纳米二氧化钛的制备
- 格式:docx
- 大小:461.55 KB
- 文档页数:13
一、钛醇盐气相热解法该工艺以钛醇盐为原料,将其加热气化,用氮气、氦气或氧气作载气,把钛醇盐蒸气预热分解炉,进行热分解反应。
其反应式如下:nTi(OC4H9)4(g)===nTiO2(s)+2nH2O(g)+4nC4H8(g)日本出光兴产株式会社利用钛醇盐气相热解法生产球形非晶型的TiO2,这种纳米TiO2可以用作吸附剂、光催化剂、催化剂载体和化状品等。
据称,为提高分解反应速率,载气中最好含有水蒸气,分解温度以250~350℃为合适,钛醇盐蒸气在热分解炉中的停留时间为0.1~10s,其流速为10~1000mm/s,体积分数为0.1%~10%;为提高所生成纳米TiO2的耐候性,可向热分解炉中同时导入易挥发的金属化合物(如铝、锆的醇盐)蒸气,使纳米TiO2粉体制备和无机表面处理同时进行,该工艺的最大缺点是原料成本较高,产物中残炭含量高,难以合成纯金红石型的纳米TiO2。
二、钛醇盐气相氧化法将钛醇盐蒸气导入反应器与氧气反应,由于饱和蒸气压的原因,反应前体一般选用钛酸民丙醇酯(TTIP).Arabi-Katbi等以TTIP为原料,研究了火焰的方位和结构对合成纳米TiO2的影响。
预混合反应器的方位主要影响停留时间,对晶型组成、颗粒尺寸有一定影响,但对粒子的形貌影响不大。
在层流扩散焰反就器中合成纳米TiO2反应器的混合方式和火焰结构可以有效控制产物的平均原始粒径(10~50mm)和晶型组成(金红石型的质量分数为6%~50%)。
为增大粒径和提高产物的金红石型含量,可以通过增加甲烷气体的流量而提高反应温度来实现。
气相合成纳米TiO2的方法,除上述几种以外,还有低温等离子体化学法、激光化学反应法、金属有机化合物气相沉积法、强光离子束蒸法、乳液燃烧法等,虽然这些气相法制得的纳米TiO2粉体纯度高,粒径分布窄,分散性好,团聚少,表面活性大,反应速率快,能实现连续化生产。
但是气相法反应在高温下瞬间完成,要求反应物在极短的时间内达到微观上的均匀混合,对反应器的型式、设备的材质、加热方式、进料方式均有很高的要求,加之生产成本高。
实验目的:1.培养小组自主设计及完成实验的能力和合作能力。
2.了解纳米二氧化钛的粒性和物性。
3.掌握溶胶-凝胶法合成纳米级TiO2的方法和过程。
一、溶胶凝胶法制备二氧化钛1、引言:TiO2是一种n型半导体材料,晶粒尺寸介于1~100 nm,其晶型有两种:金红石型和锐钛型。
比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。
利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。
由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。
呈现出许多特有的物理、化学性质,在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景,TiO2半导体光催化剂因光催化效率高、无毒、稳定性好和适用范围广等优点而成为人们研究的热点。
纳米TiO2的制备方法可归纳为物理方法和化学方法。
物理制备方法主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等;物理化学综合法又可大致分为气相法和液相法。
目前的工业化应用中,最常用的方法还是物理化学综合法。
目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝胶法来制备纳米二氧化钛光催化剂。
2、优点:可通过简单的设备,在各种规格和各种形状的机体表面形成涂层;可获得高度均匀的多组分涂层和特定组分的不均匀涂层;可获得粒径分布比较均匀的涂层;可通过多种方法对薄膜的表面结构和性能进行修饰;负载膜催化剂易回收利用,在催化反应中容易处理。
纳米二氧化钛工艺流程英文回答:Titanium dioxide (TiO2) is a widely used material in various industries, including cosmetics, paints, coatings, and even in the field of environmental protection. The process of producing nanoscale titanium dioxide involves several steps.Firstly, the raw material used for the production of nanoscale titanium dioxide is typically titanium tetrachloride (TiCl4). This compound is reacted with water or steam in a hydrolysis reaction to form titanium dioxide. The reaction can be represented by the following equation:TiCl4 + 2H2O → TiO2 + 4HCl.The resulting titanium dioxide is in the form of a white powder, which is then subjected to further processing to obtain nanoscale particles. One common method is thesol-gel process, where the titanium dioxide powder is dispersed in a liquid medium, such as water or alcohol, to form a colloidal suspension. This suspension is then subjected to hydrothermal treatment or calcination at high temperatures to produce nanoparticles of titanium dioxide.Another method for producing nanoscale titanium dioxide is the precipitation method. In this process, a solution containing titanium ions is mixed with a precipitating agent, such as ammonia or sodium hydroxide, to form a precipitate of titanium dioxide. The precipitate is then washed, dried, and milled to obtain nanoscale particles.Once the nanoscale titanium dioxide particles are obtained, they can be further modified or functionalized to enhance their properties or to suit specific applications. For example, the surface of the nanoparticles can be coated with various materials, such as silica or alumina, to improve their stability or dispersibility in different media.In summary, the process of producing nanoscale titaniumdioxide involves the hydrolysis of titanium tetrachlorideto form titanium dioxide, followed by further processing to obtain nanoparticles. The resulting nanoparticles can then be modified to enhance their properties for specific applications.中文回答:纳米二氧化钛是一种广泛应用于各个行业的材料,包括化妆品、涂料、环保等领域。
一种黑色二氧化钛纳米管的制备方法
纳米科技在近年来得到了越来越广泛的应用,二氧化钛纳米管就是其中重要的一种。
它具有较小的尺寸和特殊的形态结构,有着应用于光电、传感、催化等领域的广泛前景。
下面将结合实践,介绍一种黑色二氧化钛纳米管的制备方法。
步骤一:原料准备
准备所需原料:氯化钛、盐酸、溴酸钠、十六烷基三甲基溴化铵、三乙醇胺。
步骤二:反应体系组装
将所需的盐酸溶液、氯化钛、溴酸钠、十六烷基三甲基溴化铵混合溶解,并加入少量的三乙醇胺,搅拌均匀。
步骤三:反应条件控制
将反应溶液置于自动加热恒温器中,保持温度在40-60℃,控制pH值在3.0-3.5,反应时间为3-6小时。
在反应过程中可通过紫外-可见光谱监测反应得到的产物并调整反应条件。
步骤四:滤液收集
将反应得到的混合物滤离,滤液收集,洗涤干净后放入水槽用水反复洗涤,直至水洗涤液的pH值为中性。
步骤五:干燥处理
将洗涤干净的收集物置于真空干燥器中进行干燥处理,干燥时间为4-5小时,直至获得黑色粉末。
通过以上步骤,我们可以成功制备出黑色二氧化钛纳米管。
这种制备方法虽然相对简单,但仍有一定的操作难度和一定的技术要求,需要操作人员掌握精细的技术操作,并针对不同的实验要求进行适当的反应条件调整和优化。
总之,随着纳米材料的不断发展和应用,黑色二氧化钛纳米管的制备方法得到不断完善提高,以更好地满足不同领域的需求。
其中,
本文介绍的制备方法有着一定的实践意义和参考价值,值得不断探索和进一步发展。
毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。
选择理由:优势:直接制备结晶良好且纯度高的粉体,需作高温灼烧处理,避免形成粉体硬团聚,粒径分布均匀。
缺点:反应时间长、杂质离子难以除去、纯度不高。
二、实验原理TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示。
OTi图1 二氧化钛的晶体结构二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。
纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。
纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O Ti(OC4H9)4-x OH x+xC4H9OHTi(OC4H9)4-x OH x+Ti(OC4H9)4(OC4H9)4-x TiO x Ti(OC4H9)4-x+xC4H9OHa = 4.593Åc = 2.959ÅEg=3.1eVρ= 4.250 g/cm30212.6fG∆=-a = 3.784 Åc = 9.515ÅEg=3.3eVρ= 3.894 g/cm30211.4/fG kcal mol∆=-当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。
三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml),250ml烧杯,100ml量筒,电子分析天平, pH试纸。
2.试剂钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30%)、无水乙醇(分析纯),去离子水。
四、操作步骤在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。
溶胶-凝胶法制备纳米二氧化钛的工艺研究
近年来,随着材料技术的发展,无论是对环境、科学、和社会经济都有着重要意义的纳米二氧化钛被越来越多地用于药物和生物分子的药物分离和纳米材料的制备。
本文就是介绍了一种绿色、低成本、耐受性好的溶胶-凝胶法来制备纳米二氧化钛。
(一)试剂配制
首先,熔融亚乙基三氧化钛(TTA)的相关分子量的物质和反应剂被称为原料。
然后,将反应剂和氯化钠(NaCl)加入到一定的比例(即大约1:1)中。
(二)溶胶制备
溶胶法使用TTA和NaCl,将溶解物加入到强酸性或强基性溶剂中,在热沸水中直到溶解,浓度为1mol/L。
然后加水混合,调节浓度成为需要的天然浓度(1g/L)。
(三)凝胶制备
凝胶法则是将溶解物加入到强酸性或强基性溶剂中,然后将其加热至50℃,使其在电解质水溶液中溶解,并做出必要的调节。
而在室温,通过添加溶液到沉淀剂中,使之均匀混合,形成凝胶体。
(四)制备二氧化钛纳米粒
将溶胶法制备好的溶液,用超声波振荡处理5min,使二氧化钛以纳米
颗粒的形式分散悬浮。
之后,可以将凝胶制法处理过的溶液,用紫外
可见分光光度计进行测定,以观察纳米粒的分散度及其表面形态特性。
(五)纳米颗粒分析
最后,纳米颗粒分析主要有紫外光谱、电镜、扫描电镜和 X射线衍射
等方法,用于观察纳米颗粒的分散度、表面形态以及均匀性等。
综上所述,溶胶-凝胶法是一种通用的绿色纳米二氧化钛的低成本工艺,该工艺可以简单、有效地制备出纳米粒,从而解决微纳米材料制备的
技术难题,并有助于促进药物分离和重要的热流导体的发展。
纳米二氧化钛的制备方法和应用摘要:阐述了纳米二氧化钛的制备方法,并对其不同特性的应用领域做了详细介绍。
主要介绍了纳米二氧化钛在化妆品、涂料、光催化防雾自洁等方面的应用。
关键字:纳米二氧化钛气相法物相法化妆品中的应用抗菌塑料1、前言纳米材料是任何至少有一个维度的尺寸在纳米尺度,约为1~100nm。
它的尺寸大于原子簇小雨通常的微粉。
当小粒子尺寸进入纳米量级是,其本身就具有了尺寸效应、量子效应、界面效应、库伦堵塞与量子隧穿等特性。
成为未来材料发展的热点。
纳米二氧化钛是尤其重要的一种,它有着粒径小、磁性强、光催化、表面活性大、比表面积大等特性,晶体具有防紫外线、可见光透过、颜色效应和光催化等特性。
所以纳米二氧化钛被广泛应用光催化、环境保护、化妆品、陶瓷、建筑、涂料等多个领域。
因此纳米二氧化钛的发展有着很大的前景,成为材料领域重要的研究课题。
2、纳米二氧化钛的制备方法纳米二氧化钛的制备方法可分为气相法和液相法。
本文介绍几种常用的方法。
2·1 气相法气相法是直接利用气体或者通过各种手段将物质变为气体,是之在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米粒子的方法。
此类反应大多是在高温下瞬时完成的,对反应器的构型、设备的材质、加热及进料方式等均有很高的要求。
气相法主要有TiCl4气相氧化法、真空蒸发—冷凝法、四氯化钛氢氧火焰法、气体颜料燃烧法。
2.1.1 四氯化钛气相氧化法此法多是以四氯化钛为原料,以氧气为氧源,以氮气为载气,在高温条件下四氯化钛和氧气发生反应生成纳米二氧化钛。
其反应式如下:TiCl4(g)+O2(g) =TiO2(s)+2Cl2(g)可利用气相氧化法制备出金红石型二氧化钛。
研究发现氧气预热温度越高,分布越窄、微粒粒径越小,随着晶型转化促进剂浓度增加粒径尺寸减小,随停留时间延长、晶型转化促进剂的增加,金红石相含量增大。
这种方法的自动化程度高,但有二氧化钛粒子遇冷壁结疤的问题没能很好解决.2.1.2 真空蒸发- 冷凝法此法是在真空反应器中通入惰性气体,并保持一定的压力,然后对蒸发物质进行真空加热蒸发, 蒸汽被液氮冷凝成超细微粒。
纳米 !"#$光催化剂的制备方法方世杰徐明霞(天津大学材料学院,天津%&&&’$)摘要介绍了二氧化钛粉体和薄膜的制备技术,比较了各种方法的优缺点。
其中对液相法作了较为全面的介绍。
关键词纳米 !"#$催化剂气相法液相法国家自然科学基金资助项目((&&’$&)*);天津市自然科学基金资助(&)%+&%,)))作者简介:方世杰()-’+ . ),男,硕士/)引言纳米 !"#$光催化剂是一种新型的并且正在迅速发展的高效光谱催化剂,成为近年来环保技术中的一个研究热点。
一种良好的催化剂必须具有很大的催化表面,并且有很高的光子利用率。
当 !"#$达到纳米时,会表现出更优良的光催化降解性能。
关于纳米 !"#$的制备技术已有很多论述,本文试图对近年来纳米二氧化钛的制备技术作一个综述。
$!"#$纳米粉体的制备目前制备 !"#$纳米微粒的方法有很多种,根据对所要求制备微粒的性状、结构、尺寸、晶型、用途,采用不同的制备方法。
按照原料的不同大致分为 $ 类:气相法和液相法。
但无论采用何种方法,制备纳米粒子都有如下要求[)]:表面光洁;粒子的形状及粒径、粒度分布可控,粒子不易团聚;易于收集;热稳定性优良;产率高。
!/"气相法气相法是直接利用气体或通过各种手段将物质变为气体,使之在气态下发生物理变化或化学变化,最后在冷却过程中凝聚长大形成纳米粒子的方法。
气相法的特点是粉体纯度高、颗粒尺寸小、颗粒团聚少、组分更易控制。
$/)/)化学气相沉积法(012)[$]化学气相法制备纳米 !"#$的初级过程包括:气相化学反应、表面反应、均相成核、非均相成核、凝结聚集或融合。
气相反应所需的母体有 $ 类:!"03*和钛醇盐。
化学反应可分为 * 类。
())!"03*与 #$氧化,化学反应方程式为:!"03* (4)5 #$ (4)6 !"#$5 $03$7 !"#$ (4)6(!"#$)7 (8)($)钛醇盐直接热裂法[%],化学反应方程式为:!" (#9)*6 !"#$5 *07:$75 $:$#(%)钛醇盐气相水解法(气溶胶法),化学反应方程式为:!" (#9)*5 $:$# 6 !"#$5 *9#:(*)气相氢火焰法,化学反应方程式为:!"03*5 $:$5 #$6 !"#$5 *:03$/$/$激光 012 法激光 012 法也是一种很好的制备方法。
溶胶凝胶法制备纳米二氧化钛1. 引言纳米二氧化钛(TiO2)作为一种重要的半导体材料,具有广泛的应用前景,如太阳能电池、光催化、传感器等领域。
其中,溶胶凝胶法是一种常用的制备纳米二氧化钛的方法。
本文将详细介绍溶胶凝胶法制备纳米二氧化钛的原理、步骤以及影响制备过程和性能的关键因素。
2. 溶胶凝胶法原理溶胶凝胶法是一种通过溶液中溶解物质逐渐聚集形成固体颗粒的方法。
在制备纳米二氧化钛时,通常采用金属盐或金属有机配合物作为前驱体,在适当的条件下通过水解和聚合反应生成纳米颗粒。
3. 制备步骤3.1 前驱体选择选择合适的前驱体是成功制备纳米二氧化钛的关键。
常用的前驱体包括四丁基钛酸铅(TBOT)、钛酸异丙酯(TTIP)等。
前驱体的选择应综合考虑其溶解度、水解速度、纳米颗粒形貌等因素。
3.2 溶液制备将选定的前驱体加入适量溶剂中,如乙醇、水等,并加入表面活性剂(如十二烷基硫酸钠)进行分散稳定。
通过搅拌和加热使前驱体完全溶解,得到均匀的溶液。
3.3 水解反应将制备好的溶液缓慢滴入一定浓度的碱性溶液(如氨水),引发水解反应。
水解反应过程中,金属离子逐渐聚集形成胶体颗粒。
3.4 成胶在水解反应后,通过搅拌或超声处理等方法使胶体颗粒更加均匀分散,并形成凝胶。
凝胶的形成过程中需要控制pH值和温度等条件,以控制纳米颗粒的尺寸和形貌。
3.5 干燥和煅烧将凝胶进行干燥,通常采用自然干燥或真空干燥的方法。
干燥后的凝胶经过煅烧处理,去除有机物质和水分,形成纳米二氧化钛。
4. 影响制备和性能的因素4.1 前驱体性质前驱体的性质直接影响纳米颗粒的形貌、尺寸和晶型。
不同的前驱体在水解反应中产生不同的中间产物,进而影响最终产物的性质。
4.2 溶液浓度和pH值溶液浓度和pH值对纳米颗粒形貌和尺寸具有重要影响。
较高浓度的溶液有利于形成较大尺寸的颗粒,而较低浓度则有利于形成较小尺寸的颗粒。
4.3 水解速率水解速率决定了纳米颗粒形成的速度和过程。
纳米TiO2的制备方法1 前言20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。
80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。
二氧化钛俗称钛白,是钛系最重要的产品之—,也是一种重要的化工和环境材料。
纳米二氧化钛由于其具有粒径小、比表面积大、磁性强、光催化、吸收性能好、吸收紫外线能力强、表面活性大、热导性好、分散性好、所制悬浮液稳定等优点而倍受关注,制备和开发纳米二氧化钛已成为国内外科技界研究的热点之一。
日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。
目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。
根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。
近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。
主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技术;⑥纳米TiO2产业化成套技术。
由于以上条件的制约,使得纳米TiO2的应用和发展受到限制1.1制备方法介绍1.1.1溶胶凝胶法溶胶凝胶法是一种较为重要的制备纳米材料的湿化学方法,主要包括4个步骤[1]:第一步,胶溶。
Ti(OR)4与水不能互溶,但与醇、苯、等有机溶剂无限混溶,所以先配制Ti(OR)4的醇溶液(多用无水乙醇),再配制水的乙醇溶液,并向B中添加无机酸或有机酸作水解抑制剂(负催化剂),也可加,将A 和B按一定方式混合、搅拌得透明溶胶。
第二步,溶胶凝一定量NH3胶转变制湿凝胶。
第三步,使湿凝胶转变成干凝胶。
第四步,热处理。
将干凝胶磨细,在氧化性气氛中在一定温度下热处理,便可得到<100nm的TiO。
2张梅等[2]以Ti(OC4H9)4为原料,无水乙醇为溶剂,盐酸作水解抑制剂,按摩尔比Ti(OC4H9)4:H2O:C2H5OH:HCL=1:1-4:15:0.3,得到不同粒径和晶型的TiO2纳米晶。
溶胶凝胶法制备纳米TiO2可以很好地掺杂其它元素,粉末粒径小,分布均匀,分散性好,是非常有价值的制备方法。
但由于要以钛醇盐为原料,又要加入大量的有机试剂,因此成本高,同时由于凝胶的生成,有机试剂不易逸出,干燥、烧结过程易产生碳污染[3],另外,对于困扰已久的团聚问题,局部表面化学反应、机械化学反应及用表面活性剂或聚合物包覆等都不能从根本上解决,利用超声空化技术有帮助,尚有待进一步探索[4]。
1.1.2沉淀法以廉价易得的TiO4或Ti(SO)4等无机盐为原料,向反应体系加入沉淀剂后,形成不溶性的Ti(OH)4,然后将生成的沉淀过滤,洗去原溶液中的阴离子,高温煅烧即得到所需的氧化物粉体,此法一般分为3种类型。
1.1.3TiCL4的直接水解法该方法的优点是:工艺简单,反应条件温和且反应时间短,产品粒度均匀,分散性好,颗粒尺寸人为可控,可以制得锐敏型、金红石型及混合晶型,原料易得,生产成本较低,易于实现工业化。
但是此方法需要经过反复洗涤来除去氯离子,所以存在工艺流程长、废液多、产物损失较大的缺点,而且完全洗净无机离子较困难。
1.1.4钛醇盐水解法在有分散剂存在并强烈搅拌下,对钛醇盐进行控制性水解,沉析出TiO2.nH2O沉淀,过滤、干燥、热处理,容易得到高纯、微细、单分散的类球形TiO2亚微粉或超微粉。
宋哲等[5]NHCL4-NH4OH缓冲溶液中进行钛丁醇盐水解,沉淀物用正丁醇进行非相共沸蒸馏挤水法处理,然后在,4500C下热处理,得到了颗粒度小,分散性好,不团聚的纳米TiO2。
该方法合成的纳米粉体颗粒均匀,纯度高,形状易控制,缺点是成本昂贵,作为原料的金属有机物制备困难,合成周期长。
1.1.5胶溶法该法可制备各种组分的氧化物陶瓷粉体且制得的产品粒径小,粉体分散性好,粒度可控,但易发生粒子间团聚现象,成本也较高。
杨少凤等人利用异相成核原理,液相合成金红石型TiO2纳米晶:在Ti(SO)4溶液中加入一定量的SnCL2,室温下,将2mol/L氨水滴入此混合液中,经过一系列处理后,将所得沉淀分散于2mol/LHNO3溶液中,回流一段时间,沉淀离心烘干即得金红石型TiO2纳米晶。
这种工艺制备凝胶的方法与溶胶凝胶法相似,但是利用胶溶原理,缩短了制备流程,省去耗能多的高温煅烧过程,从而避免了因烧结而引起的纳米粒子之间的硬团聚。
1.1.6微乳液法微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混合物,一般由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质溶液)组成。
由于微乳液的结构从根本上限制了颗粒的成长,因此使得超细微粒的制备变得容易。
通过超速离心,使纳米微粉与微乳液分离,再以有机溶剂除去附着在表面的油和表面活性剂,最后经干燥处理,即可得到纳米微粉的固体颗粒。
该法所得产物粒径小且分布均匀,易于实现高纯化。
该法有2个优点[6]:(1)不需加热、设备简单、操作容易;(2)可精确控制化学计量比,粒子可控。
1.1.7低压气体蒸发法这种制备方法是在低压的氩气、氮气等惰性气体中加热普通的TiO2,然后骤冷生成纳米TiO2粉体,其加热源有电阻加热法、等离子喷射法、高频感应法、电子束法和激光法,可制备100nm以下的粒子[7]。
1.1.8此活性氢熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电窝的N2.Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米TiO2微粒。
1.1.9溅射法此方法是用2块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3~1.5Kv。
两电极间的辉光放电使Ar离子形成。
在电场的作用下Ar离子冲击阴极靶材表面,靶上的就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。
1.1.10流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子。
1.1.11超临界相法溶液中合成超细TiO2分别是在3个实验反应器中完成的,这些反应器填充了近临界密度的异丙醇和0.4mol/L的醇钛盐溶液。
乙醇和异丙醇的临界温度分别为2410C和238.40C,与醇钛盐气相热解的温度2650C相差不远,特别适合作临界相流体,临界相流体有近似液体的密度和高溶剂能,但低的粘度和高扩散率几乎与气体接近,这些性质有利于分子碰撞且能够增加反应动力,能产生高的成核率。
此法溶液浓度很低,可以避免粒子间的进一步凝集,低压下超临界溶液作为气体被除去,得到了干燥的粉末,不再需要液固的分离步骤。
将异丙醇D异丙醇钛盐溶液在2800C加热2h,反应即可完全,这与醇钛盐气相热解温度相近,由超临界法所得固体为锐钛型结构,粒径为30~60nm,热处理后不发生结块。
而用气相热分解法制TiO2,最初所得晶粒很好,但最终强烈结块。
超临界法同溶胶凝胶法比较,免除了沉淀与干燥步骤,在煅烧过程之前,不需要进一步热处理。
SC法制的锐钛型TiO2较溶胶凝胶法制的锐钛型稳定,例如,SC法,9000C加热4h,20%为金红型TiO2;溶胶凝胶法,6400C为金红型TiO。
上述可见,制备纳米TiO2的方法很多,而且各有其优缺点。
此外,根据纳米TiO2用途的不同,其制备方法也有差异。
今后在研究制备工艺的同时,改进现有的合成工艺,寻求粉体质量好、操作简便且易于工业化大规模生产、成本低廉的合成新工艺,应该是努力的目标。
对纳米粉末微观结构的研究还有待于进一步深入,对纳米TiO2微粉特有的化学、物理机械性能,应从理论、微观结构入手,研究它们产生的机理。
总之,随着纳米材料体系和各种超结构体系研究的开展和深入,纳米超细粒子的制备技术将会得到日益改进。
1.2所制备材料的介绍纳米二氧化钛是金红石型白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。
可用于化妆品、功能纤维、塑料、涂料、油漆等领域,作为紫外线屏蔽剂,防止紫外线的侵害。
也可用于高档汽车面漆,具有随角异色效应。
纳米级二氧化钛,亦称钛白粉。
物理性质为细小微粒,直径在100纳米以下,产品外观为白色疏松粉末。
具有抗线、抗菌、自洁净、抗老化性能,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。
纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。
金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。
而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。
在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。
纳米二氧化钛是具有屏蔽紫外线功能和产生颜色效应的一种透明物质。
由于它透明性和防紫外线功能的高度统一,使得它一经问世,便在防晒护肤、塑料薄膜制品、木器保护、透明耐用面漆、精细陶瓷等多方面获得了广泛应用。
特别是在80年代末期,这种能产生诱人的“随角异色”效应的效应颜料被成功地用于豪华型高级轿车面漆之后,引起了世界范围的普遍关注,发达国家如美、日、欧等国对此研究工作十分活跃,相继投入了大量人力、物力,并制订了长远规划,在国际市场竞争激烈迄今,他们已取得许多令人惊异的成果,并已形成高技术纳米材料产业,生产这种附加值极高的高功能精细无机材料,收到良好的经济效益和社会效益,纳米氧化物材料也正成为中国产业界关注的热点。
随着纳米材料研究的深入,纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,这意味着纳米材料的研究已可以按照人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性,技术上的飞跃,为纳米材料的应用进一步打开市场的大门,在广泛的领域形成了一大批高技术产品。