b2a 2c 坐标轴 原点1.椭圆x 281+y 245=1的长轴长为( )A.81B.9C.18D.45【解析】 由标准方程知a =9,故长轴长2a =18.【答案】 C2.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A.12 B.2 C.14D.4 【解析】 方程化为x 2+y 21m=1,长轴长为2m ,短轴长为2,由题意,2m=2×2,∴m=14. 【答案】 C 教材整理2 离心率阅读教材P 45“思考”以下部分,完成下列问题.1.定义:椭圆的焦距与长轴长的比________称为椭圆的________. 【答案】 c a离心率2.性质:离心率e 的范围是________.当e 越接近于1时,椭圆________;当e 越接近于________时,椭圆就越接近于圆.【答案】 (0,1) 越扁 01.椭圆x 216+y 28=1的离心率为________.【解析】 ∵a 2=16,b 2=8, ∴e =1-816=22. 【答案】222.已知椭圆的两焦点为F 1、F 2,A 为椭圆上一点,且AF 1→·AF 2→=0,∠AF 2F 1=60°,则该椭圆的离心率为________.【解析】 ∵AF 1→·AF 2→=0, ∴AF 1⊥AF 2,且∠AF 2F 1=60°. 设|F 1F 2|=2c ,∴|AF 1|=3c ,|AF 2|=c .由椭圆定义知:3c +c =2a ,即(3+1)c =2a . ∴e =c a=23+1=3-1.【答案】 3-1[小组合作型]设椭圆方程mx 2+4y 2=4m (m >0)的离心率为2,试求椭圆的长轴的长和短轴的长、焦点坐标及顶点坐标.【精彩点拨】 首先把方程化为标准形式,然后判断焦点位置,分析a ,b ,c 的值,写出相关性质.【自主解答】 椭圆方程可化为x 24+y 2m=1.(1)当0<m <4时,a =2,b =m ,c =4-m ,∴e =c a =4-m 2=12,∴m =3,∴b =3,c =1,∴椭圆的长轴的长和短轴的长分别是4,23,焦点坐标为F 1()-1,0,F 2()1,0,顶点坐标为A 1()-2,0,A 2()2,0,B 1(0,-3),B 2(0,3).(2)当m >4时,a =m ,b =2,∴c =m -4,∴e =c a=m -4m=12,解得m =163,∴a =433,c =233,∴椭圆的长轴的长和短轴的长分别为833,4,焦点坐标为F 1⎝⎛⎭⎪⎫0,-233,F 2⎝ ⎛⎭⎪⎫0,233,顶点坐标为A 1⎝ ⎛⎭⎪⎫0,-433,A 2⎝⎛⎭⎪⎫0,433,B 1(-2,0),B 2(2,0).1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.2.焦点位置不确定的要分类讨论,找准a 与b ,正确利用a 2=b 2+c 2求出焦点坐标,再写出顶点坐标.同时要注意长轴长、短轴长、焦距不是a ,b ,c ,而应是a ,b ,c 的两倍.[再练一题] 1.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程,并研究其性质.【导学号:37792052】【解】 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1.性质:①范围:-8≤x ≤8,-10≤y ≤10; ②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0); ④离心率:e =35.(1)椭圆过点(3,0),离心率e =63; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为8.【精彩点拨】 (1)椭圆的焦点位置确定吗?(2)基本量a 、b 、c 分别为多少?怎样求出? 【自主解答】 (1)若焦点在x 轴上,则a =3, ∵e =ca =63,∴c =6, ∴b 2=a 2-c 2=9-6=3. ∴椭圆的方程为x 29+y 23=1.若焦点在y 轴上,则b =3,∵e =c a =1-b 2a 2=1-9a 2=63,解得a 2=27. ∴椭圆的方程为y 227+x 29=1.∴所求椭圆的方程为x 29+y 23=1或y 227+x 29=1.(2)设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1FA 2为等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , ∴c =b =4,∴a 2=b 2+c 2=32, 故所求椭圆的方程为x 232+y 216=1.1.用几何性质求椭圆的标准方程通常采用的方法是待定系数法.2.根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a 2,b 2的值;②确定焦点所在的坐标轴;③写出标准方程.3.在求解a 2、b 2时常用方程(组)思想,通常由已知条件与关系式a 2=b 2+c 2,e =c a等构造方程(组)加以求解.[再练一题]2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为( )A.x 29+y 216=1 B.x 225+y 216=1 C.x 216+y 225=1 D.x 216+y 29=1 【解析】 由题意,得⎩⎪⎨⎪⎧2a +2b =18,c =3,a 2=b 2+c 3,解得⎩⎪⎨⎪⎧a =5,b =4.因为椭圆的焦点在x 轴上, 所以椭圆的标准方程为x 225+y 216=1.【答案】 B[探究共研型]探究1 已知F 是椭圆的左焦点,A ,B 分别是其在x 轴正半轴和y 轴正半轴上的顶点,P 是椭圆上的一点,且PF ⊥x 轴,OP ∥AB ,怎样求椭圆的离心率?【提示】 如图,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),P (-c ,m ).∵OP ∥AB , ∴△PFO ∽△BOA , ∴c a =m b,①又P (-c ,m )在椭圆上,∴c 2a 2+m 2b2=1. ②将①代入②,得2c2a2=1,即e 2=12,∴e =22.探究2 已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-c,0),A (-a,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,求椭圆的离心率e .【提示】 由A (-a,0),B (0,b ),得直线AB 的斜率为k AB =ba, 故AB 所在的直线方程为y -b =b ax , 即bx -ay +ab =0.又F 1(-c,0),由点到直线的距离公式可得d =|-bc +ab |a 2+b 2=b7,∴7·(a -c )=a 2+b 2. 又b 2=a 2-c 2,整理,得8c 2-14ac +5a 2=0,即8⎝ ⎛⎭⎪⎫c a 2-14c a +5=0. ∴8e 2-14e +5=0,∴e =12或e =54(舍去).综上可知,椭圆的离心率e =12.若椭圆长轴的长度、短轴的长度和焦距成等差数列,求该椭圆的离心率. 【精彩点拨】 能否由已知条件构造关于c a的方程. 【自主解答】 由题意得:2b =a +c , ∴4b 2=(a +c )2, 又∵a 2=b 2+c 2,∴4(a 2-c 2)=a 2+2ac +c 2, 即3a 2-2ac -5c 2=0,∴3-2·c a -5·⎝ ⎛⎭⎪⎫c a 2=0,即5·⎝ ⎛⎭⎪⎫c a 2+2·c a -3=0,∴e =c a =35.求e 的值或范围问题就是寻求它们的方程或不等式,具体如下:若已知a ,c 可直接代入e =c a求得; 若已知a ,b ,则使用e =1-b 2a2求解; 若已知b ,c ,则求a ,再利用或求解;若已知a ,b ,c 的关系,可转化为关于离心率e 的方程不等式求值范围[再练一题]3.若过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.【导学号:37792053】【解析】 由题意,△PF 1F 2为直角三角形,且∠F 1PF 2=60°,所以|PF 2|=2|PF 1|. 设|PF 1|=x ,则|PF 2|=2x ,|F 1F 2|=3x ,又|F 1F 2|=2c ,所以x =2c 3.即|PF 1|=2c 3,|PF 2|=4c 3.由椭圆的定义知,|PF 1|+|PF 2|=2a ,所以2c 3+4c 3=2a ,即e =c a =33. 【答案】331.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b2=1(a >b >0)的短轴长与y 221+x 29=1的短轴长相等,则( ) A.a 2=15,b 2=16 B.a 2=9,b 2=25C.a 2=25,b 2=9或a 2=9,b 2=25 D.a 2=25,b 2=9【解析】 由题意得,椭圆x 2a 2+y 2b2=1的焦点在x 轴上,且2a =10,a =5,2b =6,b =3,故a 2=25,b 2=9.【答案】 D2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )【导学号:37792054】A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 【解析】 右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上,c =1.又离心率为ca=12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1. 【答案】 D3.已知椭圆E 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于________.【解析】 根据题意得2b =6,a +c =9或a -c =9(舍去).所以a =5,c =4,故e =c a =45.【答案】 454.求适合下列条件的椭圆的标准方程: (1)过点(3,0),离心率e =63; (2)焦距为8,在y 轴上的一个焦点与短轴两端点的连线互相垂直. 【解】 (1)当椭圆的焦点在x 轴上时, 因为a =3,e =63, 所以c =6,从而b 2=a 2-c 2=3, 所以椭圆的标准方程为x 29+y 23=1;当椭圆的焦点在y 轴上时,因为b =3,e =63, 所以a 2-b 2a =63,所以a 2=27.所以椭圆的标准方程为y 227+x 29=1.综上可知,所求椭圆的标准方程为x 29+y 23=1或y 227+x 29=1.(2)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由已知,得c =4,b =4,则a 2=b 2+c 2=32,故所求椭圆的标准方程为y 232+x 216=1.。
2.2椭圆课时分配:1.第一课椭圆及其标准方程1个课时2.第二课椭圆的简单几何性质1个课时2.2.1椭圆及其标准方程【教材分析】圆锥曲线被安排在第二章中,以“圆锥曲线与方程”的标题出现,其包含曲线与方程、椭圆、双曲线、抛物线四部分内容。
本节是整个解析几何部分的重要基础知识。
椭圆的定义与初中时学生学习的圆的定义具有相通之处,就是“点动成线”的原理。
通过学习,让学生理解当点运动的规则(遵循的几何关系)发生变化的时候,则画出的曲线的形状也会不同。
高中阶段,在《直线和圆的方程》的学习过程中,学生对坐标法(解析法)思想有了一定程度的认识;在“曲线与方程”和“方程与曲线”的概念中,学生进一步明确了坐标法及其研究曲线的方程的一般步骤。
从本节课开始,又将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好研究方法和研究思想的准备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前启后的作用。
【教学目标】知识与技能目标: 1.准确理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程及其推导过程;2.根据条件确定椭圆的标准方程;过程与方法目标: 1.通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义;在探索椭圆标准方程的过程中,培养学生观察、辨析、归纳和抽象概括问题的能力.2.提高运用坐标法解决几何问题的能力和运算求解和数据处理的能力。
情感态度与价值观目标:通过提炼归纳椭圆的定义的过程,让学生学会将问题抽象成数学问题,并透过运动的现象把握事物的本质;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。
通过讨论椭圆方程推导的过程中养成学生扎实严谨的科学态度。
教学重点和难点1.重点:体会椭圆的形成过程,感受求曲线方程的基本方法,掌握椭圆的标准方程及其推导方法。
2.难点:椭圆标准方程的推导(尤其是遇到的根式化简的过程与方法)法与学法(一)教法为了使学生更主动地参与到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。
2.2椭圆椭圆的简单几何性质(第1课时)(人教A版高中课标教材数学选修2-1)教学设计授课教师:乔树华天津市宁河区芦台第一中学2018年10月《椭圆的简单几何性质》(第一课时)教学设计天津市宁河区芦台第一中学乔树华一、教学内容解析1.内容本节课学习椭圆的几何性质,主要包括范围、长轴、短轴、对称性、离心率,以及性质的应用.2.内容解析本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第二章《圆锥曲线与方程》中2.2《椭圆》的第二课时,主要内容是研究椭圆的几何性质. 椭圆的对称性、长轴、短轴描述了椭圆的形状特征,椭圆的范围描述了椭圆的大小,椭圆的离心率是用数值刻画椭圆扁平程度的量.从单元内容看,本单元主要包括三种圆锥曲线的定义、标准方程和性质,以及坐标法的应用,在学习的过程中要深入对数形结合思想的理解.本节课是在学生熟悉了直线和圆的方程、椭圆的定义及其标准方程的基础上,并具有初步运用方程研究曲线的方法的活动经验后,第一次系统地运用代数与几何相结合的方法研究曲线的性质.它为之后研究双曲线、抛物线的几何性质、运用“以数解形”的方法解决几何问题等内容提供了数学模型和方法指导,因此本节课对体会单元核心思想方法具有举足轻重的地位和作用.本节内容蕴含了丰富的数学思想方法,突出体现了数形结合、分类讨论及类比推理的思想和用代数法研究曲线性质的数学方法.基于以上分析,确定本节课的教学重点是:利用椭圆的标准方程研究椭圆的简单几何性质,理解“以数解形”的数形结合思想.二、教学目标设置1.教学目标(1)在动手画椭圆的过程中,发现并提出椭圆对称性、大小、圆扁程度等几何性质的问题,发展学生发现问题提出问题的能力,培养学生数学抽象的能力.(2)通过对椭圆图形特征的研究,分析椭圆的范围、长轴、短轴、对称性的性质,发展学生分析几何图形和直观想象的能力.(3)结合方程分析椭圆性质,以数解形,提升学生对数形结合思想的理解.(4)通过离心率的探究,使学生经历观察、分析、归纳、概括的思维过程和动手操作的实践过程,发展学生数学逻辑推理的能力.2.目标解析(1)设计画椭圆图形,可以提高学生研究曲线时动手作图的基本技能,并让学生从作图的过程中初步了解椭圆的各项几何性质,发展学生直观想象和数学抽象的数学核心素养,培养学生分析问题和解决问题的操作性思维能力.(2)研究曲线性质时,首先从图形角度研究,可以提高学生发现问题的能力,并让学生体会几何直观在研究曲线性质中的作用.(3)通过方程对椭圆的几何性质的探究,学生进一步感受用代数方法解决几何问题的数形结合的思想,在由数释形的过程中,培养学生的探究习惯,发展学生的理性思维.(4)在椭圆离心率的探究过程中,通过实验发现规律,结合老师的引导点拨,让学生去实现对离心率的发现和理解,培养学生严谨的治学态度和不断发现问题的能力,以及运用所学知识解决新问题的能力.三、学生学情分析学生已经熟悉和掌握椭圆的定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力,但这是学生第一次通过方程研究曲线的几何性质,研究思路并不是很清晰.对于范围、对称性、顶点三个性质,通过老师的点拨引导,学生比较容易掌握.离心率概念比较抽象,学生缺乏研究此类问题的经验.本节课的教学难点是:学生对椭圆的核心性质——离心率的认识与理解.本单元内容的教学,要使学生充分经历“操作、观察、分析、抽象、概括”的学习过程.即从生活中抽象图形的模型,动手操作画图象,观察曲线的特点,探究曲线的方程,根据方程研究曲线.教学中,充分运用类比学习、螺旋提升的方法,不断形成完整的解析几何研究方法和学习策略.在运用方程讨论曲线性质时,主要以独立探究为主,离心率的发现过程要为学生创设适当的情境,使学生在最近发展区中发现问题、解决问题.对于坐标法的理解,教师要为学生创造循序渐进地理解数形结合思想的条件,以代数与几何为什么结合、怎么结合、结合时注意什么等问题为抓手,帮助学生深刻理解此数学思想方法.四、教学策略分析根据本节课教学内容的特点,为了更直观、形象地突出重点,突破难点,激发学生的学习兴趣,在课堂教学中让学生通过动手操作画椭圆,亲历知识的生成过程,力求借助信息技术手段,以“几何画板”软件为平台,通过对椭圆的核心性质离心率e 的变化的演示,观察椭圆圆扁程度的变化,让学生体会运用“数形结合”的思想方法建立起高中数学的两条主线——代数主线和几何主线间的密切联系,同时利用展台将学生的研究成果进行实时呈现,能够使本节课重点研究的椭圆的简单几何性质的四方面——椭圆的范围、对称性、顶点及离心率问题及时得到很好的解决.具体来说包括:1.任务驱动教学法:利用问题串作引导,引发学生积极思考并积极探究;2.演示教学法:学生实物投影展示和教师几何画板动态演示相结合,提高课堂效率的同时兼顾解答的规范性;3.启发式教学法:在研究范围和离心率时,教师做积极启发并与学生自主探究与合作讨论相结合突破难点;4.学法:以小组合作为基本活动模型,采用自主学习法,结合合作探究法,讨论法,归纳总结法与交流展示法.五、教学过程设计(一) 创设情境、建构概念1.情境创设:让学生观察建筑中国国家大剧院,它与湖中倒影的正视图呈椭圆形,进而引出课题.2.知识回顾:椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a by a x 当焦点在y 轴时,)0(12222>>=+b a bx a y 【设计意图】回顾上节课所学内容,巩固知识并为本节课所学做铺垫.3.活动创设课前布置预习作业:你能否利用所学知识,在同一坐标系中画出方程1162522=+y x 和192522=+y x 所表示的曲线.课上分组展示学生的成果,并让学生观察他们有什么几何特征. 预设可能出现的情况:预设1:先判断其为椭圆,再利用定义画图;预设2:先判断其为椭圆,寻找到与坐标轴的交点,画椭圆;评价预设:寻找画图的关键点,提高画图容易度.预设3:先判断其对称性,只需精确画出其第一象限的图象;评价预设:发现椭圆的对称性,可以给画图带来方便.预设4:从函数角度出发,利用描点法作图.评价预设:将其转化为函数,利用函数图象的画法作图.【设计意图】数学是现实世界的反映.从学生感兴趣的问题出发,创设思维情境,让学生在动手操作的过程中重温方程和曲线的关系,直观感受椭圆的几何特征,自然引出本节课的课题.(二)独思共议,引导探究通过画具体的椭圆,由特殊到一般,提出一般的椭圆会有哪些性质.以椭圆)0(12222>>=+b a by a x 为例研究椭圆的几何性质. 探究一.椭圆的范围 问题1:椭圆大小如何刻画? 问题2:该椭圆上点的横坐标的取值范围是什么?纵坐标呢(预设:学生会利用图形观察得知,老师要给予肯定:图形观察很直观)问题3: 你能否用方程说明该范围?追问:范围可以由不等关系求出,如何建立y x ,的不等关系?(先独立思考2分钟再进行小组合作,后进行小组展示成果)从方程上看: 预设1:因为012222≥-=a x b y 所以122≤ax ,故可得a x a ≤≤-,同理可得b y b ≤≤-. o预设2:由椭圆方程)0(12222>>=+b a b y a x 中实数平方的非负性可得122≤a x ,122≤by , 所以a x a ≤≤-,b y b ≤≤-.预设3:利用三角换元:设θθsin ,cos ==by a x ,则θθsin ,cos b y a x ==, 所以a x a ≤≤-,b y b ≤≤-.教师总结点评:利用方程中变量的非负性,判断其它变量范围的方法,是解析几何中利用方程研究曲线范围的一般方法.【设计意图】通过椭圆的标准方程确定椭圆的范围,使学生感受利用椭圆方程研究椭圆几何性质的方法,理解椭圆)0(12222>>=+b a by a x 位于直线a x ±=和b x ±=所围成的矩形内,为描点法作图提供了参考,体会利用坐标法研究曲线几何性质的优越性.探究二.椭圆的对称性问题1:椭圆具有怎样的对称性?师生活动:学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.学生在必修2《直线的方程》和《圆的方程》的学习中经历过对曲线对称性的探究过程,此外学生还可以类比函数的奇偶性的研究方法得到椭圆的对称性,并给出椭圆中心的定义.预设:学生可能会从图形和方程的角度得到.(教师通过几何画板演示)(此问题对学生具有相当的难度,老师指明图形对称的本质是点的对称,在学生回答过程中,要强调在椭圆上“任取一点”)问题2:能否用椭圆的方程说明该对称性?(小组讨论2分钟,找代表发言)(教师动画展示)椭圆上任取点),(y x P ,关于y 轴的对称点),('y x P -也在椭圆上,说明椭圆关于y 轴对称,关于x 轴的对称点),(''y x P -也在椭圆上,说明椭圆关于x 轴对称,关于原点的对称点),('''y x P --也在椭圆上,说明椭圆关于原点对称.即坐标轴x 轴和y 轴是椭圆的对称轴,原点)0,0(O 是椭圆的对称中心,称为椭圆的中心.强调:利用曲线上任意一点关于坐标轴和原点的对称点仍在曲线上来判断曲线的对称性,也是利用方程研究曲线对称性的一般方法.问题3:研究曲线 的对称性【设计意图】学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.教师通过信息技术的引入,让学生理解图形对称性的本质是构成图形的点的对称性,即利用曲线上点的坐标的对称性,可以实现曲线的对称性.并通过练习题,让学生学以致用,体会研究曲线对称性的一般方法.探究三.椭圆的顶点问题1:观察椭圆图形,他有哪些特殊点?问题2:这些点的坐标是什么?利用学生描点画图时的特殊点,引入椭圆的顶点,让学生感受图形中某些特殊点在确定曲线位置时的作用,从而得到顶点定义,即椭圆与对称轴x 轴和y 轴的四个交点.并指出长轴,短轴和长半轴长,短半轴长等相关概念.【设计意图】让学生明确顶点等相关概念,理解顶点与对称性的关系.探究四.椭圆的形状——认识椭圆的离心率e问题1:用什么量可以刻画椭圆的扁平程度?学生活动:小组合作,利用椭圆的定义画椭圆,(小组合作讨论,相互交流,小组展示)预设1:a c ;预设评价:学生可能从椭圆的定义出发,发现画椭圆时ac 的变化对椭圆形状的影响.预设2:ab .预设评价:学生可能观察预习作业中两个椭圆的扁平程度得到. 师生活动:小组展示探究成果.学生观察当a 保持不变时,随着c 的改变,椭圆圆扁程度的变化,发现椭圆随着a c 的增大而变扁,随着a c 的减小而变圆.教师利用几何画板动态展示,并给出离心率的概念,并引导学生求出椭圆离心率的范围,【设计意图】让学生从具体问题中抽象出离心率的定义,信息技术的引入不仅可以使学生体会到定义的科学性、严谨性,让学生深刻地理解定义,更有助于培养学生的数学抽象、逻辑推理等数学素养,不断积累数学活动的经验.122=-y x问题2:离心率的大小如何影响椭圆的扁平程度?预设:e 越接近于0,则c 越接近于0,即22c a b -=越接近于a , 椭圆越接近于圆; e 越接近于1,则c 越接近于a ,即22c a b -=越接近于0,椭圆越扁.(让学生用逼近的思想想象当0→e 时,椭圆接近于圆,当1→e 时,椭圆接近于一条线段.)【设计意图】利用等价转化的思想刻画椭圆的扁平程度,加深学生对椭圆的核心性质离心率e 的认识与理解.(三)类比联想,知识迁移类比焦点在x 轴上的椭圆的几何性质,得到焦点在y 轴上的椭圆的几何性质,让学生体会数学研究中的类比推理的过程与方法.【设计意图】让学生体会椭圆焦点位置的变化对其性质的影响,提升学生的逻辑推理素养,并为后续双曲线和抛物线的学习奠定基础.(四)巩固新知,提升能力例题分析:例1.椭圆400251622=+y x 的长轴长是________,短轴长是_________,焦点坐标是________,焦距是__________,顶点坐标是__________,离心率是________.例2.在椭圆)0(12222>>=+b a b y a x 中,已知B OF 2∆为等腰直角三角形,求椭圆的离心率.问题:你能从三角函数的角度理解离心率对椭圆形状的影响吗? 【设计意图】通过例题分析,巩固椭圆的几何性质,例2旨在引导学生深刻理解椭圆离心率的几何意义,实现认识上的又一次飞跃.(五)回顾反思,归纳总结学生和老师共同回顾、梳理、总结本节课所学的数学知识、思想、方法.(1)椭圆的几何性质(2)用坐标法研究曲线性质的过程与方法(3)所用的数学思想方法:数形结合、化归转化、类比推理师生活动:先由学生总结所学内容,教师补充说明,特别是通过本节课所经历的知识的探究过程,体会类比与数形结合的数学思想.通过本节课,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断地激发学生的数学学习兴趣.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标测试,当堂反馈1.已知椭圆方程为6622=+y x ,它的长轴长是__________,短轴长是___________, 焦点坐标是________,焦距是________,顶点坐标是_________,离心率是________.2.椭圆以坐标轴为对称轴,离心率32=e ,长轴长为6,则椭圆的标准方程为( ) (A)1203622=+y x (B)15922=+y x (C)15922=+y x 或15922=+x y (D)1203622=+x y 或1203622=+y x 【设计意图】通过目标检测,可以了解学生对知识的理解和掌握情况,为教学评价提供依据,其中第2题旨在体会分类讨论思想在数学中的应用.接着展示图片:展示椭圆在建筑与天文等方面的应用,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断激发学生的学习兴趣.(七)布置作业,巩固所学实践作业:查阅椭圆在建筑学与天文学方面应用的资料,每组写一份调研小报告.分层作业:必做:课本P习题2.2A组2,3,4,5题49选做:A组第9题【设计意图】作业分层布置,力求让不同基础的学生都拥有成功学习的体验.必做题主要考查学生对本节课重点知识的掌握情况,检查学生运用所学知识解决问题的能力,实践作业的设置是为了让学生体验如何检索、搜集资料进行数学学习,这是本节课所学内容的提高与拓展,可以更好地培养学生分析问题和解决问题的能力.。
2.2.2 椭圆的简单几何性质(一)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一 椭圆的范围、对称性和顶点坐标思考1 观察椭圆x 2a 2+y 2b2=1(a >b >0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案 (1)范围:-a ≤x ≤a ,-b ≤y ≤b ; (2)对称性:椭圆关于x 轴、y 轴、原点都对称;(3)特殊点:顶点A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ). 思考2 在画椭圆图形时,怎样才能画的更准确些?答案 在画椭圆时,可先画一个矩形,矩形的顶点为(-a ,b ),(a ,b ),(-a ,-b ),(a ,-b ).梳理 椭圆的简单几何性质思考如何刻画椭圆的扁圆程度?答案 用离心率刻画扁圆程度,e 越接近于0,椭圆越接近于圆,反之,越扁. 梳理 (1)椭圆的焦距与长轴长的比c a称为椭圆的离心率.(2)对于x 2a 2+y 2b2=1,b 越小,对应的椭圆越扁,反之,e 越接近于0,c 就越接近于0,从而b越接近于a ,这时椭圆越接近于圆,于是,当且仅当a =b 时,c =0,两焦点重合,图形变成圆,方程变为x 2+y 2=a 2.(如图)类型一 由椭圆方程研究其简单几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上, ∴两个焦点坐标分别是(-7,0)和(7,0),四个顶点坐标分别是(-4,0),(4,0),(0,-3)和(0,3). 引申探究本例中若把椭圆方程改为“9x 2+16y 2=1”求其长轴长、短轴长、离心率、焦点和顶点坐标. 解 由已知得椭圆标准方程为x 219+y 2116=1,于是a =13,b =14,c =19-116=712.∴长轴长2a =23,短轴长2b =12,离心率e =c a =74. 焦点坐标(-712,0)和(712,0), 顶点坐标(±13,0),(0,±14).反思与感悟 解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量. 跟踪训练1 求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长2a =18; 短轴长2b =6;焦点坐标(0,62),(0,-62);顶点坐标(0,9),(0,-9),(3,0),(-3,0).离心率e =c a =223.类型二 椭圆的几何性质简单应用命题角度1 依据椭圆的几何性质求标准方程例2 如图所示,已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程.解 依题意,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的对称性知|B 1F |=|B 2F |,又B 1F ⊥B 2F ,∴△B 1FB 2为等腰直角三角形, ∴|OB 2|=|OF |,即b =c ,|FA |=10-5, 即a -c =10-5,且a 2=b 2+c 2,将上面三式联立,得⎩⎨⎧b =c ,a -c =10-5,a 2=b 2+c 2,解得⎩⎨⎧a =10,b = 5.∴所求椭圆方程为x 210+y 25=1.反思与感悟 此类问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置.跟踪训练2 根据下列条件,求中心在原点,对称轴在坐标轴上的椭圆方程: (1)长轴长是短轴长的2倍,且过点(2,-6);(2)焦点在x 轴上,一个焦点与短轴的两端点连线互相垂直,且半焦距为6.解 (1)当焦点在x 轴上时,设椭圆方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧2b =a ,4a +36b=1,解得⎩⎨⎧a =237,b =37,∴椭圆方程为x 2148+y 237=1.同样地可求出当焦点在y 轴上时, 椭圆方程为x 213+y 252=1.故所求的椭圆方程为x 2148+y 237=1或x 213+y 252=1.(2)依题意有⎩⎪⎨⎪⎧b =c ,c =6,∴b =c =6,∴a 2=b 2+c 2=72, ∴所求的椭圆方程为x 272+y 236=1. 命题角度2 对称性问题例3 讨论方程x 3y +x 2y 2+xy 3=1所表示的曲线关于x 轴,y 轴,原点的对称性. 解 用“-y ”代替方程x 3y +x 2y 2+xy 3=1中的“y ”,得-x 3y +x 2y 2-xy 3=1,它改变了原方程,因此方程x 3y +x 2y 2+xy 3=1所表示的曲线不关于x 轴对称. 同理,方程x 3y +x 2y 2+xy 3=1所表示的曲线也不关于y 轴对称.而用“-x ”代替原方程中的“x ”,用“-y ”代替原方程中的“y ”,得(-x )3(-y )+(-x )2(-y )2+(-x )(-y )3=1,即x 3y +x 2y 2+xy 3=1,故方程x 3y +x 2y 2+xy 3=1所表示的曲线关于原点对称.反思与感悟 研究曲线关于x 轴,y 轴,原点的对称性,只需用“-y ”代替方程中“y ”,用“-x ”代替方程中的“x ”,同时代替,若方程不变,则得到相应的对称性. 跟踪训练3 曲线x 2-2y +1=0的对称轴为( ) A.x 轴 B.y 轴 C.直线y =x D.无法确定 答案 B解析 保持y 不变,以“-x ”代替方程中“x ”,方程不变,故该曲线关于y 轴对称.命题角度3 最值问题例4 椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P (0,32)到椭圆上的点的最远距离是7,求这个椭圆的方程.解 设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵b a=a 2-c 2a 2=1-e 2=12,∴a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.设椭圆上点M (x ,y )到点P (0,32)的距离为d ,则d 2=x 2+(y -32)2=4b 2(1-y 2b 2)+y 2-3y +94=-3(y +12)2+4b 2+3.(*)(1)当-b ≤-12,即b ≥12时,d 2max =f (-12)=4b 2+3=7,解得b =1,∴椭圆方程为x 24+y 2=1.(2)当-12<-b ,即b <12时,d 2max =f (-b )=7,解得b =7-32>12,与b <12矛盾.综上所述,所求椭圆方程为x 24+y 2=1.反思与感悟 求解椭圆的最值问题的基本方法有两种(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.解题的关键是能够准确分析出最值问题所隐含的几何意义,并能借助相应曲线的定义及对称知识求解;(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再根据函数式的特征选用适当的方法求解目标函数的最值.常用方法有配方法、判别式法、重要不等式法及函数的单调性法等.跟踪训练4 已知椭圆x 2m 2-2m +y 2m 2-2m -1=1(3≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右依次为A ,B ,C ,D ,记f (m )=||AB |-|CD ||. (1)求f (m )的解析式; (2)求f (m )的最大值和最小值.解 (1)设点A ,B ,C ,D 在x 轴上的射影分别为A ′(x 1,0),B ′(x 2,0),C ′(x 3,0),D ′(x 4,0), 则|AB |=2|x 2-x 1|,|CD |=2|x 4-x 3|. 又∵x 1+x 4=0,且x 1<x 2<x 3<x 4,∴||AB |-|CD ||=2||x 2-x 1|-|x 4-x 3||=2|(x 2-x 1)-(x 4-x 3)|=2|x 2+x 3|. 将直线y =x +1代入椭圆方程,整理得[2(m 2-2m )-1]·x 2+2(m 2-2m )x +2(m 2-2m )-(m 2-2m )2=0, ∴x 2+x 3=-2(m 2-2m )2(m 2-2m )-1,∴f (m )=22(m 2-2m )2(m 2-2m )-1=2+22(m -1)2-3,m ∈[3,5]. (2)∵f (m )在[3,5]上是减函数,∴f (m )的最大值为f (3)=625,最小值为f (5)=30229.类型三 椭圆的离心率的求解例5 已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,斜率为k 的直线l 过左焦点F 1且与椭圆的交点为A ,B ,与y 轴的交点为C ,且B 为线段CF 1的中点,若|k |≤142,求椭圆离心率e 的取值范围.解 依题意得F 1(-c ,0),直线l :y =k (x +c ), 则C (0,kc ).因为点B 为CF 1的中点,所以B (-c 2,kc2).因为点B 在椭圆上,所以(-c2)2a2+(kc 2)2b2=1,即c 24a 2+k 2c 24(a 2-c 2)=1. 所以e 24+k 2e 24(1-e 2)=1,所以k 2=(4-e 2)(1-e 2)e2. 由|k |≤142,得k 2≤72, 即(4-e 2)(1-e 2)e 2≤72,所以2e 4-17e 2+8≤0. 解得12≤e 2≤8.因为0<e <1,所以12≤e 2<1,即22≤e <1.反思与感悟 求e 的取值范围有以下几个步骤: (1)切入点:已知|k |≤142,求e 的取值范围,需建立关于e 的不等式.(2)思考点:①e 与k 有什么关系?②建立e 与k 的等量关系式;③利用B 在椭圆上且为CF 1的中点,构建关于e 与k 的等式;④如何求e 的范围?先用e 表示k ,再利用|k |≤142,求e 的取值范围.(3)解题流程:先写出l 的方程,求出B 点的坐标,由点B 在椭圆上,建立e 与k 的关系式,再求e 的范围.跟踪训练5 已知点P (m ,4)是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的内切圆的半径为32,则此椭圆的离心率为________.答案 35解析 一方面△PF 1F 2的面积为12(2a +2c )·r ;另一方面△PF 1F 2的面积为12|y p |·2c ,∵12(2a +2c )·r =12|y p |·2c ,∴(a +c )·r =|y p |·c , ∴a +c c =|y p |r . ∴a c+1=|y p |r,又y p =4,∴a c =|y p |r -1=432-1=53,∴椭圆的离心率为e =c a =35.1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33 C.22 D.12 答案 B解析 由2x 2+3y 2=m (m >0),得x 2m 2+y 2m3=1,∴c 2=m 2-m 3=m 6,∴e 2=13,∴e =33.2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程是( ) A.x 22+y 24=1 B.x 2+y 26=1C.x 26+y 2=1 D.x 28+y 25=1 答案 B解析 由已知c =5,b =1,故椭圆的标准方程为y 26+x 2=1.3.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为________. 答案x 225+y 216=1 解析 据题意a =5,c =3,故b =a 2-c 2=4,又焦点在x 轴上, 所以椭圆的标准方程为x 225+y 216=1.4.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________. 答案 [4-23,4+23]解析 因为点(m ,n )在椭圆8x 2+3y 2=24上,即在椭圆x 23+y 28=1上,所以点(m ,n )满足椭圆的范围|x |≤3,|y |≤22,因此|m |≤3,即-3≤m ≤3,所以2m +4∈[4-23,4+23].5. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________. 答案 (0,±69)解析 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).1.可以应用椭圆的定义和方程,把几何问题转化为代数问题,再结合代数知识解题.而椭圆的定义与三角形的两边之和联系紧密,因此,涉及线段的问题常利用三角形两边之和大于第三边这一结论处理.2.椭圆的定义式:|PF 1|+|PF 2|=2a (2a >|F 1F 2|),在解题中经常将|PF 1|·|PF 2|看成一个整体灵活应用.3.利用正弦、余弦定理处理△PF 1F 2的有关问题.4.椭圆上的点到一焦点的最大距离为a +c ,最小距离为a -c .40分钟课时作业一、选择题1.椭圆4x 2+49y 2=196的长轴长、短轴长、离心率依次是( ) A.7,2,357B.14,4,357C.7,2,57D.14,4,-57答案 B解析 先将椭圆方程化为标准形式:x 249+y 24=1,其中b =2,a =7,c =3 5.2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 答案 A解析 依题意得c =25, a +b =10 ,又a 2=b 2+c 2从而解得a =6,b =4.3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32C.83D.23答案 B解析 ∵a 2=2,b 2=m ,e =ca=1-b 2a 2= 1-m 2=12,∴m =32. 4.椭圆(m +1)x 2+my 2=1的长轴长是( ) A.2m -1m -1B.-2-mmC.2m mD.-21-mm -1答案 C解析 椭圆方程可简化为x 211+m +y 21m=1, 由题意知m >0,∴11+m <1m ,∴a =mm ,∴椭圆的长轴长2a =2mm.5.已知椭圆的方程x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,|F 1F 2|=2,离心率e =12,则椭圆方程为( ) A.x 216+y 212=1B.x 24+y 2=1C.x 24+y 23=1D.x 23+y 24=1 答案 C解析 因为|F 1F 2|=2,离心率e =12,所以c =1,a =2,所以b 2=3,椭圆方程为x 24+y 23=1.6.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A.12 B.23 C.34 D.45 答案 C解析 设直线x =3a 2与x 轴交于点M ,则∠PF 2M =60°, 在Rt△PF 2M 中,|PF 2|=|F 1F 2|=2c ,|F 2M |=3a 2-c , 故cos 60°=|F 2M ||PF 2|=32a -c 2c =12,解得c a =34,故离心率e =34.二、填空题7.已知椭圆C 的上,下顶点分别为B 1,B 2,左,右焦点分别为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则此椭圆的离心率e =________.答案 22解析 因为四边形B 1F 1B 2F 2是正方形,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =ca =22. 8.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是____________.答案 x 25+y 24=1 解析 ∵x =1是圆x 2+y 2=1的一条切线.∴椭圆的右焦点为(1,0),即c =1.设P (1,12),则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y 轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1. 9.若椭圆长轴长是短轴长的2倍,且焦距为2,则此椭圆的标准方程为____________. 答案 x 243+y 213=1或y 243+x 213=1 解析 由题意可知a =2b ,c =1,所以1+b 2=4b 2,故b 2=13,a 2=43, 则此椭圆的标准方程为x 243+y 213=1或x 213+y 243=1. 10.已知P 点是椭圆x 2a 2+y 2b 2=1(a >b >0)上异于顶点的任一点,且∠F 1PF 2=60°,则这样的点P 有________个.答案 4解析 依据椭圆的对称性知,四个象限内各有一个符合要求的点.三、解答题11.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10, 短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35. (2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0),焦点坐标(0,6),(0,-6);④离心率:e =35. 12.若椭圆x 2k +2+y 24=1(k >-2)的离心率为e =13,求k 的值. 解 当焦点在x 轴上时,a 2=k +2,b 2=4,c 2=k -2,∴e 2=c 2a 2=k -2k +2=19,∴k =52. 当焦点在y 轴上时,a 2=4,b 2=k +2,c 2=2-k , ∴e 2=c 2a 2=2-k 4=19,∴k =149, 故k =52或k =149. 13.已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍,且经过点A (5,0),求此椭圆的标准方程.解 方法一 若椭圆的焦点在x 轴上,设其标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧ 2a =5×2b ,25a 2+0b 2=1,解得⎩⎪⎨⎪⎧ a =5,b =1,故所求椭圆的标准方程为x 225+y 2=1.若椭圆的焦点在y 轴上,设其标准方程为y 2a 2+x 2b 2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧ a =25,b =5,故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.方法二 设椭圆方程为x 2m +y 2n =1(m >0,n >0,m ≠n ),由题意,得⎩⎪⎨⎪⎧ 25m +0n =1,2m =5×2n 或⎩⎪⎨⎪⎧ 25m +0n =1,2n =5×2m .解得⎩⎪⎨⎪⎧ m =25,n =1或⎩⎪⎨⎪⎧ m =25,n =625.故所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.。