§2.2.2_椭圆的简单几何性质(2)
- 格式:ppt
- 大小:801.00 KB
- 文档页数:20
§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。
其中定直线叫做椭圆的准线。
对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。
2.2.2 椭圆的简单几何性质(二)内容要求 1.巩固椭圆的简单几何性质.2.能利用弦长公式解决相关问题.知识点1 点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1. 【预习评价】已知点P (m ,1)在椭圆x 24+y 23=1的外部,则实数m 的取值范围是________. 解析 由题意可知m 24+13>1, 解得m >263或m <-263.答案 ⎝ ⎛⎭⎪⎫-∞,-263∪⎝ ⎛⎭⎪⎫263,+∞ 知识点2 弦长公式设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2, 所以|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝ ⎛⎭⎪⎫1k y 1-1k y 22+(y 1-y 2)2= 1+1k 2(y 1-y 2)2 =1+1k 2(y 1+y 2)2-4y 1y 2.其中x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得. 【预习评价】若直线y =x +1和椭圆x 24+y 2=1交于A ,B 两点,则线段AB 的长为________. 解析 由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +1得5x 2+8x +2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=25,x 1+x 2=-85,所以|AB |=1+12·(-85)2-4×25=45 3. 答案 45 3题型一 直线与椭圆的相交问题【例1】 (2019·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0), 直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2, 与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k 4+5k 2, 代入y =kx +2得y P =8-10k 24+5k 2,进而直线OP 的斜率为y P x P =4-5k 2-10k .在y =kx +2中,令y =0,得x M =-2k .由题意得N (0,-1),所以直线MN 的斜率为-k2. 由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245, 从而k =±2305(满足Δ=(20k )2-4(4+5k 2)>0). 所以直线PB 的斜率为2305或-2305.规律方法 解决直线与椭圆的相交问题,关键是找到图形的几何特征(例如中点、垂直、等腰等),再将几何特征用代数运算的方式加以利用,进行代数运算时要注意消元,达到减少量化简运算式的目的,这两方面是解析几何的本质特征. 【训练1】 (2019·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1). (1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点.(1)解 由题意,得b 2=1,c =1,所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1.令y =0,得点M 的横坐标x M =-x 1y 1-1. 又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1 =⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪⎪⎪2t 2-21+2k 2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t . 又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2. 解得t =0,所以直线l 经过定点(0,0). 题型二 中点弦问题【例2】 在椭圆x 2+4y 2=16中,求通过点M (2,1)且被这一点平分的弦所在的直线方程.解 方法一 如果弦所在的直线的斜率不存在,即直线垂直于x 轴, 则点M (2,1)显然不可能为这条弦的中点.故可设弦所在的直线方程为y =k (x -2)+1, 代入椭圆方程得x 2+4[k (x -2)+1]2=16, 即得(1+4k 2)x 2-(16k 2-8k )x +16k 2-16k -12=0, ∵直线与椭圆有两个交点,故Δ=16(12k 2+4k +3)>0, 又x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12,满足Δ>0. ∴直线方程为x +2y -4=0.方法二 设弦的两个端点分别为P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4,y 1+y 2=2, ∵P (x 1,y 1),Q (x 2,y 2)在椭圆上,故有x 21+4y 21=16,x 22+4y 22=16,两式相减得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∵点M (2,1)是PQ 的中点,故x 1≠x 2,两边同除以(x 1-x 2)得(x 1+x 2)+4(y 1+y 2)y 1-y 2x 1-x 2=0,即4+8k =0,∴k =-12.∴弦所在的直线方程为y -1=-12(x -2), 即x +2y -4=0.规律方法 研究直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程,利用根与系数的关系或中点坐标公式解决.涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系. 【训练2】 已知点P (4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,求直线l 的方程.解 由题意可设直线l 的方程为y -2=k (x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k (4k -2)x +4(4k -2)2-36=0.所以x 1+x 2=8k (4k -2)4k 2+1=8,所以k =-12(满足方程中的Δ>0). 所以直线l 的方程为y -2=-12(x -4),即x +2y -8=0.题型三 椭圆中的综合性问题【例3】 已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:2|FP →|=|F A →|+|FB→|.证明 (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m . 由题设得0<m <32,故k <-12. (2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34, 从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|F A →|+|FB→|=4-12(x 1+x 2)=3. 故2|FP →|=|F A →|+|FB→|. 规律方法 解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.【训练3】 如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. 解 ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP→=9, ∴|AB →||AP →|cos 45°=2|AP →|2cos 45°=9, ∴|AP→|=3. (1)∵P (0,1),∴|OP →|=1,|OA →|=2,即b =2,且B (3,1). ∵B 在椭圆上,∴9a 2+14=1,得a 2=12, ∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3), ∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得 9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t .∵a 2>b 2>0,∴3(3-t )23-2t >(3-t )2>0.∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是⎝ ⎛⎭⎪⎫0,32.课堂达标1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13B.33C.22D.12解析 将方程化为标准方程x 2m 2+y 2m 3=1,因为m >0,所以a 2=m 2,b 2=m3, 所以c 2=a 2-b 2=m 2-m 3=m6, 所以e =ca =m 6m 2=13=33.答案 B2.已知椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( ) A.53B.103C.203D.53解析 易知△ABF 2的内切圆的半径r =12,根据椭圆的性质结合△ABF 2的特点,可得△ABF 2的面积S =12lr =12×2c ×|y 1-y 2|,其中l 为△ABF 2的周长,且l =4a ,代入数据解得|y 1-y 2|=53. 答案 A3.已知椭圆x 2+4y 2=36的弦被A (4,2)平分,则此弦所在的直线方程为( ) A.x -2y =0B.x +2y -4=0C.2x +3y -14=0D.x +2y -8=0解析 设以A (4,2)为中点的椭圆的弦与椭圆交于E (x 1,y 1),F (x 2,y 2), ∵A (4,2)为EF 中点, ∴x 1+x 2=8,y 1+y 2=4,把E (x 1,y 1),F (x 2,y 2)分别代入椭圆x 2+4y 2=36中,得⎩⎨⎧x 21+4y 21=36, ①x 22+4y 22=36, ②则①-②得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∴8(x 1-x 2)+16(y 1-y 2)=0, ∴k =y 1-y 2x 1-x 2=-12,∴以A (4,2)为中点的椭圆的弦所在的直线的方程为y -2=-12(x -4), 整理得x +2y -8=0. 答案 D4.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________. 解析 设M (x ,y ),∵MF 1→·MF 2→=0,∴点M 的轨迹方程是x 2+y 2=c 2,点M 的轨迹是以原点为圆心的圆,其中F 1F 2为圆的直径.由题意知椭圆上的点P 总在圆外,所以|OP |>c 恒成立, 由椭圆性质知|OP |≥b , ∴b >c ,∴a 2>2c 2, ∴⎝ ⎛⎭⎪⎫c a 2<12,∴0<e <22. 答案 ⎝⎛⎭⎪⎫0,225.(2019·全国Ⅲ卷)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析 不妨设F 1,F 2分别为椭圆C 的左、右焦点,分析可知M 在以F 1为圆心、焦距为半径长的圆上,即在圆(x +4)2+y 2=64上. 因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y220=1,解得⎩⎨⎧x =3,y =±15. 又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案 (3,15)课堂小结解决直线与椭圆的综合问题,经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.。
2.2.2 椭圆的简单几何性质(第二课时)一、教学目标(一)学习目标1.理解直线与椭圆的位置关系;2.会进行位置关系的判断,计算弦长.(二)学习重点理解直线与椭圆的位置关系,会判定及应用(三)学习难点应用代数方法进行判定,相关计算的准确性,理解用方程思想解决直线与圆锥曲线的位置关系.二.教学设计(一)预习任务设计1.预习任务写一写:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- 若0∆=,则直线和椭圆有唯一公共点,直线和椭圆 相切 ;若0∆>,则直线和椭圆有两个公共点,直线和椭圆 相交 ;若0∆<,则,直线和椭圆没有公共点,直线和椭圆 相离 .2.预习自测(1)直线1y kx k =-+与椭圆22123x y +=的位置关系是( ) A.相交 B.相切 C.相离 D.不确定【知识点】直线与椭圆位置关系.【解题过程】直线(1)1y k x =-+恒过定点(1,1).由11123+<可知:点(1,1)在椭圆内部,故直线与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】A(2)判断(正确的打“√”,错误的打“×”) ①已知椭圆22221x y a b+=(0)a b >>与点(,0)P b ,过点P 可作出该椭圆的一条切线.( )②直线()y k x a =-与椭圆22221x y a b+=的位置关系是相交.( ) 【知识点】直线与椭圆位置关系.【解题过程】点(,0)P b 在椭圆22221x y a b+=内部,故过P 不能作出椭圆的切线;直线()y k x a =-恒过点(,0)a ,而(,0)a 为椭圆22221x y a b+=的有顶点,过直线()y k x a =-一定与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】①×;②√.(3)直线1y mx =+与椭圆2241x y +=有且只有一个交点,则2m =( ) A.21 B.32 C.43 D.54 【知识点】直线与椭圆的位置关系.【解题过程】联立方程22141y mx x y =+⎧⎨+=⎩得:22(14)830m x mx +++=. 由条件知:226412(14)0m m ∆=-+=,解得:234m =. 【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】C(4)椭圆13422=+y x 长轴端点为M 、N ,不同于M 、N 的点P 在此椭圆上,那么PM 、PN 的斜率之积为( )A.34-B.43-C.43D.34 【知识点】直线与椭圆.【解题过程】设00(,)P x y ,则,则2200334x y =-,故00003224PM PN y y k k x x ⋅=⋅=-+- 【思路点拨】按照题意直接代入求解即可.【答案】A(二)课堂设计1. 知识回顾(1)椭圆的简单几何性质;(2)直线与圆的位置关系.2. 新知讲解探究一:探究直线与椭圆的位置关系●活动① 复习回顾,类比学习我们学习过直线与圆的位置关系及判定,请你回忆相关知识.(1)直线与圆有三种位置关系分别是相离(没有公共点)、相切(一个公共点)、相交(两个公共点).(2)判定方法有两种:代数法、几何法.那么直线与椭圆又有什么样的位置关系呢?又该如何来判定直线与椭圆的位置关系呢?【设计意图】由已有的知识类比迁移到新知识.●活动② 思考交流,结论形成通过画图我们看到,直线与椭圆的位置关系也可以归纳为相离,相切和相交,请你类比直线和圆的相离、相切、相交的定义来对直线和椭圆相离,相切和相交进行定义.学生交流,自由发言,教师适时引导,得出结论.直线与椭圆没有公共点⇔直线与椭圆相离;直线与椭圆有一个公共点⇔直线和椭圆相切;直线与椭圆有两个公共点⇔直线与椭圆相交.通过公共点的个数可以判断直线和椭圆的位置关系,如何确定公共点的个数呢?你有什么办法呢?例 1.判断直线123:1;:3;:3l y x l y x l y =+=-+=+与椭圆2214x y +=的位置关系.【知识点】直线与椭圆的位置关系.课堂活动:学生完成练习,根据学生的解题情况引入代数方法.在巡视过程中,大部分学生采用的是代数的方法,及个别的学生画出了图像,但第三条直线与椭圆的位置关系学生画图的很少,但利用代数方法研究的同学也没有得到结论.【解题过程】将直线与椭圆方程联立,根据判别式∆判断,123,,l l l 分别与椭圆的关系为:相交、相离和相切.【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】123,,l l l 分别与椭圆的关系为:相交、相离和相切请你说说如何利用代数方法来进行直线和椭圆的位置关系的判断?直线与椭圆的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.直线与椭圆的位置关系的判定方法:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- (1)0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;(2)0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;(3)0∆<,方程没有实数根⇔没有公共点⇔相离.【设计意图】以旧带新,学生易于理解.同类训练 已知椭圆2241x y +=及直线y x m =+,当m 为何值时,直线与椭圆相切?【知识点】直线与椭圆的位置关系【解题过程】解方程组2241x y y x m⎧+=⎨=+⎩,消去y ,整理得225210x mx m ++-=, 222420(1)2016m m m ∆=--=-,由0∆=得220160m -=,解得m =【思路点拨】用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法.探究二:计算椭圆的弦长●活动① 互动交流,形成结论例2. 已知斜率为2的直线经过椭圆22154x y +=的右焦点2F ,与椭圆交于,A B 两点,求AB 的长.【提出问题】本题的解决需要什么条件?如何由题目所给的条件去求得?前面的学习中遇到过类似的问题吗?当时是怎么解决的,方法能不能拿来一用?【知识点】直线与椭圆相交【解题过程】由条件知2(1,0)F ,故直线AB 方程为:22y x =-.设1122(,),(,)A x y B x y . 联立方程组2222154y x x y =-⎧⎪⎨+=⎪⎩,消去y 可得:2350x x -=. 法一:由2350x x -=得:1250,3x x ==,从而54(0,2),(,)33A B -. ||AB ∴== 法二:由2350x x -=得:12125,03x x x x +==. 2||=AB x ∴==-. 【思路点拨】初学者常想到求直线和椭圆的交点,然后利用两点间距离公式求弦长,此种方法仅当直线方程和椭圆方程简单时,易得交点坐标,一般情况不采用此法.弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .【设计意图】由特殊到一般,让学生体会韦达定理的应用及解析几何中“设而不求,整体代入”的解题思路.同类训练 已知椭圆2241x y +=及直线y x m =+,求直线被椭圆截得最长弦所在直线方程.【知识点】直线与椭圆相交弦长公式.【解题过程】由题意2241x y y x m⎧+=⎨=+⎩得225210x mx m ++-=, 由韦达定理得122122515m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, ∴弦长l === 当0m =时,l, 此时直线方程为y x =. 【思维点拨】当直线与椭圆相交时,求弦长时,联立直线方程和椭圆方程,利用韦达定理,就可以直接利用弦长公式求得弦长.●活动② 强化提升,灵活应用例3. 已知椭圆2212x y += (1)求斜率为2的平行弦的中点轨迹方程;(2)过(2,1)A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;【知识点】直线与椭圆相交,曲线的方程.【解题过程】解:(1)设斜率为2的直线方程为2y x b =+.由22212y x b x y =+⎧⎪⎨+=⎪⎩得2298220x bx b ++-=, 由22(8)36(22)0b b ∆=-->,得33b -<<.设该弦的端点坐标为1122(,),(,)A x y B x y ,则12429x x b +=-,444393b -<-<. 设弦的中点坐标为(,)M x y ,则1249,294x x b x b x +==-=-, 代入2y x b =+,得4440()33x y x +=-<<为所求轨迹方程. (2)设l 与椭圆的交点为1122(,),(,)x y x y ,弦的中点为(,)x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减并整理得12121212()()2()()0x x x x y y y y -++-+=.又12122,2x x x y y y +=+=121212122()4()=0,()20()x x x y y y y y x y x x ∴-+--+⋅=-① 由题意知1212()1()2y y y x x x --=--,代入①得1202y x y x -+⋅=-. 化简得222220x y x y +--=.∴所求轨迹方程为222220x y x y +--=(夹在椭圆内的部分).【思路点拨】例3(2)解题方法叫做“点差法”,点差法充分体现了“设而不求”的数学思想.【答案】222220x y x y +--=.同类训练 已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点,若线段AB 中点的横坐标是12-,求直线AB 的方程. 【知识点】直线与椭圆的位置关系.【解题过程】依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+, 将(1)y k x =+代入5322=+y x ,消去y 整理得2222(31)6350.k x k x k +++-=设1122() () A x y B x y ,,,, 则4222122364(31)(35)0 (1) 6. (2)31k k k k x x k ⎧∆=-+->⎪⎨+=-⎪+⎩, 由线段AB 中点的横坐标是12-, 得2122312312x x k k +=-=-+,解得k =,适合(1). 所以直线AB 的方程为10x +=,或10x ++=.【思维点拨】解决直线和圆锥曲线的相关问题时,韦达定理得应用十分广泛,此题干中涉及中点问题,自然联想到12x x +韦达定理结构.【答案】10x -+=,或10x +=.3.课堂总结知识梳理(1)直线与椭圆的位置关系0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;0∆<,方程没有实数根⇔没有公共点⇔相离.(2)弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .重难点归纳(1)用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法;(2)涉及弦中点的问题,常用点差法处理.(三)课后作业基础型 自主突破1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( )A.(-233,233)B.(233,+∞)∪(-∞,-233)C.(43,+∞)D.(-∞,-43)【知识点】椭圆的几何性质.【解题过程】因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故选B.【思路点拨】根据点与椭圆的位置关系建立不等式求解.【答案】B 2.点P 为椭圆x 25+y 24=1上一点,以点P 及焦点F 1、F 2为顶点的三角形的面积为1,则P 点的坐标为( )A.(±152,1)B.(152,±1)C.(152,1)D.(±152,±1)【知识点】椭圆的几何性质.【解题过程】设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴12PF F S ∆=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1,∵x 205+y 204=1,∴x 0=±152.故选D.【思路点拨】焦点三角形面积计算以12||F F 为底边.【答案】D3.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13【知识点】椭圆的几何性质.【解题过程】把x =-c 代入椭圆方程可得y c =±b 2a , ∴|PF 1|=b 2a ,∴|PF 2|=2b 2a ,故|PF 1|+|PF 2|=3b 2a =2a ,即3b 2=2a 2. 又∵a 2=b 2+c 2,∴3(a 2-c 2)=2a 2,∴(c a )2=13,即e =33.【思路点拨】利用椭圆定义和几何关系解题.【答案】B4.如图F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该左半椭圆的两个交点,且△F 2AB 是等边三角形,则椭圆的离心率为( )A.32B.12C.22D.3-1【知识点】椭圆的几何性质.【解题过程】连接AF 1,由圆的性质知,∠F 1AF 2=90°,又∵△F 2AB 是等边三角形,∴∠AF 2F 1=30°,∴AF 1=c ,AF 2=3c ,∴e =c a =2c 2a =2c c +3c=3-1.故选D.【思路点拨】利用圆的几何性质和椭圆离心率的定义. 【答案】D5.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_____________.【知识点】椭圆的几何性质.【解题过程】设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12, ∴所求直线方程为y -1=-12(x -2),即x +2y -4=0. 【思路点拨】中点弦问题灵活利用点差法. 【答案】x +2y -4=0.6.设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和为4,则椭圆C 的方程是________,焦点坐标是________.【知识点】椭圆的几何性质.【解题过程】由|AF 1|+|AF 2|=2a =4得a =2. ∴原方程化为:x 24+y 2b 2=1, 将A (1,32)代入方程得b 2=3.∴椭圆方程为:x 24+y 23=1,焦点坐标为(±1,0). 【思路点拨】把握椭圆的定义解题. 【答案】x 24+y 23=1;(±1,0). 能力型 师生共研7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c=0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A.必在圆x 2+y 2=2上 B.必在圆x 2+y 2=2外 C.必在圆x 2+y 2=2内 D.以上三种情形都有可能 【知识点】椭圆的几何性质. 【解题过程】e =12⇒c a =12⇒c =a2, a 2-b 2a 2=14⇒b 2a 2=34 ⇒b a =32⇒b =32a .∴ax 2+bx -c =0⇒ax 2+32ax -a2=0⇒x 2+32x -12=0,x 1+x 2=-32,x 1x 2=-12, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2. ∴在圆x 2+y 2=2内,故选C.【思路点拨】简化,,a b c 关系将方程具体化. 【答案】C8.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.【知识点】椭圆的几何性质.【解题过程】设椭圆方程为x 2a 2+y 2b 2=1,则有A (-a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得()1b b a c -=-,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e>0,∴e =5-12.【思路点拨】利用椭圆几何性质解题. 【答案】e =5-12.探究型 多维突破9.已知过点A (-1,1)的直线l 与椭圆x 28+y 24=1交于点B ,C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程. 【知识点】椭圆的几何性质.【解题过程】设直线l 与椭圆的交点B (x 1,y 1),C (x 2,y 2),弦BC 的中点M (x ,y ),则⎩⎪⎨⎪⎧x 218+y 214=1,①x 228+y 224=1,②①-②,得(x 218-x 228)+(y 214-y 224)=0,∴(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0.③当x 1≠x 2时,③式可化为(x 1+x 2)+2(y 1+y 2)·y 2-y 1x 2-x 1=0.∵x 1+x 22=x ,y 1+y 22=y ,y 2-y 1x 2-x 1=y -1x +1,∴2x +2·2y ·y -1x +1=0,化简得x 2+2y 2+x -2y =0.当x 1=x 2时,∵点M (x ,y )是线段BC 中点, ∴x =-1,y =0,显然适合上式.综上所述,所求弦中点M 的轨迹方程是x 2+2y 2+x -2y =0. 【思路点拨】弦中点问题灵活利用点差法解题. 【答案】x 2+2y 2+x -2y =0.10.已知椭圆方程22123x y +=,试确定m 的范围,使椭圆上存在两个不同点关于直线4y x m =+对称.【知识点】椭圆的几何性质.【解题过程】设点1122(,),(,)A x y B x y 为椭圆上点,且关于直线4y x m =+对称,另设AB 中点坐标为00(,)M x y则22112222123123x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得1212121211023y y y y x x x x -++⋅=-+ 01212121203322AB y y y y y k x x x x x -+⇒⋅=-⇒⋅=--+ ① 1122(,),(,)A x y B x y 关于直线4y x m =+对称,14AB k ∴=-,代入①式得006y x = ②易知点00(,)M x y 必在直线4y x m =+上,004y x m ∴=+ ③ 联立②③解得(,3)2mM m AB 为椭圆的弦,∴中点M 必在椭圆内, 22()(3)2123m m ∴+<,m <<【思路点拨】注意利用弦的中点在椭圆内部建立不等关系解题.【答案】m <<自助餐1.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为( )A.12B.33C.22D.32【知识点】椭圆的几何性质.【解题过程】由已知得⎩⎨⎧2n =m +m +n ,n 2=m 2n .解得⎩⎨⎧m =2,n =4.∴e =n -m n =22,故选C.【思路点拨】利用离心率的定义. 【答案】C2.AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( )A.b 2B.bcC.abD.ac 【知识点】椭圆的几何性质.【解题过程】S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b . ∴△ABF 面积的最大值为bc .【思路点拨】椭圆几何性质把握图形中的几何关系. 【答案】B3.在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318 【知识点】椭圆的几何性质.【解题过程】设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x , 由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴e =c a =2c 2a =x 83x =38.【思路点拨】注意转化为椭圆的定义. 【答案】C4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8 【知识点】椭圆的几何性质.【解题过程】由题意可知O (0,0),F (-1,0),设点P 为(x ,y ),则OP →=(x ,y ), FP →=(x +1,y ),∴OP →·FP→=x (x +1)+y 2=x 2+x +y 2=x 2+x +3-34x 2 =14x 2+x +3=14(x +2)2+2. ∵x ∈[-2,2],∴当x =2时,OP →·FP →取最大值.(OP →·FP →)max=14(2+2)2+2=6,故选C. 【思路点拨】数量积问题坐标化处理. 【答案】C5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 【知识点】椭圆的几何性质.【解题过程】(1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4, 又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得22(3)12525x x -+=,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65).【思路点拨】直线与椭圆相交注意利用韦达定理解题. 【答案】见上6.设12F F 、是椭圆:E 2221(01)y x b b+=<<的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且22||,||,||AF AB BF 成等差数列. (1)求||AB ;(2)若直线l 的斜率为1,求b 得值. 【知识点】椭圆的几何性质.【解题过程】(1)由椭圆定义知:22||||||4AF AB BF ++=, 又222||||||AB AF BF =+,得4||3AB =. (2)l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则2221y x c y x b =+⎧⎪⎨+=⎪⎩化简得222(1)2120b x cx b +++-=,则2121222212,11c b x x x x b b--+==++ 因为直线AB 的斜率为1,所以21|||AB x x =-,即214||3x x -.则224212122222284(1)4(12)8()49(1)(1)(1)b b b x x x x b b b --=+-=-=+++,解得b =【思路点拨】将弦长||AB 从两个不同角度考虑,建立等式解题. 【答案】见上。
§2.2.2椭圆的简单几何性质(2)1. 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.2. 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.3. 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.4. 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联线互相垂直,且焦距为6.5. 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.6. 已知椭圆19822=++y k x 的离心率21=e ,求k 的值.7. 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.求1PF PA +的最大值、最小值及对应的点P 坐标;8. 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F . 求证:21F PF ∆的面积与椭圆短轴长有关.9. 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.参考答案及其解析1. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.2. 解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.3. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k .解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹. (2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.4. 分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ① 又过点()62-,,因此有()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .5. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd .当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.6. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.7. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线. 由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线. 建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点)2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.8. 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F . 求证:21F PF ∆的面积与椭圆短轴长有关. 证明:在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.9. 分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
(六)教学设计椭圆的简单几何性质(2)教学设计一、基本情况1.面向对象:高二学生2.学科:数学3.课题:椭圆的几何性质4.课时:2课时5.课前准备:(1)学生回顾本节内容,熟悉椭圆的范围、对称性和顶点,离心率等性质(2)教师准备课件。
二、教材分析《椭圆的几何性质》是人教版2-1的内容。
本节课是在学生学习了椭圆的定义和标准方程的基础上,由椭圆方程出发研究椭圆的几何性质。
这是学生第一次利用方程研究曲线的几何性质,要注意对研究结果的掌握,更要重视对研究方法的学习。
本节课使学生感受“数”和“形”的对立统一,是研究双曲线和抛物线几何性质的基础,起着承上启下的作用。
三、教学目标知识目标1.通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质。
2.领会椭圆几何性质的内涵,并会运用它们解决一些简单问题。
3.通过对方程的讨论,让学生领悟解析几何是怎样用代数方法研究曲线性质的。
能力目标1.培养学生观察、分析、抽象、概括的能力。
2.渗透数形结合、类比等数学思想。
3.强化学生的参与意识,培养学生的合作精神。
情感目标1.通过自主探究、交流合作,使学生体验探究的过程,从中体会学习的愉悦,激发学生的学习积极性。
2.通过数与形的辨证统一,对学生进行辩证唯物主义教育。
3.通过感受椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生良好的思维品质,激发学生对美好事物的追求。
四、教学重点与难点重点:掌握椭圆的范围、对称性、顶点等简单几何性质。
难点:利用椭圆的标准方程探究椭圆的几何性质。
五、学法、教法与教学用具1.学法:(1)自主探究+合作学习:教师设置问题,鼓励学生从椭圆的标准方程出发,自主探究,合作交流,发现数学规律和问题解决的途径,使学生经历知识形成的过程。
(2)反馈练习法:以练习来检验知识的应用情况,找出掌握不足的内容以及存在的差距。
2.教法:本节课采用自主探究、合作交流相结合的教学方法,运用多媒体教学手段,通过设置问题,让学生在独立思考的基础上合作交流,加强知识发生过程的教学。
学案编号:B51 第 1 页 共 2 页§2.2.2 椭圆及其简单几何性质(2)【使用说明】1、课前完成预习学案,掌握基本题型;2、认真限时规范书写,课上小组合作探讨,答疑解惑。
3、A 、B 层全部掌握,C 层选做。
【学习目标】1.根据椭圆的方程研究曲线的几何性质;2.椭圆与直线的关系. 【问题导学】(预习教材理P 46~ P 48,文P 40~ P 41找出疑惑之处)复习1: 椭圆{ EMBED Equation.DSMT4 |2211612x y +=的焦点坐标是( )( ) ;长轴长 、短轴长 ;离心率 .复习2:直线与圆的位置关系有哪几种?如何判定?【合作探究】问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定?我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。
【深化提高】例 1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点,已知,,,试建立适当的坐标系,求截口所在椭圆的方程.变式:若图形的开口向上,则方程是什么?小结:①先化为标准方程,找出 ,求出; ②注意焦点所在坐标轴.成功的秘诀公式是其中代表成功,代表艰苦的劳动,代表正确的方法,代表少说空话. ——爱因斯坦第 2 页 共 2 页(理)例2 已知椭圆,直线:。
椭圆上是否存在一点,它到直线的距离最小?最小距离是多少?变式:最大距离是多少?※ 动手试试练1已知地球运行的轨道是长半轴长,离心率的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.练2.经过椭圆的左焦点作倾斜角为的直线,直线与椭圆相交于两点,求的长.【当堂检测】1.设是椭圆 ,到两焦点的距离之差为,则是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 2.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).A. B. C. D.3.已知椭圆的左、右焦点分别为,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到轴的距离为( ).A. B. 3 C. D.4.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为 . 5.椭圆的焦点分别是和,过原点作直线与椭圆相交于两点,若的面积是,则直线的方程式是 . 【小结】(1)知识与方法方面 。