当前位置:文档之家› 澳大利亚电缆标准

澳大利亚电缆标准

澳大利亚电缆标准
澳大利亚电缆标准

AS/NZS 1429.1:2006 AS/NZS 1429.1:2006

Australian/New Zealand Standard?

Electric cables—Polymeric insulated

Part 1: For working voltages 1.9/3.3

(3.6) kV up to and including 19/33 (36)

kV

AS/NZS 1429.1:2006

This Joint Austra lia n/New Zea la nd Sta nda rd wa s prepa red by Joint Technica l Committee EL-003, Electric Wires a nd Ca bles. It wa s a pproved on beha lf of the Council of Sta nda rds Austra lia on 3 April 2006 a nd on beha lf of the Council of Standards New Zealand on 31 March 2006.

This Standard was published on 21 April 2006.

The following are represented on Committee EL-003:

Australasian Railway Association

Australian Electrical and Electronic Manufacturers Association

Australian Industry Group

Canterbury Manufacturers Association New Zealand

Department of Primary Industries, Mine Safety (NSW)

Electrical Contractors Association of New Zealand

Electrical Regulatory Authorities Council

Energy Networks Association

Engineers Australia

Ministry of Economic Development (New Zealand)

Keeping Standards up-to-date

Sta nda rds a re living documents which reflect progress in science, technology a nd systems. To ma inta in their currency, a ll Sta nda rds a re periodica lly reviewed, a nd new editions re published. Between editions, mendments m y be issued. Sta nda rds ma y a lso be withdra wn. It is importa nt tha t rea ders a ssure themselves they a re using a current Sta nda rd, which should include a ny a mendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Sta nda rds Web Shop a t www.sta nda https://www.doczj.com/doc/ab16341718.html,.a u or Sta nda rds New Zea la nd web site a t www.sta nda https://www.doczj.com/doc/ab16341718.html, a nd looking up the releva nt Sta nda rd in the on-line catalogue.

Alterna tively, both orga niza tions publish a n a nnua l printed Ca ta logue with full deta ils of a ll current Sta nda rds. For more frequent listings or notifica tion of revisions, a mendments a nd withdra wa ls, Sta nda rds Austra lia a nd Sta nda rds New Zea la nd offer a number of upda te options. For informa tion a bout these services, users should contact their respective national Standards organization.

We a lso welcome suggestions for improvement in our Sta nda rds, a nd especia lly encoura ge rea ders to notify us immedia tely of a ny a ppa rent ina ccura cies or a mbiguities. Plea se a ddress your comments to the Chief Executive of either Sta nda rds Austra lia or Sta nda rds New Zea la nd a t the a ddress shown on the ba ck cover.

This Standard was issued in draft form for comment as DR 05363.

AS/NZS 1429.1:2006

Australian/New Zealand Standard?

Electric cables—Polymeric insulated Part 1: For working voltages 1.9/3.3 (3.6) kV up to and including 19/33 (36) kV

Originated as AS 1429—1979.

Jointly revised and designated AS/NZS 1429.1:2000.

Third edition 2006.

COPYRIGHT

? Standards Australia/Standards New Zealand

All rights are reserved. No part of this work may be reproduced or copied in any form or by ny me ns, electronic or mech nic l, including photocopying, without the written permission of the publisher.

AS/NZS 1429.1:2006 2

PREFACE

This Standard was prepared by the Joint Standards Australia/Standards N ew Zealand Committee EL-003, Electric Wires and Cables, to supersede AS/NZS 1429.1:2000.

This Standard differs from the previous edition in the following significant ways:

(a) The range of conductor sizes has been expanded to 1 600 mm2.

(b) The method of specifying the thickness of insulation, separation sheath, metal sheath

and oversheath has been aligned with IEC 60502-2.

(c) MDPE has replaced PE as an optional oversheathing material.

(d) Cables with collectively screened constructions are no longer specified.

(e) The requirement for a qualification test report has been added.

(f) The range of approval has been modified.

(g) The recommended diameter of drum barrel and minimum installation bending radius

has been extended to cover triplex cables.

(h) The sample test requirement has become mandatory.

In the preparation of this Standard, consideration was given to the following publications and acknowledgment is made of the assistance received:

IEC 60502-2, Power cables with extruded insulation and their accessories for rated

voltages from 1 kV (U m = 1,2 kV) up to 30 kV (U m = 36 kV), Part 2: Cables for rated

voltages from 6 kV (U m = 7,2 kV) up to 30 kV (U m = 36 kV)

IEC 60811, Common test methods for insulating and sheathing materials of electric cables and optical cables (all Parts)

The nominal cross-sectional areas of the conductors specified herein are identical with the values specified in AS/N ZS 1125, Conductor s in insulated electr ic cables and flexible cords.

The dimensions for insulation and oversheath thicknesses are identical with the values recommended in IEC 60502. Certain tests and criteria in this Standard are more stringent than those in IEC 60502.

Two types of insulation compounds are specified in this Standard, namely insulation comprising cross-linked polyethylene (XLPE) and insulation comprising ethylene propylene rubber (EPR).

Although the Standard provides tables of insulation thicknesses and the necessary information to establish precisely the dimensions of the cable protective coverings, no cable dimension tables are provided owing to the variety of cable constructions that could possibly affect such dimensions.

The terms ‘normative’ and ‘informative’ have been used in this Standard to define the application of the appendix to which they apply. A ‘normative’ appendix is an integral part of a Standard, whereas an ‘informative’ appendix is only for information and guidance.

Statements expressed in mandatory terms in notes to tables and figures are deemed to be requirements of this Standard.

AS/NZS 1429.1:2006

3

CONTENTS

Page SECTION 1 SCOPE AND GENERAL

1.1 SCOPE (4)

1.2 REFEREN CED DOCUMEN TS (4)

1.3 DEFIN ITION S (5)

1.4 VOLTAGE DESIGN ATION (7)

1.5 MAXIMUM CONDUCTOR TEMPERATURE (8)

SECTION 2 CONSTRUCTION

2.1 CON DUCTORS (9)

2.2 CON DUCTOR SCREEN (9)

2.3 IN SULATION (9)

2.4 IN SULATION SCREEN (11)

2.5 METALLIC SCREEN (12)

2.6 IDENTIFICATION OF CORES (12)

2.7 LAYIN G-UP (13)

2.8 FILLERS, BINDERS, AND BARRIER TAPES (13)

2.9 METAL SHEATH (OPTIONAL) (13)

2.10 SEPARATION SHEATH (14)

2.11 BEDDIN G (15)

2.12 ARMOUR (OPTION AL) (16)

2.13 OVERSHEATH (17)

2.14 WATER-BLOCKIN G (OPTION AL) (18)

2.15 PROTECTION FROM INSECT ATTACK (OPTIONAL) (18)

2.16 CABLE IDEN TIFICATION (19)

2.17 METRE MARKING ON CABLE (OPTIONAL) (19)

2.18 PREPARATION FOR DELIVERY (19)

2.19 MARKING OF DRUMS (19)

SECTION 3 TESTS

3.1 GEN ERAL (20)

3.2 QUALIFICATION TEST REPORT (20)

3.3 HIGH VOLTAGE TEST FOR 5 MIN (24)

3.4 BENDING TEST FOLLOWED BY PARTIAL DISCHARGE TEST (24)

3.5 MEASUREMENT OF DDF (TAN δ) AS A FUNCTION OF VOLTAGE (25)

3.6 MEASUREMENT OF DDF (TAN δ) AT ELEVATED TEMPERATURE (25)

3.7 HEAT CYCLING FOLLOWED BY PARTIAL DISCHARGE TEST (25)

3.8 IMPULSE WITHSTAND TEST FOLLOWED BY A HIGH VOLTAGE TEST (25)

3.9 HIGH VOLTAGE A.C. TEST FOR 4H (26)

3.10 RE-QUALIFICATION TESTS (26)

APPENDICES

A THE FICTITIOUS CALCULATION METHOD FOR THE DETERMINATION OF

THE DIMENSIONS OF PROTECTIVE COVERINGS (28)

B PURCHASIN G GUIDELIN ES (31)

C WATER PENETRATION TEST (32)

D RECOMMENDED DIAMETER OF DRUM BARREL AND MINIMUM

INSTALLATION BENDING RADIUS FOR CABLES (34)

E SELECTION AND RETEST PROCEDURE FOR SAMPLE TESTS (36)

AS/NZS 1429.1:2006 4

STANDARDS AUSTRALIA/STANDARDS NEW ZEALAND

Australian/New Zealand Standard Electric cables—Polymeric insulated

Part 1: For working voltages 1.9/3.3 (3.6) kV up to and including 19/33 (36)

kV

S E C T I O N 1 S C O P E A N D G E N E R A L

1.1 SCOPE

This Standard specifies requirements for cross-linked polyethylene (XLPE) and ethylene propylene rubber (EPR) insulated cables for fixed installations for electricity supply at working voltages 1.9/3.3 (3.6) up to and including 19/33 (36) kV.

NOTE: Optional requirem ents for m etal sheath, arm our, water-blocking, protection from insect attack and m etre m arking on cable are provided in Clauses 2.9, 2.12, 2.14, 2.15 and 2.17 respectively.

1.2 REFERENCED DOCUMENTS

The following documents are referred to in this Standard: AS 1931 High-voltage test techniques (all Parts) 3983

Metal drums for insulated electric cables and bare conductors

AS/N

ZS 1125 Conductors in insulated electric cables and flexible cords

1429 Electric cables—Polymeric insulated 1429.2 Part 2: For working voltages above 19/33 (36) kV up to and including

76/132 (145) kV 1660 Test methods for electric cables, cords and conductors 1660.1 Method 1: Conductors and metallic components 1660.2.1 Method 2.1: Insulation, extruded semi-conductive screens and non-metallic

sheaths—Methods for general application

1660.2.2 Method 2.2: Insulation, extruded semi-conductive screens and non-metallic

sheaths—Methods specific to elastomeric, XLPE and XLPVC materials

1660.2.5 Method 2.5: Insulation, extruded semi-conductive screens and non-metallic

sheaths—Methods specific to cables above 1 kV

1660.3 Method 3: Electrical tests 2857 Timber drums for insulated electric cables and bare conductors 2893 Electric cables—Lead and lead alloy sheaths—Composition 3808 Insulating and sheathing materials for electric cables 3863

Galvanized mild steel wire for armouring cables

5

AS/NZS 1429.1:2006

IEC

60949 Calculation of thermally permissible short-circuit currents, taking into account non-adiabatic heating effects

60986 Short-circuit temperature limits of electric cables with rated voltage from

6 kV (U m = 7,2 kV) up to 30 kV (U m = 36 kV)

1.3 DEFINITIONS

For the purposes of this Standard, the relevant definitions in the referenced Standards and

those below apply.

1.3.1 Approximate value

A value which is neither guaranteed nor checked.

1.3.2 Conductor screen

A layer or layers of non-metallic semiconductive material applied directly over the

conductor.

1.3.3 Core (of a cable)

An assembly comprising a conductor, semiconductive conductor screen, insulation and

semiconductive insulation screen.

1.3.4 Direction of lay

The slope of the core, screen wire or armour wire, or the like when the cable is held

vertically.

The direction of lay is right-hand when the slope is in the direction of the central part of the

letter Z, and left-hand when the slope is in the direction of the central part of the letter S.

1.3.5 Fictitious values

Values calculated according to an equation which is based only on the cross-sectional area

of a conductor, the number of cores and specified component dimensions, and which

ignores conductor shape, degree of compaction of conductors and the possibility of

components having dimensions other than specified. (See Appendix A.)

1.3.6 Gross cross-sectional area

With respect to the wire screens, the product of the calculated cross-sectional area of one

screen wire multiplied by the total number of screen wires in the cable.

1.3.7 Individual screen

A metallic screen applied over each core.

1.3.8 Insulation screen

A layer or layers of non-metallic semiconductive material applied directly over the

insulation of each core.

1.3.9 Length of lay

With respect to the wire screen, the axial distance between successive turns of the helix of a

screen wire.

1.3.10 Maximum conductor temperature

The maximum temperature resulting from the combined effect of all contributing thermal

conditions. It varies depending on the mode of operation and is limited to the values

specified in Table 1.2.

AS/NZS 1429.1:2006 6

1.3.11 Nominal value

A value by which a quantity is designated and which is often used in tables. Usually, in

relation to this Standard, nominal values give rise to values to be checked by measurements taking into account specified tolerances.

1.3.12 Non-hygroscopic

When applied to a material, means that the material after being preconditioned in an oven at

50 ±5°C for 24 ±1 h and allowed to cool in a desiccator, does not absorb more than 5% by

weight of moisture during a 48 h treatment in a relative humidity of 95 ±4% at a temperature of 20 ±5°C.

1.3.13 Qualification test report

A report of results obtained from all routine, sample and type tests.

1.3.14 Re-qualification tests

Tests made by the manufacturer on an already qualified range of cables following any changes in critical cable component materials, the method of cable manufacture or production line.

1.3.15 Routine tests

Tests made by the manufacturer on each manufactured length of cable to check that each length meets the specified requirements.

1.3.16 Sample tests

Tests made by the manufacturer on samples of completed cable, or components taken from

a completed cable, at a specified frequency, so as to verify that the finished product meets

the specified requirements.

1.3.17 Shall

Indicates that a statement is mandatory.

1.3.18 Should

Indicates a recommendation.

1.3.19 Triplex cable

An assembly of three metallic screened and oversheathed cores.

1.3.20 Type tests

Tests made before supplying, on a general commercial basis, a type of cable covered by this Standard, in order to demonstrate satisfactory performance characteristics to meet the intended application.

1.3.21 Water-blocking, longitudinal

Prevention or reduction of water migration along the length of the cable. This may consist of design options in the area of the metallic screen and/or the conductor.

1.3.22 Water-blocking, radial

Prevention or reduction of water ingress towards the insulation by permeation through the outer part of the cable.

7

AS/NZS 1429.1:2006

1.4 VOLTAGE DESIGNATION

Indication of the rated voltages shall be expressed in the form U0/U (U m)

where

U0is the r.m.s. power frequency voltage to earth of the supply system for which the cable is designed

U is the r.m.s. power frequency voltage between phases of the supply system for which the cable is designed

U m is the maximum r.m.s. power frequency voltage between any two phase conductors for which cables and accessories are designed. It is the highest

voltage that can be sustained under normal operating conditions at any time

and at any point in a system. It excludes temporary voltage variations due to

fault conditions and sudden disconnection of large loads.

The rated voltages U0/U (U m) of the cables recognized in this Standard are

1.9/3.3 (3.6) kV, 3.8/6.6 (7.2) kV, 6.35/11 (12) kV, 1

2.7/22 (24) kV and

19/33 (36) kV.

The rated voltage of the cable for a given application shall be suitable for the

operating conditions in the system in which the cable is used. To facilitate the

selection of the cable, systems are divided into the following three categories:

(a)Categor y A This category comprises those systems in which any phase conductor

that comes in contact with earth or an earth conductor, is disconnected from the

system within 1 min.

(b)Category B This category comprises those systems which, under fault conditions,

are operated for a short time with one phase earthed. This period should not exceed

1 h. For cables covered by this Standard, a longer period, not exceeding 8 h on any

occasion, can be tolerated. The total duration of earth faults in any year should not

exceed 125 h.

(c)Category C This category comprises all systems which do not fall into Category A

or B.

NOTE: It should be realized that in a system where an earth fault is not autom atically and

promptly isolated, the extra stresses on the insulation of cables during the earth fault reduce

the life of the cables. If the system is expected to be operated fairly often with a permanent

earth fault, it may be advisable to classify the system in Category C.

The values of U0/U(U m) for cables to be used in three-phase systems should be as listed in

Table 1.1.

TABLE 1.1

RECOMMENDED RATED VOLTAGES

Rated voltage U o/U(U m) kV

Highest system voltage

(U m) kV

Categories A and B Category C

3.6 7.2 12.0 1.9/3.3 (3.6)

3.8/6.6 (7.2)

6.35/11 (12)

3.8/6.6 (7.2)

6.35/11 (12)

12.7/22(24)

24.0 36.0 12.7/22 (24)

19/33 (36)

19/33 (36)

38/66(72)*

* Cable of this rating is covered by AS/NZS 1429.2.

AS/NZS 1429.1:2006 8

1.5 MAXIMUM CONDUCTOR TEMPERATURE

The maximum conductor temperature of cables for nominated conditions shall be as specified in Table 1.2.

TABLE 1.2

MAXIMUM CONDUCTOR TEMPERATURE FOR THE SPECIFIED INSULATION MATERIAL AND FOR DIFFERENT MODES OF OPERATION

1 2 3 4

Maximum conductor temperature, °C (Note 1)

Insulation

material Continuous operation Emergency operation

(Note 2) Short-circuit operation (5 s maximum duration)

XLPE EPR 90

90

105

130

250

250

NOTES:

1 The ma ximum conductor tempera tures specified are based upon the properties of the insula tion

materials but in practice may need to be derated to take account of—

(a) joints and terminations; and

(b) installation conditions, such as proximity to other circuits and services.

2 The emergency opera tion tempera tures a re a pplica ble for a n a vera ge over severa l yea rs, of not

more than one period per year. No period should exceed 36 h and there should not be more than three periods in any 12 consecutive months.

9

AS/NZS 1429.1:2006 S E C T I O N2C O N S T R U C T I O N

2.1 CONDUCTORS

Conductors shall have a circular profile and consist of either aluminium or plain or tinned

copper, complying with the requirements of AS/NZS 1125.

Measures may be taken to achieve longitudinal water-blocking.

NOTE: See the purchasing guidelines set out in Appendix B.

2.2 CONDUCTOR SCREEN

2.2.1 Material and application

All cables shall have an extruded, cross-linked, semiconductive screen applied on the

conductor. A semiconductive tape may be applied as part of the conductor screen and,

where used, shall be applied directly on the conductor, preceding the extruded layer.

2.2.2 Thickness

The thickness of the extruded layer shall be not less than that specified in Table 3.1.

2.2.3 Removal from conductor

The conductor screen shall be readily removable from the conductor.

2.2.4 Outer surface

The outer surface of the conductor screen shall be free of irregularities larger than those

permitted in Table 3.1.

2.2.5 Tests

Tests on the conductor screen and the category of each test shall be as specified in

Table 3.1.

2.2.6 Pass criteria

The conductor screen shall comply with the requirements specified in Table 3.1.

2.3 INSULATION

2.3.1 Material

Insulation shall be XLPE (including materials known as tree-retardant XLPE) or EPR and

shall comply with the requirements of AS/NZS 3808.

2.3.2 Application

The insulation shall bond to the conductor screen so that it is not possible to separate the

two without damage at their interface. The insulation shall be homogeneous.

2.3.3 Thickness

The nominal thickness of insulation (t i) and the insulation minimum thickness at any point

shall be in accordance with Tables 2.1 and 2.2. The values for minimum at any point are

derived from the equation: 0.90 t i? 0.10 mm.

AS/NZS 1429.1:2006 10

2.3.4 Concentricity

The thickness of insulation shall be measured at the thickest point (t max ) and the thinnest point (t min ) and the following concentricity requirement shall be met.

15

.0max

min

max ≤t t -t 2.3.5 Tests

Tests on the insulation and the category of each test shall be as specified in Table 3.1. 2.3.6 Pass criteria

The insulation shall comply with the requirements specified in Table 3.1.

TABLE 2.1

INSULATION THICKNESS FOR XLPE INSULATED CABLES

1 2 3 4 5 6 7 8 9 10 11 Nominal insulation thickness (t i ) and minimum thickness at any point of insulation for cable rated

voltage of—1.9/3.3 (3.6) kV

mm 3.8/6.6 (7.2) kV

mm

6.35/11 (12) kV

mm

12.7/22 (24) kV

mm

19/33 (36) kV

mm

Nominal cross-sectional area of conductor mm 2

Min. point t i Min. point t i Min. point t i Min. point t i Min. point t i

16 25 35 1.70 1.70 1.70 2.0

2.0 2.0 2.15 2.15 2.15 2.5 2.5 2.5 2.96 2.96 2.96

3.4 3.4 3.4 ——

4.85 ——

5.5 ——————50 70 95 1.70 1.70 1.70 2.0 2.0 2.0 2.15 2.15 2.15 2.5 2.5 2.5 2.96 2.96 2.96 3.4 3.4 3.4 4.85 4.85 4.85 5.5 5.5 5.5 7.10 7.10 7.10 8.0 8.0 8.0 120 150 185 1.70 1.70 1.70 2.0 2.0 2.0 2.15 2.15 2.15 2.5 2.5 2.5 2.96 2.96 2.96 3.4 3.4 3.4 4.85 4.85 4.85 5.5 5.5 5.5 7.10 7.10 7.10 8.0 8.0 8.0 240 300 400 1.70 1.70 1.70 2.0 2.0 2.0 2.24 2.42 2.60 2.6 2.8 3.0 2.96 2.96 2.96 3.4 3.4 3.4 4.85 4.85 4.85 5.5 5.5 5.5 7.10 7.10 7.10 8.0 8.0 8.0 500 630 800 1.88 2.06 2.24 2.2 2.4 2.6 2.78 2.78 2.78 3.2 3.2 3.2 2.96 2.96 2.96 3.4 3.4 3.4 4.85 4.85 4.85 5.5 5.5 5.5 7.10 7.10 7.10 8.0 8.0 8.0 1 000 1 200 1 600

2.42 ——

2.8 ——

2.78 ——

3.2 ——

2.96 2.96 2.96

3.4 3.4 3.4

4.85 4.85 4.85

5.5 5.5 5.5

7.10 7.10 7.10

8.0 8.0 8.0

11

AS/NZS 1429.1:2006

TABLE 2.2

INSULATION THICKNESS FOR EPR INSULATED CABLES

1 2 3 4 5 6 7 8 9 10 11

Nominal insulation thickness (t i) and minimum thickness at any point of insulation for cable rated

voltage of—

1.9/3.3 (3.6) kV

mm 3.8/6.6 (7.2) kV

mm

6.35/11 (12) kV

mm

12.7/22 (24) kV

mm

19/33 (36) kV

mm

Nominal cross-sectional area of conductor

mm2Min.

point t i

Min.

point

t i

Min.

point

t i

Min.

point

t i

Min.

point

t i

16 25 35 1.88

1.88

1.88

2.2

2.2

2.2

2.15

2.15

2.15

2.5

2.5

2.5

2.96

2.96

2.96

3.4

3.4

3.4

4.85

5.5

50 70 95 1.88

1.88

2.06

2.2

2.2

2.4

2.15

2.15

2.15

2.5

2.5

2.5

2.96

2.96

2.96

3.4

3.4

3.4

4.85

4.85

4.85

5.5

5.5

5.5

7.10

7.10

7.10

8.0

8.0

8.0

120 150 185 2.06

2.06

2.06

2.4

2.4

2.4

2.15

2.15

2.15

2.5

2.5

2.5

2.96

2.96

2.96

3.4

3.4

3.4

4.85

4.85

4.85

5.5

5.5

5.5

7.10

7.10

7.10

8.0

8.0

8.0

240 300 400 2.06

2.06

2.24

2.4

2.4

2.6

2.24

2.42

2.60

2.6

2.8

3.0

2.96

2.96

2.96

3.4

3.4

3.4

4.85

4.85

4.85

5.5

5.5

5.5

7.10

7.10

7.10

8.0

8.0

8.0

500 630 800 2.42

2.42

2.42

2.8

2.8

2.8

2.78

2.78

2.78

3.2

3.2

3.2

2.96

2.96

2.96

3.4

3.4

3.4

4.85

4.85

4.85

5.5

5.5

5.5

7.10

7.10

7.10

8.0

8.0

8.0

1 000 1 200 1 600 2.60

3.0

2.78

3.2

2.96

2.96

2.96

3.4

3.4

3.4

4.85

4.85

4.85

5.5

5.5

5.5

7.10

7.10

7.10

8.0

8.0

8.0

2.4 INSULATION SCREEN

2.4.1 Material and application

The screen shall consist of a layer of extruded, cross-linked, semiconductive compound applied directly over the insulation. A semiconductive tape may be applied as part of the insulation screen and, where used, shall be applied over the extruded insulation screen.

2.4.2 Thickness

The thickness of the extruded layer shall be not less than that specified in Table 3.1.

2.4.3 Requirements for stripping insulation screens

Hand-stripping requirements shall be as follows:

(a) Where the insulation screen is designed to be hand-stripped without preconditioning

(heating), it shall meet the strippability and adhesion tests specified in tests 4(b) and

(c) of Table 3.1.

(b) Where the insulation screen is designed to be hand-stripped after preconditioning

(heating), the strippability and adhesion requirements specified in tests 4(b) and (c) of Table 3.1 do not apply. However, it shall be possible to peel the screen cleanly from the insulation while the screen is hot.

NOTE: In Item(b), the type of screen requiring preconditioning norm ally applies to EPR insulated cables.

AS/NZS 1429.1:2006 12

2.4.4 Tests

Tests on the insulation screen and the category of each test shall be as specified in Table 3.1.

2.4.5 Pass criteria

The insulation screen shall comply with the requirements specified in Table 3.1.

2.5 METALLIC SCREEN

2.5.1 General

Wire screens shall comply with the specific requirements of Clauses 2.5.2 to 2.5.5 inclusive. Metal sheaths (see Clause 2.9) may be used as screens and may be supplemented with wire screens, in continuous electrical contact, to achieve the required electrical fault rating. The screens shall be of a gross cross-sectional area not less than that calculated by the adiabatic method set out in IEC 60986, based on an initial temperature of 80°C.

The non-adiabatic method for this calculation may be used when agreed between the purchaser and the supplier and, if used, it shall comply with IEC 60949.

For three-core cables, the screens shall be in continuous electrical contact throughout the length of the cable. In which case the gross cross-sectional area of the screen shall be equally shared amongst the three cores.

2.5.2 Material

The screen wires shall comprise plain or tinned annealed copper wires, generally complying with AS/N ZS 1125. Where tinned screens are provided, wires taken from the completed cable need not comply with the tinning test specified in AS/NZS 1125. All wires shall be of the same nominal diameter and in no case less than 0.60 mm. Wires shall not vary from the nominal diameter by more than 5%.

2.5.3 Application

The wires shall be helically applied with a length of lay not exceeding 10 times the pitch circle diameter of the screen wires over the core, and shall be in electrical contact with the core throughout the length of the cable.

The design gap, i.e. the gap between adjacent wires when equally spaced, calculated by taking into account the number and nominal diameter of wires and the calculated pitch circle diameter of the metallic screen, shall not exceed 4 mm.

For three-core cables, each core shall be screened with the same number of wires.

For single-core cables with a metal sheath, the screen shall be applied over semi-conductive tapes over the metal sheath. Where the tape is not of the water-blocking type the tape shall be non-hygroscopic.

2.5.4 Tests

Tests on the wire screen and the category of each test shall be as specified in Table 3.1.

2.5.5 Pass criteria

The wire screen shall comply with the appropriate requirements specified in Table 3.1.

2.6 IDENTIFICATION OF CORES

The cores of three-core and triplex cables shall be identified in one of the following ways:

(a) By the printed numeral and word 1 ONE, 2 TWO or 3 THREE, as appropriate, on the

outer surface of each core.

13

AS/NZS 1429.1:2006

(b) By the printed word RED, WHITE or BLUE, as appropriate, on the outer surface of

each core.

(c) By colour-marking the semiconductive tape or adding coloured strips to each core

throughout the full length of the cable, the colour to be red, white or blue as

appropriate.

Where identified by printing, the characters shall be in a colour contrasting with the core

surface. They shall be applied so that they shall remain legible during the service life of the

cable. The height of the individual characters shall be not less than the following values:

(i) For conductor of nominal cross-sectional area

less than 70 mm2.................................................................................1.5 mm.

(ii) For conductor of nominal cross-sectional area

mm2 and larger...............................................................................3.0 mm.

70

The gap between the end of one set of characters and the beginning of the next set shall be

not greater than 150 mm.

Where coloured strips are used for identification, their width shall be not less than 3 mm

nor more than 5 mm.

2.7 LAYING-UP

For three-core cables, the screened cores shall be laid up in a right-hand direction of lay.

Unless otherwise requested, fillers and binder/barrier tapes shall be used to form a

substantially compact and circular cross-section core assembly with a reasonably smooth

surface without creasing of the tapes.

For triplex cable, the three individual phase cores shall be laid up with a length of lay not

less than 15 times, nor more than 30 times the overall diameter of the circumscribing circle

over the laid-up bundled cable. The direction of lay shall be right hand. Fillers and binder

tapes are not a requirement.

2.8 FILLERS, BINDERS, AND BARRIER TAPES

Any fillers, binders and barrier tapes shall be of a non-hygroscopic material, compatible

with the cable components with which they are in contact.

NOTE: Binder tapes or binder and barrier tapes m ay be required to prevent extruded coverings

(e.g. oversheath) from penetrating between screen wires and, particularly where followed by an

HDPE sheath (this only applies to single-core cables) to achieve a reasonably sm ooth surface

under the extruded coverings. Barrier tapes are also used to separate incom patible non-m etallic

materials.

2.9 METAL SHEATH (OPTIONAL)

2.9.1 General

Appropriate precautions are required to prevent corrosion of metal sheaths and to provide

adequate mechanical protection, including installation conditions. When the sheath is used

as a screen it may require wire screens to provide the required fault current rating. (Refer to

Clause 2.5.1).

2.9.2 Lead alloy sheath

2.9.2.1 General

Lead alloy sheath barrier should be used for cables permanently immersed in water or

where cable might be subject to contamination by hydrocarbons, such as in a petrochemical

AS/NZS 1429.1:2006 14

2.9.2.2 Material

The material shall be lead alloy E in accordance with AS/NZS 2893.

2.9.2.3 Application

2.9.2.

3.1 Over single-core cable

The lead alloy sheath shall be applied over water-swellable semiconductive tape(s) applied over the core.

2.9.2.

3.2 Over three-core cable

The lead alloy sheath shall be closely applied over an extruded bedding and shall be readily removable.

2.9.2.4 Thickness

The nominal thickness of lead alloy sheath (T m) shall be calculated from the following equation and rounded off to the nearest 0.1 mm, subject to a minimum thickness of 1.0 mm: T m = 0.025 D u + 0.700 mm . . . 2.9.2.4 (1) where

D u= fictitious diameter under the metal sheath, in millimetres. (See Appendix A.)

The minimum thickness at any point of the lead alloy sheath shall not fall below the nominal thickness (T m) by more than 5% of the calculated thickness (T m) plus 0.1 mm, i.e.

minimum thickness = 0.95 T m? 0.10 mm . . . 2.9.2.4 (2)

2.9.2.5 Tests

All tests on the lead alloy sheath and the category of each test shall be as specified in Table 3.1.

2.9.2.6 Pass criteria

The lead alloy sheath shall comply with the appropriate requirements of Table 3.1.

2.9.3 Other metal sheaths

Corrugated metal sheath of aluminium, copper or steel may be used. Constructional requirements and testing are to be negotiated between supplier and purchaser.

2.10 SEPARATION SHEATH

2.10.1 Material and application

The separation sheath, if required in accordance with Clause 2.12, shall comprise one or more of the materials specified in Clause 2.13 and shall be applied as specified for oversheath in Clause 2.13.

2.10.2 Thickness

The nominal thickness of the separation sheath (T s) shall be calculated from the following equation and rounded off to the nearest 0.1 mm, subject to a minimum thickness of 1.2 mm: T s = 0.02 D u + 0.60 mm . . . 2.10.2 (1) where

D u= fictitious diameter under the separation sheath, in millimetres.

(See Appendix A.)

The minimum thickness at any point of the separation sheath shall not fall below the nominal thickness (T s) by more than 20% of the calculated thickness (T s) plus 0.2 mm, i.e.

15

AS/NZS 1429.1:2006

2.10.3 Tests

Tests on the separation sheath and the category of each test shall be as specified in

Table 3.1.

2.10.4 Pass criteria

The separation sheath shall comply with the appropriate requirements specified in Table 3.1.

2.11 BEDDING

2.11.1 Material

Bedding, if required in accordance with Clause 2.9 or 2.12, shall comprise extruded or

lapped non-metallic material.

Any hygroscopic bedding material such as jute yarn, hessian or other textile tapes shall be

impregnated and additional waterproofing compound shall be applied, if necessary, to make

such bedding become non-hygroscopic.

Where the lead alloy sheath is covered by a lapped bedding it shall also have two layers of

impregnated paper tape, or elastomeric or plastic tape, applied over the lead sheath (under

the bedding).

The bedding materials shall be compatible with the other materials of the cable with which

they are in contact, and shall be capable of operating continuously at 90°C.

2.11.2 Application

2.11.2.1 Extruded bedding

Extruded bedding shall be close fitting to the underlying component and shall be readily

removable.

2.11.2.2 Lapped bedding

Lapped bedding shall be a helically applied continuous layer.

2.11.3 Thickness

The approximate thickness of bedding (t B) shall be determined in accordance with

Table 2.3.

TABLE 2.3

APPROXIMATE THICKNESS OF BEDDING

Fictitious diameter under bedding (D u) (See Appendix A) Approximate thickness of bedding

(t B)

mm

mm Extruded

Lapped

> 25 > 35 ≤ 25

≤ 35

≤ 45

1.0

1.2

1.4

1.5

1.5

1.5

> 45 > 60 > 80 ≤ 60

≤ 80

1.6

1.8

2.0

1.5

1.5

1.5

AS/NZS 1429.1:2006 16

2.12 ARMOUR (OPTIONAL)

2.12.1 Material

Armour of single-core cables intended for use in a.c. circuits shall be non-magnetic.

NOTE: See Appendix B.

Armour wires for three-core cables shall comply with AS/NZS 3863.

2.12.2 Application

Armour wires shall be applied helically with a minimum gap between adjacent wires.

Where double-wire armour is required, a separator comprising a layer of non-hygroscopic material meeting the requirements of Clause 2.11 and approximately 0.5 mm thick shall be applied between the concentric layers of armour. For single-wire armour, the direction of lay shall be opposite to that of the laid-up cores. For double-wire armour, the direction of lay of the inner layer shall be opposite to that of the laid-up cores and the direction of lay of the outer layer shall be the same as that of the laid-up cores.

2.12.3 Cables without metal sheath

The armour shall be applied over a separation sheath in accordance with Clause 2.10. In the case where additional extruded layers are applied between the screens and the armour, then the armour shall be applied over a bedding in accordance with Clause 2.11.

2.12.4 Cables with metal sheath directly under armour

The armour shall be applied over an extruded or lapped bedding, in accordance with Clause 2.11.

2.12.5 Diameter of armour wires

The nominal diameter of the armour wires shall be not less than the appropriate values given in Table 2.4.

TABLE 2.4

DIAMETER OF ROUND ARMOUR WIRE

Fictitious diameter under the armour (See Appendix A)

mm Nominal diameter of armour

wire (t A)

mm

> 25 > 35 ≤ 25

≤ 35

≤ 60

1.6

2.0

2.5

>

60 3.15

2.12.6 Tests

Tests on the armour wire and the category of each test shall be as specified in Table 3.1.

2.12.7 Pass criteria

The armour wires shall comply with the appropriate requirements specified in Table 3.1.

AS/NZS 1429.1:2006 17

2.13 OVERSHEATH

2.1

3.1 Material

The oversheath shall be one or more of the following materials, which shall comply with

the requirements of AS/NZS 3808.

(a) Cross-linked elastomeric materials....................................GP-85-PCP, GP-90-CSP,

E-110-R.

GP-90-CPE,

(b) PVC materials....................................................................................V-90, 5V-90.

(c) Materials for reduced fire hazard cables...........................HFS-90-TP, HFS-110-TP,

HF-110-R.

HF-90-R,

(d) Polyolefin materials..................................................X-90, LLDPE, MDPE, HDPE.

Where a HDPE oversheath is required directly over a laid-up core assembly, the sheath

shall be a composite sheath consisting of a combination of an inner layer of V-90, 5V-90 or

LLDPE and an outer layer of HDPE. A single-layer oversheath of HDPE applied directly

over the laid-up core assembly shall not be used. A composite sheath may be specified for

single-core cables.

2.1

3.2 Application

The oversheath shall be close fitting and be readily removable from the cable without

damage to the underlying cable component. Any barrier tape or binder may, however,

adhere to the oversheath.

2.1

3.3 Colour

The colour of the outermost sheath shall be black unless otherwise indicated. For composite

sheaths, the inner layer should be a contrasting colour.

NOTE: See Appendix B.

2.1

3.4 Thickness

The nominal thickness of the oversheath or combined layers of sheath material (t s) shall be

calculated from the following equation:

t s = 0.035 D u + 1.0 mm . . . 2.13.4 (1) where

D u = fictitious diameter under oversheath, in millimetres (derived from

Appendix A).

The calculated value of t s shall be rounded off to one decimal place and shall be subject to a

minimum value of 1.8 mm.

The minimum thickness at any point shall not fall below the nominal thickness (t s) by more

than 20% of the calculated thickness (t s) plus 0.2 mm, i.e.

minimum thickness = 0.80 t s? 0.20 mm. . . . 2.13.4 (2) Where the oversheath is a composite sheath, the nominal thickness of the inner layer shall

be between 30 % and 50 % of the total nominal thickness but in no case shall be less than

1.0 mm.

The nominal thickness of the outer layer shall be the remainder of the total nominal

thickness, but in no case shall be less than:

(a) For three-core cables—1.0 mm.

(b) For single-core cables—1.0 mm.

(c) For phase cable to be bundled—1.8 mm.

AS/NZS 1429.1:2006 18 The minimum thickness of each layer shall not fall below the calculated value given by Equation 2.13.4 (2), calculated for each layer and using the nominal thickness for that layer.

2.1

3.5 Tests

Tests on the oversheath and the category of each test shall be as specified in Table 3.1.

2.1

3.6 Pass criteria

The oversheath shall comply with the appropriate requirements of Table 3.1.

2.14 WATER-BLOCKING (OPTIONAL)

2.14.1 General

The inclusion of water-blocking is optional. If it is used, the water-blocking shall comply with the requirements of Clause 2.14.2.

Water-blocking measures may be taken to restrict water penetration along the cable in the region of the metallic screens (see Appendix C) and within the conductor.

Hygroscopicity is an essential characteristic of a swellable water-blocking material. Where water-blocking materials are used, these materials are exempt from the requirement for non-hygroscopic materials.

NOTE: Som e barrier or binder tapes used in conjunction with water-blocking tapes m ay reduce

the effectiveness of water-blocking measures.

2.14.2 Material and application

Water-blocking of the conductor(s) shall be achieved by non-biodegradable, water-swelling yarns and/or tapes applied within the wires of the conductor. A semiconductive water-blocking tape may need to be applied directly over the conductor.

Water-blocking of the screens in three-core cables shall be achieved by a non-biodegradable, water-swellable tape applied under the screen wires. In the case of single-core cable or phase cable in a triplex cable, the water-swellable tape may be applied under or over the screen wires, or both.

Where applied under the screen wires, the tape shall be semiconductive. The tape shall be compatible with other cable components with which it is in contact.

The tapes shall be readily removable from the core and screen wires.

NOTE: Other effective water-blocking m aterials m ay be acceptable with the exception of loose

powders, which might constitute a health risk. (See Appendix B.)

2.15 PROTECTION FROM INSECT ATTACK (OPTIONAL)

Where protection against insect attack is required, an extrusion of Polyamide 11 or 12, or two copper, brass or stainless steel tapes helically applied, or other suitable means, may be incorporated in the cable construction.

NOTE: See Appendix B.

Where the means of insect protection is susceptible to damage during installation, it shall be inserted within a composite sheath or protected by a sacrificial layer or covered by other cable components.

澳大利亚进口食品的标准和检验程序

澳大利亚进口食品的标准和检验程序 了解澳大利亚食品进口法规,是打进澳市场的必修课。本文就澳大利亚对进口食品的有关要求和检验程序做一介绍。 一、澳大利亚的食品标准规则 澳大利亚政府和新西兰政府共同制定了《澳大利亚新西兰食品标准规则》(以下简称《规则》),规定了本地生产食品和进口食品都要遵守的一些标准。《规则》中列出了描述标准、成分含量标准以及营养表,规定了金属和有害物质的最高含量和农业及兽医所用的化学物质的最高含量等标准。 (一)澳大利亚对进口食品包装标签的要求 1、一般标签的标准 食品的名称所有包装的食品必须有名称或是合适的标识,印刷字体最小不能小于3毫米。可以清楚的表明食品特征。食品名称不应仅仅是某一种成分的名称,也不应对产地、特性、加工地等产生误解。 名称和地址食品的标签上必须标明在澳大利亚销售此食品的公司名称和地址。 批号包装好的食品要显示批号。指在同一条件下,一定时间里(通常不超过24小时)生产的食品总和,在某年月日使用。 原产地标签必须显示食品在哪个国家制造。 日期标识任何包装好的食品,如果其有效期在两年以内,其包装上必须注明有效期。有效期分为三种: 有效期非常短七天内 有效期较短七到十天之间 有效期较长九十天到两年之间 词语必须是"在某年某月某日之前使用","最好在某年某日之前使用","某年某日包装"等。如需特殊储藏食品,要在标签上说明。 重量和尺寸要求所有标签都要显示内含物的净重。大包装食品要显示内装小包装的净重和小包装数量。 成分要求大部分食品的成分都要在标签中说明。成分表中要按照每种成分占食品的比重来排列。食品添加剂必须标明名称,并写清国际添加剂的统一编号。如食品中的二氧化硫每公斤含量超过了25毫克,则必须在成分表中单独说明。

澳大利亚JORC标准简介

JORC规范简要介绍 报告标准JORC 规范的历史概况 JORC规范最近一版发布于1989 年,但委员会诞生于1971 年,是继60 年代末,应西澳大利亚镍股暴涨和因此产生的公众、业界和法律界对于不可接受的(难以承认的)报告的关注而成立的。其实质是,由于法律界人士强烈暗示,除非矿业界制定合适的报告标准,否则法律界人士就要自己作这件事了,联合矿石储量委员会就是在这样的情况下成立的。领悟到了来自法律界的警告信号,澳大利亚矿业理事会(AMIC),现在的澳大利亚矿产理事会(MCA)成立了一个委员会来解决这些问题。很快就有A us IMM加入,之后便成立了JORC。1992 年,澳大利亚地质学家学会成为JORC 的第三家发起机构。 在1972 年-1985 年期间,JORC 发布了很多报告,对于公开报告和矿石储量分类提出建议,并逐渐制定了现在融入到JORC 规范中的基本原则,建议只具有指南的地位,但是随着时间的推移,逐渐为大多数澳大利西亚采矿和勘查公司所采纳。值得指出的是,规范建立起来的核心概念,既称职人员概念,早在1972 年JORC 的第一个文献中就已引进了。 在这一期间,两个非JORC 文件的发表,对于JORC 规范的制定产生了实质性的影响。1980 年,美国地质调查局发表了题为“矿产资源/储量分类原则”(美国矿山局和美国地调局,1980 年,既通常所标的“831 号通告”),在该通告中,首次对代表原位物质的资源和代表经济可采物质的储量进行了明确地划分。两年以后,康锌里奥廷托澳大利亚有限公司(CRA)发布了一个创新性的文件,名为“对矿石储量的估算的理解指南”(King,McMahon,和Butjor,1982),其中创造了很多原则,其中很多原则直至今日仍是规范的基础。 1989年2 月,JORC 发布了第一版JORC 规范(JORC,1989)。除了是对过去文件进行更新和改进形成的,以及向澳大利亚正式地介绍矿产资源是矿石储量的前任以外,该规范与以前的文件不同还表现在两个关键的方面:(1)其被直接写入澳大利亚股票交易所上市条例,进而成为在澳大利亚股票交易所上市的矿业公司必须遵守的规定;(2)它还被A us IMM直接采用作为学会规范,因此,成为A us IMM成员必须遵守的规定。在这两方面的进展的推动下,个人和公司遵守规范成为强制性的,而这一直是规范成功的最关键因素。1992 年,该规范被采纳作为澳大利亚地质学家学会的规定,同年,被新西兰股票交易所写入上市条例。 1990年发表了规范指南,1992 年,对两个文件进行了修改,合并发布(JORC,1992)。1993 年,涉及到金刚石报告的附录部分被发布,1996 年,对JORC 规范又进行了稍许修改,把金刚石附录合起来,并将“资源前矿化”这一术语改为“勘查结果”,并对其使用规定了限制性条款( JORC,1996)。1999 年初完成了重大修改,1999 年版JORC规范于1999 年9 月生效(JORC,1999)。 JORC规范的目的和原则 JORC规范的目的是,制订澳大利西亚勘查结果、矿产资源和矿石储量报告的最低标准,以及确保关于这些类别的公开报告包括了投资者和顾问就所报告的结果和所进行的估算进行无偏判断所合理要求知道的所有信息。通过以下途径达到这一目的: 制定澳大利西亚矿产资源和矿石储量公开报告的最低标准;

澳洲电力市场与售电公司

澳洲电力市场与售电公司(下) 3.零售电市场 澳大利亚的零售电市场开放是与发电侧同时起步的。考虑到各州的特点、经济社会发展水平,澳大利亚的零售电市场在各州的差别很大,所以州政府在零售市场改革主导更多。虽然整体的改革开放框架由澳大利亚政府联席委员会确定下来,但是州政府自己决定如何去具体实施与实行时间表,联邦政府基本没有太多地涉及。零售电市场开放就是培育市场主体,用户可以选择自己的售电商,下面介绍零售电市场各个方面的情况。 售电商业务 在市场竞争的环境中,售电公司的首要业务是要保持用户的市场份额,通过营销活动以扩大用户基础。有了用户之后就需要到电力市场为他们购电。电力市场风险很大,因而需要电力市场风险管理。风险不仅包括电力价格风险,还包括源于用户数目变化而出现的用电量风险。 零售电公司根据厂矿、医院、政府、学校、居民用电等多种用电负荷特性来制定销售电价,而且对客户售电服务的合同也需要针对用户情况来设计。此外,零售电公司负责管理用户账目。对于拥有众多居民用户的公司而言,由于用户数目庞大,还需要运行和维护专门的大型计算机管账系统。在澳大利亚,售电公司收缴电费,其中包括代收的输电网的费用与环境政策附加费,电力批发市场购电成本,售电公司

自身营运成本和利润。运营客服中心,帮助用户解决各种问题是改善客户体验的重要工作。例如电话服务有监控记录,30秒之内是否给客户答复,这也是一种服务标准。如果有客户因为经济困难拖欠电费,也有专门条款指引零售电公司采取措施帮助他们。市场规则和监管机构都要求零售电公司设有专人专职负责解困措施的实施。 政府能源政策制定、市场监管和市场规则的更改完善都征询市场主体意见。多数企业都积极参与并提交建议报告。这是公司政策法律法规部门的常规业务。 随着售电侧市场不断发展,售电公司的商业模式也不断多样化。第一类是纯售电公司,规模较小,分为两类。一种是独立的公司,通常由几个人或者小规模经营,它们一般是一个有用电负荷,但没有发电能力的独立售电公司;另一种是非电力集团公司在主营业务之外成立的售电公司,明显的例子是通讯公司和互联网公司,这些公司既有客户,也有客服能力和资金,有着很强的竞争潜力。 第二类售电公司是发电企业的子公司,这类售电公司最初是一个很大的发电企业,开展一部分零售业务。这类公司发电比较多,用电负荷相对较低。 第三类是比较主要的类型,售发一体化的公司,即一个企业既有发电厂业务又有售电业务。这两个量大体相当,但要完全匹配却不是那么容易。因为发电厂购买或投建规模非常大,而用户积累则是一点点来,或者有的时候一次性购买

澳大利亚国家标准(sa)目录新

序号标准号标准名称(仅供参考) 1AS 1000 :1979THE INTERNATIONAL SYSTEM OF UNITS (SI) AND ITS APPLICATION 2AS 1001 :1987PLAIN SETTING RINGS FOR INTERNAL MEASURING EQUIPMENT (METRIC SERIES) 3AS 1003 :1987ENGINEERS STRAIGHTEDGES (METRIC UNITS) 4AS 1004 :1971SURFACE PLATES (METRIC UNITS) 5AS 1004.1 :1998SURFACE PLATES FOR METROLOGY - CAST IRON 6AS 1004.2 :1998SURFACE PLATES FOR METROLOGY - GRANITE 7AS 1006 :1995SOLID-STEM GENERAL PURPOSE THERMOMETERS 8AS 1009 :1983DATA STORAGE DEVICES - MAGNETIC STORAGE DEVICES - INFORMATION PROCESSING-9-TRACK. 12.7 MM WIDE MAGNETIC TAPE FOR INFORMATION INTERCHANGE RECORDED AT 32 RPMM 9AS 1011 :1993DATA STORAGE DEVICES - MAGNETIC STORAGE DEVICES - INFORMATION PROCESSING SYSTEMS-UNRECORDED 12.7 MM (0.5 IN) WIDE MAGNETIC TAPE FOR INFORMATION INTERCHANGE-32 FTPMM (800 FTPI). NRZ1. 126 FTPMM (3 200 FTPI) PHASE ENCODED AND 356 FTPMM (9 042 FTPI). NRZ1 10AS 1012 SET :2000METHODS OF TESTING CONCRETE 11AS 1012.1 :1993METHODS OF TESTING CONCRETE - SAMPLING OF FRESH CONCRETE 12AS 1012.10 :1985METHODS OF TESTING CONCRETE - METHOD FOR THE DETERMINATION OF INDIRECT TENSILE STRENGTH OF CONCRETE CYLINDERS 13AS 1012.11 :1985METHODS OF TESTING CONCRETE - METHOD FOR THE DETERMINATION OF THE FLEXURAL STRENGTH OF CONCRETE SPECIMENS 14AS 1012.12 :1986METHODS OF TESTING CONCRETE - METHOD FOR THE DETERMINATION OF MASSPER UNIT VOLUME OF HARDENED CONCRETE 15AS 1012.12.1 :1998METHODS OF TESTING CONCRETE - DETERMINATION OF MASS PER UNIT VOLUME OF HARDENED CONCRETE - RAPID MEASURING METHOD 16AS 1012.12.2 :1998METHODS OF TESTING CONCRETE - DETERMINATION OF MASS PER UNIT VOLUME OF HARDENED CONCRETE - WATER DISPLACEMENT METHOD 17AS 1012.13 :1992METHODS OF TESTING CONCRETE - DETERMINATION OF THE DRYING SHRINKAGE OF CONCRETE FOR SAMPLES PREPARED IN THE FIELD OR IN THE LABORATORY 18AS 1012.14 :1991METHODS OF TESTING CONCRETE - METHOD FOR SECURING AND TESTING CORES FROM HARDENED CONCRETE FOR COMPRESSIVE STRENGTH 19AS 1012.15 :1979METHODS OF TESTING CONCRETE - METHOD FOR THE ESTIMATION OF PORTLAND CEMENT CONTENT OF HARDENED CONCRETE 20AS 1012.16 :1996METHODS OF TESTING CONCRETE - DETERMINATION OF CREEP OF CONCRETE CYLINDERS IN COMPRESSION 21AS 1012.17 :1997METHODS OF TESTING CONCRETE - DETERMINATION OF THE STATIC CHORD MODULUS OF ELASTICITY AND POISSON'S RATIO OF CONCRETE SPECIMENS 22AS 1012.18 :1996METHODS OF TESTING CONCRETE - DETERMINATION OF SETTING TIME OF FRESH CONCRETE. MORTAR AND GROUT BY PENETRATION RESISTANCE 23AS 1012.19 :1988METHODS OF TESTING CONCRETE - ACCELERATED CURING OF CONCRETE COMPRESSION TEST SPECIMENS (LABORATORY OR FIELD) - HOT WATER AND WARM WATER METHODS 24AS 1012.2 :1994METHODS OF TESTING CONCRETE - PREPARATION OF CONCRETE MIXES IN THELABORATORY 25AS 1012.20 :1992METHODS OF TESTING CONCRETE - DETERMINATION OF CHLORIDE AND SULFATE IN HARDENED CONCRETE AND CONCRETE AGGREGATES 26AS 1012.21 :1999METHODS OF TESTING CONCRETE - DETERMINATION OF WATER ABSORPTION AND APPARENT VOLUME OF PERMEABLE VOIDS IN HARDENED CONCRETE 27AS 1012.3 :1983METHODS OF TESTING CONCRETE - METHODS FOR THE DETERMINATION OF PROPERTIES RELATED TO THE CONSISTENCE OF CONCRETE 28AS 1012.3.1 :1998METHODS OF TESTING CONCRETE - DETERMINATION OF PROPERTIES RELATED TO THE CONSISTENCY OF CONCRETE - SLUMP TEST 29AS 1012.3.2 :1998METHODS OF TESTING CONCRETE - DETERMINATION OF PROPERTIES RELATED TO THE CONSISTENCY OF CONCRETE - COMPACTING FACTOR TEST 30AS 1012.3.3 :1998METHODS OF TESTING CONCRETE - DETERMINATION OF PROPERTIES RELATED TO THE CONSISTENCY OF CONCRETE - VEBE TEST 31AS 1012.3.4 :1998METHODS OF TESTING CONCRETE - DETERMINATION OF PROPERTIES RELATED TO THE CONSISTENCY OF CONCRETE - COMPACTIBILITY INDEX 32AS 1012.4 :1983METHODS OF TESTING CONCRETE - METHODS FOR THE DETERMINATION OF AIR CONTENT OF FRESHLY MIXED CONCRETE 澳大利亚国家标准(SA)目录

中国和澳洲的生活对比

中国和澳洲的生活对比 在很多的人的观念里,移民国外是高大上有有钱人才会去做的,甚至都说外国的月亮比中国的要圆的多。这让小编就忍不住又想说上两句了!在国内的时候,我们只是知道,外面环境好,福利好,只有真正到了这个国家生活,才知道,一些真实的情况.就像专门捕食昆虫的植物一样,外表很美,还散发着香甜的花粉味,只要你一进来,就把你吸干!但同样也不能吃不着葡萄说葡萄酸否认国外福利等其他方面的设施完善,总的来说利弊皆有,至于人们老生常谈的一个话题:“移民真的好吗?”下面我们从日常生活来对比一下澳洲和国内生活的差异。也让准备移民或正在办理移民的朋友们更直观的了解接下来要走的路。 话说,人的生活离不开衣食住行,过日子要讲究精打细算。中国人多是靠省吃俭用积攒家底,澳洲人则多是依赖负债积累财富。中国和澳洲的消费文化不一样,花钱理念也不同。从一下几点来分析: 一、家庭住宅

澳洲人的“家”是“Family”,而不是中国人的“House”,甚至也不是“Home”,澳洲的Family强调家庭成员的亲情关系,而中国人的家,不仅强调家庭成员间的亲情,也很强调住所即“房屋”。 这也是澳洲人习惯租房,把房子看得比较轻,把家庭成员看得比较重的原因。中国人即使背井离乡,老家的房子早已空无一人,但许多人仍然把那些老房子看成是自己永恒的家。 中国人买大房子多为炫富,澳洲人买大房子是为需要。中国改革开放30年民众生活改善的最大一个方面是住房变化,过去三代人挤一间房的日子已很难看见,而且居民住房拥有率直线上升,根据中国发布的统计数据,城市居民的住房拥有率为80%,有的城市达到90%。反观澳洲,根据人口普查局公布的数据,2014年第一季度澳洲居民住房拥有率为65%,比2005年居民69%的住房拥有率下降了四个百分点。中国的年轻人工作后首要任务是买房,但往往是父母出钱,特别是大城市男孩,没房子想娶老婆都难。澳洲80后现在是不买房的居多,很多人表示35岁之前买房就可以。澳洲年轻人买房多不靠父母,自己攒钱付头款,然后分期付款30年。 在购买住房的消费理念上,中国人会把大房子、豪宅看成是富有的象征,有钱人才能住上别墅。中国人喜欢往大城市扎堆,一线城市的高房价达到国际水平。澳洲人把住房看成是温暖的窝,房子的大小取决于家庭需要。有句话说,穷人住城市、中产阶级住郊区,富人住乡下,澳洲最贵的房子多数远离城市。 二、购买汽车

澳大利亚的食品标准规则

澳大利亚的食品标准规则 澳大利亚政府和新西兰政府共同制定了《澳大利亚新西兰食品标准规则》(以下简称《规则》),规定了本地生产食品和进口食品都要遵守的一些标准。《规则》中列出了描述标准、成分含量标准以及营养表,规定了金属和有害物质的最高含量和农业及兽医所用的化学物质的最高含量等标准。 (一)澳大利亚对进口食品包装标签的要求 1、一般标签的标准 食品的名称所有包装的食品必须有名称或是合适的标识,印刷字体最小不能小于3毫米。 可以清楚的表明食品特征。食品名称不应仅仅是某一种成分的名称,也不应对产地、特性、加工地等产生误解。 名称和地址食品的标签上必须标明在澳大利亚销售此食品的公司名称和地址。 批号包装好的食品要显示批号。指在同一条件下,一定时间里(通常不超过24小时)生产的食品总和,在某年月日使用。 原产地标签必须显示食品在哪个国家制造。 日期标识任何包装好的食品,如果其有效期在两年以内,其包装上必须注明有效期。有效期分为三种: 有效期非常短七天内 有效期较短七到十天之间 有效期较长九十天到两年之间 词语必须是"在某年某月某日之前使用","最好在某年某日之前使用","某年某日包装"等。如需特殊储藏食品,要在标签上说明。 重量和尺寸要求所有标签都要显示内含物的净重。大包装食品要显示内装小包装的净重和小包装数量。 成分要求大部分食品的成分都要在标签中说明。成分表中要按照每种成分占食品的比重来排列。食品添加剂必须标明名称,并写清国际添加剂的统一编号。如食品中的二氧化硫每公斤含量超过了25毫克,则必须在成分表中单独说明。 营养表最近澳又有新的规定,食品必须有营养表的标识。

(二)免除特例 有些食品不用在标签上标明成分,包括食品包装外表面积小于 100平方厘米;食品名称已经标明食品中所含的所有成分,不是直接卖给消费者的;装在密封瓶子内的酒精饮料等不需要成分标签。 (三)食品包装标签的印刷 用英文书写,清楚易懂和不能褪色、消费者容易看到、字体不能小于1.5毫米、使用字体大小统一、字体与背景明显分开。 (四)食品包装禁止使用内容 禁止宣称有治疗和预防疾病的功效;禁止使用可以导致消费者误解为有医疗作用的文字、注释、声明或设计;禁止使用任何疾病和生理状况的名称或说明;禁止宣称注释减肥食品或有减轻体重的功效;禁止将分析证书任何部分使用在标签上。 (五)食品包装文字表述 禁止使用"纯的"、"纯天然"、"有机的"、"低酒精含量""不含酒精"、"健康"、"含丰富维他命"等等文字表述。 (六)食品包装图片和设计 有关食物的图片和设计可以用于标签上来显示该食品特征和烹任方法。但必须伴有"食谱"、"烹任建议"等字样。 (七)特殊食品的要求 对于特殊食品上的标签有特殊规定,节食食品应该在标签上标注"节食食品"字样,同时附上配方;已经改变了碳水化合物结构的食品,应该标注"碳水化合物结构改变"字样,并附上碳水化合物成份表;对于酒精饮料,必须标明二十摄氏度下的酒精浓度;乳制品应则要求在标签上标明"应冷藏"字样;对于特殊含有的物质应标明,如"人造增甜食物"、"含有咖啡因"等。 (八)检疫局对进口食品标签检查的注意内容 准确的商品描述 生产商和进口商的详细情况 是否注明了原产地国 标签是否用英文 批号和使用日期是否注明

澳大利亚电力市场模式

澳大利亚电力市场模式 1.澳大利亚电力市场的简介 澳大利亚国家电力市场是以发电商、配电商、网络服务商、购电商、消费者(含零售商和终端用户)、特殊成员为主体,并由电网这个载体构成,通过现货交易和金融合约交易(差价合约),实现电力批发或电力零售交易。 在电力市场交易中,发电商通过竞争把发出的电力卖给电力批发市场,市场把电力批发给零售商。终端用户也可以通过合约形式从电力市场的发电商直接购电,而不通过零售商,称为购电商。在零售市场上,零售商把批发到的电力卖给大小不等的终端用户,大的用户可以自行选择配电商。初期新州电力市场只允许超过10MW的大电力用户在电力市场中可以自由选择自己的供应商,以后逐步放开用户,到1999年推行到全部家庭用户。(市场规定,超过30MW的发电厂必须加入批发市场) 2.电力市场的特点 1、市场各参与方参加的电力供应和购电的竞争性批发市场; 2、开放式的电力系统体系,上网各方不受歧视对待; 3、上网电厂和用户的上网设备必须保证电力供应的安全性和满足供电标准的特殊性; 4、具有透明度的全国统一法规调控体系。 3.电力市场的交易主体 1、全国电力市场有限公司。负责管理批发市场的运行和电力系统的安全,负责依据法规中 的条款对批发电力市场实行管理,为各参与者注册,管理现货市场,与电网服务公司一道协助电力规划,作为市场的操作员,并根据上网报价与投标价,以满足电力需求的最小成本为原则,对计划的发电量和负荷进行调度; 2、发电商 3、市场用户。包括零售商或最终用户,零售商代表其特权用户和选择不直接从市场购电的 非特权供电用户从电力批发市场购电;最终用户在其工厂、办公室及家庭消费电力。4、电网服务机构。它拥有(或租赁)和经营输电网与配电网。该机构必须向NEMMCO进 行电网企业的注册,同时,欲进行电网企业注册的机构必须向ACCC提供无歧视接网的承诺。 5、其他市场成员。包括系统运营人和配电系统运营人。所谓系统运营人是指为履行 NEMMCO的电力系统安全职责目的而由NEMMCO制定的代理机构;所谓配电系统运营人是指负责管理配电系统各部分控制和运营的机构(包括在电力系统发生事故时负责调度的机构)。 4.电力市场的运作 5.1现货市场 现货市场交易:现货交易,是由发电企业通过市场竞价产生的次日或者未来 24小时的电能交易,以及为保证电力供需的即时平衡而组织的实时电能交易 市场基本结构:

澳大利亚进口食品的标准与检验

澳大利亚进口食品的规范和检验程序 了解澳大利亚食品进口法规,是打进澳市场的必修课。本文就澳大利亚对进口食品的有关要求和检验程序做一介绍。 一、澳大利亚的食品规范规则 澳大利亚政府和新西兰政府共同制定了《澳大利亚新西兰食品规范规则》(以下简称《规则》),规定了本地生产食品和进口食品都要遵守的一些规范。《规则》中列出了描述规范、成分含量规范以及营养表,规定了金属和有害物质的最高含量和农业及兽医所用的化学物质的最高含量等规范。 (一)澳大利亚对进口食品包装标签的要求 1、一般标签的规范 食品的名称所有包装的食品必须有名称或是合适的标识,印刷字体最小不能小于3毫M。可以清楚的表明食品特征。食品名称不应仅仅是某一种成分的名称,也不应对产地、特性、加工地等产生误解。 名称和地址食品的标签上必须标明在澳大利亚销售此食品的公司名称和地址。 批号包装好的食品要显示批号。指在同一条件下,一定时间里(通常不超过24小时)生产的食品总和,在某年月日使用。 原产地标签必须显示食品在哪个国家制造。 日期标识任何包装好的食品,如果其有效期在两年以内,其包装上必须注明有效期。有效期分为三种: 有效期非常短七天内 有效期较短七到十天之间 有效期较长九十天到两年之间 词语必须是"在某年某月某日之前使用","最好在某年某日之前使用","某年某日

包装"等。如需特殊储藏食品,要在标签上说明。 重量和尺寸要求所有标签都要显示内含物的净重。大包装食品要显示内装小包装的净重和小包装数量。 成分要求大部分食品的成分都要在标签中说明。成分表中要按照每种成分占食品的比重来排列。食品添加剂必须标明名称,并写清国际添加剂的统一编号。如食品中的二氧化硫每公斤含量超过了25毫克,则必须在成分表中单独说明。 营养表最近澳又有新的规定,食品必须有营养表的标识。 (二)免除特例 有些食品不用在标签上标明成分,包括食品包装外表面积小于100平方厘M;食品名称已经标明食品中所含的所有成分,不是直接卖给消费者的;装在密封瓶子内的酒精饮料等不需要成分标签。 (三)食品包装标签的印刷 用英文书写,清楚易懂和不能褪色、消费者容易看到、字体不能小于1.5毫M、使用字体大小统一、字体与背景明显分开。 (四)食品包装禁止使用内容 禁止宣称有治疗和预防疾病的功效;禁止使用可以导致消费者误解为有医疗作用的文字、注释、声明或设计;禁止使用任何疾病和生理状况的名称或说明;禁止宣称注释减肥食品或有减轻体重的功效;禁止将分析证书任何部分使用在标签上。 (五)食品包装文字表述 禁止使用"纯的"、"纯天然"、"有机的"、"低酒精含量""不含酒精"、"健康"、"含丰富维他命"等等文字表述。 (六)食品包装图片和设计 有关食物的图片和设计可以用于标签上来显示该食品特征和烹任方法。但必须伴有"食谱"、"烹任建议"等字样。 (七)特殊食品的要求 对于特殊食品上的标签有特殊规定,节食食品应该在标签上标注"节食食品"字样,同时附上配方;已经改变了碳水化合物结构的食品,应该标注"碳水化合物结构改变"字样,并附上碳水化合物成份表;对于酒精饮料,必须标明二十摄氏度下的酒精浓度;乳制品应则要求在标签上标明"应冷藏"字样;对于特殊含有的物质应标明,如"人造增甜

澳大利亚大学的分类标准

澳大利亚大学的分类标准 近年来,澳洲留学越来越火热。86留学网为了帮助各位同学和家长全面和准确地了解澳大利亚大学,以便做出正确的择校决定,整理了澳大利亚大学的分类标准,供大家参考。 (1)地区分类 从行政区划来看,澳大利亚全国分成6个州和2个地区,澳大利亚全部39所大学就分布在这6个州和2个地区。需要指出的是,某些大学在不同的州或地区都设有校区,在这里,我们按照大学主校区所处的州或地区,将大学作如下划分: 新南威尔士州(首府悉尼)共计有10所大学 维多利亚州(首府墨尔本)共计有8所大学 昆士兰州(首府布里斯班)共计有9所大学 西澳州(首府佩斯)共计有5所大学 南澳州(首府阿得雷德)共计有3所大学 塔斯马尼亚州(首府霍巴特)共计有1所大学 首都地区(首都堪培拉)共计有2所大学 北部地区(首府达尔文)共计有1所大学 (2)大学成立时间 从大学成立的时间来看(dateestablishedasauniversity),有4所澳大利亚大学成立于19世纪,4所澳大利亚大学成立于20世纪上半叶,其余的31所大学均成立于20世纪下半叶。 (3)公立大学和私立大学 在澳大利亚全部39所大学中,共有37所公立大学、2所私立大学。2所私立大学分别是邦德大学和圣母大学。大学(university)

一词在澳大利亚受联邦法律严格保护,须经专家学者及政府针对相 关学术、财务等方面之品质评估与认可,且由国会立法通过,方准 设立。通过以后,无论公立大学或私立大学,皆获授权允许自行开 设课程以及颁授证书、文凭和学位并由澳大利亚教育部统一管理。 (4)国内大学联盟 1.八校联盟(GroupofEight) 澳大利亚八校联盟GroupofEight(简称G08)是八所澳大利亚一流大学的教育共同体常设机构。联盟内的八所成员大学具有全面、综 合的基础与专业教育体系,并且以其在学术研究领域的深度和广度 而享有盛名。这八所成员大学包括澳大利亚国立大学、墨尔本大学、悉尼大学、新南威尔士大学、昆士兰大学、西澳大学、莫纳什大学、阿得雷德大学。 2.澳大利亚科技大学联盟(AustralianTechnologyNetworkofUniversities) 澳大利亚科技大学联盟,简称ATN,成立于1995年,是由五所 重视将所学习和研究的内容,转化于实际应用成果的澳大利亚大学 组织。ATN的5所成员大学分布于澳大利亚5大州,分别是悉尼科 技大学、墨尔本皇家理工大学、昆士兰科技大学、科廷科技大学和 南澳大学。这五所院校务求毕业生以及他们所进行的科研项目与产 业界及社会发展的趋势相吻合;共同特点是将所争取来的研究经费运 用于商学、资讯学、建筑学、环保学、工程学及护理学方面,使之 教学与研究品质在全国占有难以取代的学术优势。ATN的学生人数 占澳大利亚大学学生总数的比例达到20%;其中工程系学生占全澳总 数的28%、建筑系学生占全澳总数的45%。 3.澳大利亚创新研究大学联盟 澳大利亚创新研究大学联盟(InnovativeResearchUniversitiesAustralia,IRUAustralia),是六所澳大利亚以创新为兴学宗旨的学府所组成的校际联盟。加入IRUAustralia的六所澳大利亚高等学府皆成立于1960年代到1970 年代之间,分别是弗林德斯大学、格里菲斯大学、詹姆斯库克大学、

澳洲和中国外奶粉标准对比

国内和澳洲奶粉及婴幼儿乳粉的要求指标项目对比 1 乳粉对比 1.1 理化指标 表1 中国和澳洲乳粉标准理化限量对比 量;澳洲乳粉引用标准:Australian New Zealand Food Standards Code:Standars 2.5.7 Dried Milks, Evaporated Milks and Condensed Milks,Standars 1.4.1 Contaminats

and Natural Toxicants;表中“/”表示引用的产品标准中无特别说明。 1.2 微生物指标 表2 国内乳粉微生物限量 Zealand Food Standards Code:Standars 2.5.7 Dried Milks, Evaporated Milks and Condensed Milks 表3 澳洲乳粉微生物限量 表示引用的澳洲产品标准或微生物标准中无特别说明。 2 婴幼儿配方食品对比(乳基) 2.1 中国和澳洲婴幼儿配方食品理化指标对比 表4 中国和澳洲婴幼儿配方食品理化限量对比

注:中国引用标准GB 10765-2010 婴幼儿配方食品;澳洲引用标准Standars 1.6.1 Infant Formula Products 表5 中国和澳洲婴幼儿配方食品矿物质限量对比

物限量;澳洲引用标准Standars 1.6.1 Infant Formula Products,Standars 1.4.1 Contaminats and Natural Toxicants;表中“/”表示引用的澳洲产品标准或微生物标准中无特别说明。 2.2 中国和澳洲婴幼儿配方食品微生物指标对比

澳大利亚和新西兰家用电器法规标准体系

澳大利亚和新西兰家用电器法规标准体系 中国是澳大利亚第一大贸易伙伴、出口市场和进口来源国,澳大利亚国内没有自己的家电制造企业,从大家电类的冰箱、洗衣机和空调等到小家电类的电水壶,吸尘器等产品都依赖进口。 澳大利亚标准与IEC标准的协调一致性。澳大利亚的标准以“AS”开头,澳大利亚与新西兰的联合标准以“ AS/NZS”开头。澳大利亚的标准与新西兰的标准基本与IC一致(目前澳大利亚的标准有333%完全与IEC标准一致),有些存在一些国家差异,例如:对于电源电压的要 求是240V(单相)415V(三相)50Hz;由于所处的地理位置,某些产品的标准(如冰箱、空调)规 定应按热带气候来考虑等。 澳大利亚和新西兰推行统一的标准和认证的相互认可,产品只要取得一个国家的认证后就可在另外一个国家销售。 澳大利亚认证主要包括电气安全、电磁兼容及能效标签三个方面 产品电气安全认证 澳大利亚没有统一的安全认证标志,各个州或地区都先后以立法的形式规定了对电器产品的管理方法,各个州或地区关于电气安全立法的内容基本一致电气产品分为强制申报产品和非强制申报产品。 电磁兼容性要求 绝大部分电气电子产品都必须符合电磁兼容性EMC框架文件的要求,其目的是保护无线电通讯频段的资源,减少电器产品的辐射并确保电器产品的设计不会被电磁辐射所干扰。其规定的实施制度有点类似于欧洲的EMC指令,即按照基于 CISPR文件的标准,通过测试或建立技 术结构文件后,允许生产商进口商进行自我声明并在产品标示C-tick标记以表示符合性。 能耗标签 改善器具和设备的能效是澳大利亚政府的努力目标,《国家温室大纲》中明确指出:通过扩展和提高现存的标贴和最小能源性能标准的有效性,来促进家用器具及商用和工业用设备的能效的改善。除安全要求和EMC要求外,许多电器产品均需要具备能耗标贴方可在澳洲市场出售,例如:冰箱和冷柜、干衣机、空调、洗碗机、洗衣机等等。申请人必须向监控机构提交申请表并附上完整正确的测试报告及能耗标签的样本。测试报告必须由经认可的实验室出具,自签发日起三年内有效。

澳洲电力市场情况简介

澳洲电力市场简介 1. 电力市场基本概况 澳大利亚从1990年开始进行电力市场化改革,1998年澳大利亚国家电力市场(NEM)建立并正式投入运营。澳大利亚国家电力市场于1998年12月13日投入运行,目前涵盖了昆士兰、新南威尔士、澳大利亚首都地区、维多利亚、南澳和塔斯马尼亚6个行政区域,仅西澳和北部特区尚未加入国家电力市场。NEM中有200多家大型发电企业、5个州的输电网和14个主要配电网,为900余万用户提供电力服务,约占全国总电量的89%。 NEM分为电力批发市场和电力金融市场。电力批发市场采取电力库(Pool)模式,澳大利亚能源市场运营机构(AEMO)负责集中调度和交易,对于受AEMO调度的机组,所有电能交易都必须通过AEMO的集中交易平台进行交易,AEMO每半小时公布一次电力市场现货价格。市场的主要购电方是零售商,终端用户也可直接从中购电,但是这种情况比较少见。2011~2012年,澳大利亚国家电力市场的交易电量约1830亿千瓦时,成交额为57亿澳元。 除现货市场外,发电商和零售商还可参与电力金融市场。发电商与购电商可根据双方协商确定的履约价格签订长期或短期的双边交易合同(差价合约),也可以在政府批准的证券期货交易所,比如澳大利亚股票交易所进行电力期货交易。目前,期货市场涵盖了维多利亚、新南威尔士、昆士兰和南澳,交易电量规模约为现货市场的2倍。

2. 售电领域概况 全澳洲拥有28家售电公司,其中实力最强的4家售电公司分别是Origin Energy公司、AGL公司、Energy Australia公司、TRU Energy 公司,市场份额占到80%以上。电力用户面对纷繁复杂的售电公司,需要综合考虑价钱,售电公司的资质和信誉,折扣幅度,客户服务态度,支付方式,退出合同机制,可持续能源发电以及社会责任等。一些帮助电力用户选择售电商的公益性网站应运而生,除网站提供的简单比价服务之外,网站和政府网站提供了包含综合考虑的选择售电商的服务。综合考虑包括住宅区位,住宅类型,家庭规模,是否定期合同,是否绿色能源电力,退出费用,合同时限,顾客评级以及基于过去一年电费计算得出的预计未来一年电费支出。 3. 典型发电企业介绍 AGL是澳洲最早的能源公司,拥有175年经营历史,同时也是澳大利亚最大的上市证券交易所的所有者,在澳洲境内开发传统和可再生能源发电项目。AGL拥有各种不同类型的电厂,涵盖了传统热电以及包括水能,风能,太阳能和生物质垃圾填埋气在内的可再生能源。2014年AGL电力用户数量万人,售电量27802GWh,其中普通居民用户电量14839GWh,工商业用户电量12963 GWh。

澳大利亚水龙头的WaterMark产品认证及WELS节水认证

澳大利亚水龙头的 WaterMark 产品认证及WELS节水认证 澳大利亚 澳洲 watermark wels 水龙头 出口认证 分类:澳洲认证 水龙头产品的认证为WaterMark, 对应节水认证WELS WaterMark是WELS的前提条件,是澳大利亚对于一切和水有关的产品的强制性认证。水龙头的澳洲标准为:AS/NZS 3718 水龙头产品的检测分为两部分, 一部分在国内(机械类耐久性测试) 一部分在澳洲(AS/NZS 4020 饮用安全方面) 另外,对于水龙头的材料材质也有要求 材料如果选用铜的,那么该铜需要满足AS 2345 (抗脱锌测试) 材料如果选用塑料和橡胶的,需要满足AS 3558.5(抗紫外线测试) 所以在认证之前,选材方面还是要留意的。 得到WaterMark证书之后,凭WaterMark及其测试报告,可以申请WELS。 水龙头的WELS分为以下几个星级(星级越高表示节水级别越高) AS/NZS 3718 Lv1 在150kPa和350kPa的压力下 0 星级:16升/分<平均流量,或没有通过性能要求测试 1 星级:12升/分<平均流量<16升/分 2 星级:9升/分<平均流量<12升/分 3 星级:7.5升/分<平均流量<9升/分 4 星级:6升/分<平均流量<7.5升/分 5 星级:4.5升/分<平均流量<6升/分 6 星级:平均流量< 4升/分

宁波大生检测技术服务有限公司成立于2001年,是国内专业的洁具卫浴、水暖器材、电子电器行业检测机构。可按欧洲、北美、澳洲、中国等多个标准对水龙头、花洒、软管等产品进行相关测试。公司也专门做一些国外认证 如:欧盟的CE认证法国的ACS认证英国的WRASR认证澳洲的Watermark(实验室SAI授权)美国的cUPC 德国的KTW,W270,DVGW,SKZ. 中东的验货等等。 一、认证介绍、证书范本。 WaterMark 是应用于给排水,管道系统的澳洲认证标志。澳洲管道行业非常重视WaterMark的标准,如果执行合理,澳大利亚及新西兰的居民将对其水质充满信心。 WaterMark的标准对凡是进入澳洲的所有水务产品都有限制和要求。 澳洲标准协会(Standards Australia)本身并不直接颁发WaterMark证书给厂商,而是在申请人产品满足WaterMark标准的前提下,由澳洲第三方机构予以认证。 二、可做产品 WaterMark针对不同的管道和给排水产品所带来的“风险”程度制定了不同的规范要求。根据风险程度WaterMark划分为Level 1和Level 2. WaterMark level 1 是对高风险产品的要求(冷热水供应系统) level 1要求产品符合MP52或澳大利亚管道标准,相应认证规范依照ISO/IEC Guide 67.2004, System 5包括检测,评估及质量监督系统,产品在被授予WaterMark level 1前必须符合相关要求。 典型产品:热水器/ 冷热水管和配件/ 龙头和阀门 / 卫生设备,厕所,坐浴盆/ 高危险用具/ 水过滤和水治疗处理设计 WaterMark level 2是对低风险产品的要求(卫生保洁,排水,排泄系统) level 2要求产品符合MP52或澳大利亚管道标准,相应认证规范依照 ISO/IEC Guide 67.2004, System 1b主要对产品进行检测和符合性评估,合适后颁发

中国与澳大利亚经贸合作的现状与前景

中国与澳大利亚经贸合作的现状与前景 摘要中国和澳大利亚是两个处于不同经济发展阶段的国家,两国在生产要素和经济结构上存在着很大的差异。但是中澳两国自建交以来都非常注重发展经济贸易关系,并且两国在经济方面有极强的互补性和发展空间,特别是进入新世纪以来,中澳经贸关系发展迅速,合作领域不断拓宽、规模不断扩大,已经成为重要的贸易伙伴关系。自2006年4月中澳双方就发展21世纪互利共赢的全面合作关系达成共识以来,中澳之间的经济交流与合作取得了新发展,双边关系继续呈现良好的发展势头。本文从中国与澳大利亚经贸合作的现状出发,针对存在的问题,提出解决方法,并对发展前景进行展望,以期为两国今后经济发展提供一定的参考。 关键词经贸合作中国与澳大利亚经贸关系

目录 引言 (1) 1.中国与澳大利亚经贸合作的现状分析 (2) 1.1.中国与澳大利亚经贸合作中取得的成绩 (2) 1.2.中国与澳大利亚经贸合作中存在的问题 (4) 2.中国与澳大利亚经贸合作发展的建议 (5) 2.1.深化贸易关系,推动双边贸易自由化 (5) 2.2.优化贸易结构,提高双边贸易的互利性和可持续性 (5) 2.3.拓宽贸易渠道,增强双边贸易的互补性和多层次性 (6) 2.4.借鉴国际合作成功经验,进一步提高两国贸易水平 (6) 2.5.研究签订自由贸易协定,促进两国贸易长期共同发展 (7) 3.中国与澳大利亚经贸合作面临的挑战和潜在的机遇 (7) 3.1.中澳经贸关系面临的挑战 (7) 3.2.中澳经贸合作存在的机遇 (8) 结束语 (10) 参考文献 (11) 英文摘要 (12)

引言 随着国际分工的深入和世界经济一体化的发展,国际间的经贸合作日益成为国家间经济交往的重要方式。中国与澳大利亚的经贸合作近年来飞速发展,取得了引人瞩目的成绩。两国双边经贸关系始于20世纪中期,初步发展于20世纪70年代末,到21世纪初步入快速成长期。中澳建交30多年来,两国之间的经济合作获得了全面稳定的发展。这不仅得利于中国巨大的市场潜力对澳大利亚有着难以抗拒的诱惑,同时也是因为澳大利亚丰富的能源资源为中国实施能源进口多元化战略提供了有力的支撑,两国间的经济合作对世界经济发展做出了贡献。正如澳大利亚前总理霍华德所言,中澳经贸关系的发展不仅有利于两国,并且助推了世界经济的快速增长。尽管中澳两国的经济贸易取得了很大成绩,但是还存在着一些制约因素。本文分别从两国经贸合作取得的成绩、存在的问题、以及面临的挑战和存在的机遇几个方面进行深入探讨,提出两国经贸合作的发展建议。

相关主题
文本预览
相关文档 最新文档