基于FPGA的视频图像采集与处理系统设计
- 格式:pdf
- 大小:2.92 MB
- 文档页数:70
基于FPGA的图像采集卡的设计1 引言现代化生产和科学研究对视频图像采集系统的要求日益提高。
传统的图像采集卡速度慢、处理功能简单、采用分立元件、电路非常复杂;而且可靠性差、不易调试、不能很好地满足特殊要求。
FPGA(现场可编程门阵列)是专用集成电路中集成度最高的一种,用户可对FPGA 内部的逻辑模块和I/O模块重新配置,以实现用户所需逻辑功能。
用户对FPGA的编程数据放入芯片,通过上电加载到FPGA中,对其进行初始化;也可在线对其编程,实现系统在线重构。
基于FPGA技术的图像采集主要是通过集成的FPGA开发板,使用软件编程把图像的采集控制程序写入FPGA开发板的芯片上,通过仿真技术来进行图像的采集处理分析。
通过这种方式,便于及时地发现设计中的错误,从而有效地缩短研发时间。
2 系统的组成及基本原理该图像采集系统主要由模拟视频信号解码模块,I2C控制接口模块,采样控制模块,SDRAM 存储控制模块。
SAA7113H芯片把从CCD采集来的模拟视频信号转化成YUV=422格式的数字图像信号。
这些信号在同步脉冲的作用下进入采集控制器。
采样控制器在奇偶场控制信号下把图像信息存入SDRAM中。
该系统可以实现由隔行扫描图像到逐行图像的转化及存储。
2.1模拟视频信号解码由于SAA7113H芯片具有I2C接口,该模块则通过I2C总线来配置SAA7113H初始化的信息。
工作涉及SAA7113H的初始化字的配置、工作方式的配置;行同步开始和结束标志位、确定亮度、色度、饱和度的大小以及输出图像数据信号的格式。
2.2 I2C控制接口模块I2C模块作为SAA7113H寄存器初始配置的整体控制模块。
具体可以分成I2C_cmd和数据传输2个模块I2C_cmd模块为纯组合逻辑电路,完成信号的发送控制任务,配合rom_data[7.0]和rom_addr[7.0]信号完成数据的寻址与存入等工作;而数据传输模块主要和I2C_cmd模块一起组合成I2C的数据控制写入模块,他主要负责对I2C_cmd模块的输出信号进行缓存,并在其输出端输出I2C总线的串行数据SDA以及I2C总线的串行时钟信号SCL。
基于FPGA的MIPI CSI-2图像采集系统设计赵清壮【摘要】This paper elaborates a design of MIPI CSI-2 high-definition camera interface image acquisition system based on FPGA. Now, MIPI high-definition CCD is used widely, this design uses FPGA to achieve MIPI high-definition CCD collect and provides two outputs of LCD screen and USB, the data transmission is stable and reliable, it make MIPI interface camera applied widely by the other circuit systems, accelerates system development and saves cost.%阐述一种基于FPGA的MIPI CSI-2接口高清摄像头图像采集系统设计,该设计用FPGA实现当前应用广泛的MIPI高清CCD采集,并提供LCD屏、USB两路输出,数据传输稳定可靠,把MIPI接口摄像头应用到更广泛的其他电路系统中,加快系统开发,节省成本。
【期刊名称】《价值工程》【年(卷),期】2015(000)029【总页数】2页(P84-85)【关键词】MIPI;CSI-2;图像采集;FPGA【作者】赵清壮【作者单位】广州飒特红外特股份有限公司,广州510000【正文语种】中文【中图分类】TP302.10 引言CSI(Camera Serial Interface)是由MIPI(Mobile Industry Processor Interface)联盟下Camera工作组制定的接口标准,是MIPI联盟发起的为移动应用处理器制定的开放标准,MIPI联盟由ARM、诺基亚、意法半导体和德州仪器发起成立,作为移动行业领导者的合作组织,MIPI联盟旨在确定并推动移动应用处理器接口的开放性标准。
摘要随着机器视觉的广泛应用,以及工业4.0和“中国制造2025”的提出,在数字图像的采集、传输、处理等领域也提出了越来越高的要求。
传统的基于ISA接口、PCI接口、串行和并行等接口的图像采集卡已经不能满足人们对于高分辨率、实时性的图像采集的需求了。
一种基于FPGA和USB3.0高速接口,进行实时高速图像采集传输的研究越来越成为国内外在高速图像采集研究领域的一个新的热点。
针对高速传输和实时传输这两点要求,通过采用FPGA作为核心控制芯片与USB3.0高速接口协调工作的架构,实现高帧率、高分辨率、实时性的高速图像的采集和传输,并由上位机进行可视化操作和数据的保存。
整体系统采用先硬件后软件的设计方式进行设计,并对系统各模块进行了测试和仿真验证。
通过在FPGA 内部实现滤波和边缘检测等图像预处理操作,验证了FPGA独特的并行数据处理方式在信号及图像处理方面的巨大优势。
在系统硬件设计部分,采用OV5640传感器作为采集前端,选用Altera的Cyclone IV E系列FPGA作为系统控制芯片,由DDR2存储芯片进行数据缓存,采用Cypress公司的USB3.0集成型USB3.0芯片作为数据高速接口,完成了各模块的电路设计和采集卡PCB实物制作。
系统软件设计,主要分为FPGA逻辑程序部分、USB3.0固件程序部分和上位机应用软件部分。
通过在FPGA上搭建“软核”的方式,由Qsys系统完成OV5640的配置和初始化工作。
由GPIF II接口完成FPGA和FX3之间的数据通路。
通过编写状态机完成Slave FIFO的时序控制,在Eclipse中完成USB3.0固件程序的设计和开发。
上位机采用VS2013软件通过MFC方式设计,从而完成整体图像采集数据通路,并在上位机中显示和保存。
整体设计实现预期要求,各模块功能正常,USB3.0传输速度稳定在320MB/s,通过上位机保存至PC机硬盘的图像分辨率大小为1920*1080,与传感器寄存器设置一致,采集卡图像采集帧率为30fps,滤波及边缘检测预处理符合要求,采集系统具有实际应用价值和研究意义。
基于FPGA的数字图像处理系统设计与实现现代社会中,数字图像处理(Digital Image Processing, DIP)已经成为了一个不可或缺的技术。
它可以处理和分析图像,使其更清晰、更美观或者更容易被识别。
而要实现这个技术,我们就需要借助FPGA技术,设计并实现一个基于FPGA的数字图像处理系统。
一、FPGA技术的优势首先,我们来看看为什么要使用FPGA技术。
相对于传统的数字电路设计,FPGA具有以下优势:1. 灵活性高:FPGA可以进行可编程设计,因此可以根据不同需求进行灵活的设计和修改。
这种灵活性可以在数字图像处理的过程中,根据图像的不同特点来修改处理方式,提高图像处理的效率和质量。
2. 时序可控性强:FPGA在设计时可以很好地控制时序,避免一些不必要的时序问题。
对于数字图像处理来说,时序问题可能会导致图像刷新失真等问题。
3. 可重构性强:由于FPGA可以进行可编程的设计,因此被定义为“可重构硬件”。
使用FPGA进行数字图像处理系统设计时,可以实现对系统的快速修改和优化。
4. 运算性能强:FPGA具有并行处理的优势,处理图像时可以同时进行多个数据的计算,大幅提高计算速度。
这样可以使得数字图像处理系统的运算性能更优秀。
基于FPGA的数字图像处理系统,可以充分发挥FPGA的优势,提高图像处理的效率和质量。
二、数字图像处理系统的设计与实现接下来,我们来看看基于FPGA的数字图像处理系统的设计与实现。
对于数字图像处理系统的设计,我们需要从以下几个方面来考虑:1. 系统架构设计:包括数字信号处理(DSP)模块,图像采集器和显像器等,这些模块常常与FPGA相连,构建一个完整的数字图像处理系统。
2. 系统功能设计:本系统可实现图像增强、滤波、边缘检测、图像分割等多种功能,每种功能对应不同的算法和处理方式。
3. 系统软件设计:FPGA硬件设计不同于传统的软件开发,需要针对硬件的特殊性进行开发。
因此需采用专业的硬件设计语言,如Verilog和VHDL等语言,并进行仿真与硬件验证。
基于FPGA的图像采集处理系统在现代科技领域,特别是计算机视觉和机器学习领域,图像采集和处理已经成为一项至关重要的任务。
在许多应用中,需要快速、准确地对图像进行处理,这推动了图像采集和处理系统的研究和发展。
现场可编程门阵列(FPGA)作为一种可编程逻辑器件,具有并行处理能力强、功耗低、可重构等优点,使其成为构建高性能图像采集处理系统的理想选择。
FPGA是一种可通过编程来配置其硬件资源的集成电路,它由大量的可配置逻辑块、内存块和输入/输出块组成。
这些逻辑块和内存块可以在FPGA上被重新配置,以实现不同的逻辑功能和算法。
输入/输出块可以用于与外部设备进行通信。
基于FPGA的图像采集处理系统通常包括图像采集、预处理、传输、主处理和输出等几个主要环节。
这个阶段主要通过相机等设备获取图像数据。
相机与FPGA之间的接口可以是并行的,也可以是串行的。
并行接口通常传输速度更快,但需要更多的线缆;串行接口则使用更少的线缆,但传输速度可能较慢。
这个阶段主要是对采集到的原始图像数据进行初步处理,如去噪、灰度化、彩色化等。
这些处理任务可以在FPGA上并行进行,以提高处理速度。
经过预处理的图像数据需要通过接口或总线传输到主处理单元(通常是CPU或GPU)进行处理。
在传输过程中,可以使用DMA(直接内存访问)技术,以减少CPU的负载。
在这个阶段,主处理单元(通常是CPU或GPU)会对传输过来的图像数据进行复杂处理,如特征提取、目标检测、图像识别等。
这些处理任务需要大量的计算资源和算法支持。
处理后的图像数据可以通过接口或总线传输到显示设备或用于进一步的处理。
基于FPGA的图像采集处理系统具有处理速度快、可重构性强、功耗低等优点,使其在许多领域都有广泛的应用前景。
特别是在需要实时图像处理的场景中,如无人驾驶、机器视觉等,基于FPGA的图像采集处理系统将具有更高的性能和效率。
随着FPGA技术和相关算法的发展,我们可以预见,基于FPGA的图像采集处理系统将在未来得到更广泛的应用和推广。
基于FPGA的LVDS视频图像采集与预处理系统的设计实现作者:黄国鹏刘卫东乔明胜陈兴锋来源:《现代显示》2009年第02期文章编号:1006-6268(2009)02-0032-04摘要:以LED背光源液晶电视为应用背景,在FPGA硬件平台上实现了LVDS视频图像采集和直方图预处理系统的设计。
关键词:现可编程门阵列;低压差分信号;直方图;约束中图分类号:TN911.73文献标识码:ADesign and Implement of FPGA-based LVDS Video Acquisition and Preprocessing SystemHUANG Guo-peng1,LIU Wei-dong1,2,QIAO Ming-sheng2,CHEN Xing-feng1(1.Dept. of Electrical Engineering ,Ocean University of China,Qingdao 266100;2. Hisense Electric Co.,Ltd, Qingdao 266071)Abstract:This paper ,taking LED backlight for LCD TV as application background, has researched to achieve LVDS video acquisition and preprocessing system based on FPGA .Keywords: FPGA;LVDS;histogram;constraints引言FPGA在信号实时处理领域得到越来越广泛的应用。
相比ASIC和DSP,FPGA有更高的吞吐量、位级的可编程能力、开发周期短和风险大大降低等优点。
随着65nm甚至45nm工艺技术的面世,FPGA在逻辑门集成数量和工作的频率上取得了很大的提高。
在大数量数据处理领域,其并行处理数据的优势可以得到充分体现,特别是在在图像帧速率和分辨率要求比较高的场合使用高速大容量FPGA可以得到令人满意的结果。
基于FPGA的实时视频图像采集与显示系统的设计与实现作者:贡镇来源:《现代电子技术》2013年第13期摘要:主要针对目前视频图像处理发展的现状,结合FPGA技术,设计了一个基于FPGA的实时视频图像采集与显示系统。
系统采用FPGA作为主控芯片,搭载专用的编码解码芯片进行图像的采集与显示,主要包括解码芯片的初始化、编码芯片的初始化、FPGA图像采集、PLL设置等几个功能模块。
采用FPGA的标准设计流程及一些常用技巧来对整个系统进行编程。
重点在于利用FPFA开发平台对普通相机输出的图像进行采集与显示,最终能在连接的RCA端口显示屏显示。
关键词: FPGA;视频图像采集;编码芯片;解码芯片中图分类号: TN911⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)13⁃0046⁃03Design and Implementation of real⁃time video image captureand display system based on FPGAGONG Zhen(Anhui University of Science and Technology, Huainan 232000, China)Abstract: Based on the current development status of the video image processing and FPGA technology, a FPGA⁃based real⁃time video image capture and display system is designed in this paper. Equipped with dedicated coding and decoding ship for image capture and display, the system adopts FPGA as the main control chip, which are composed of decoding chip initialization module, the encoding chip initialization module, FPGA image acquisition module and PLL setting module. FPGA⁃standard design flow and some commonly used techniques are taken to program the entire system. The focus is to realize the ordinary camera output image acquisition and display via the FPFA development platform, and ultimately connect the RCA port display screen.Keywords: FPGA; video image capture; coding chip; decoding chip0 引言随着时代的发展,人们在图像处理领域取得了相当多的成果,研究出了很多算法,例如中值滤波、高通滤波等。
基于FPGA的图像处理系统设计与实现图像处理是计算机视觉领域中的重要技术之一,可以对图像进行增强、滤波、分割、识别等操作,广泛应用于医学图像处理、工业检测、安防监控等领域。
而FPGA(Field Programmable Gate Array)可编程门阵列,则是一种自由可编程的数字电路,具有并行处理能力和灵活性。
本文将介绍基于FPGA的图像处理系统的设计与实现。
一、系统设计流程1. 系统需求分析:首先需要明确图像处理系统的具体需求,例如实时性、处理的图像类型、处理的算法等。
根据需求,选择合适的FPGA芯片和外设。
2. 图像采集与预处理:使用图像传感器或摄像头采集图像数据,然后对图像进行预处理,如去噪、增强、颜色空间转换等,从而提高后续处理的准确性和效果。
3. 图像处理算法设计与优化:根据具体的图像处理需求,选择适合的图像处理算法,并对算法进行优化,以提高处理速度和效率。
常用的图像处理算法包括滤波、边缘检测、图像分割等。
4. FPGA硬件设计:基于选定的FPGA芯片,设计硬件电路,包括图像存储、图像处理模块、通信接口等。
通过使用硬件描述语言(如Verilog、VHDL)进行功能模块设计,并进行仿真和验证。
5. 系统集成与编程:将设计好的硬件电路与软件进行集成,包括FPGA程序编写、软件驱动开发、系统调试等。
确保系统的稳定运行和功能实现。
6. 系统测试与优化:对整个系统进行完整的测试和验证,包括功能性测试、性能测试、稳定性测试等。
根据测试结果,对系统进行优化,提高系统的性能和可靠性。
二、关键技术及挑战1. FPGA芯片选择:不同的FPGA芯片具有不同的资源和性能特点,需要根据系统需求选择合适的芯片。
一方面需要考虑芯片的处理能力和资源利用率,以满足图像处理算法的实时性和效果。
另一方面,还需要考虑芯片的功耗和成本,以便在实际应用中具有可行性。
2. 图像处理算法优化:在FPGA上实现图像处理算法需要考虑到算法的计算复杂度和存储开销。
中文题目:基于DSP和FPGA的图像处理系统设计外文题目:IMAGE PROCESSING SYSTEM DESIGN BASED ON DSP AND FPGA摘要本文研究了以TI高性能DSP为核心处理器的视频实时图像处理系统的设计原理与组成,并基于DSP + FPGA架构实现了视频图像处理系统。
本图像处理系统主要由图像采集电路、图像处理电路、显示电路以及系统软件组成。
首先经过CCD图像传感器采集复合视频信号,经过视频A/D处理器(SAA7115)转换成8 bit的数字信号,通过DMA方式存放在双口RAM中,该处理器同时还输出像素时钟信号(PCLK),场同步(CS)、行同步(HS)、奇偶场(OE)、复合消隐信号(BLANK)。
数字信号处理器DSP(TMS320VC5501)是本处理器的核心部分,其功能是完成整个系统的图像预处理以及数据流存储时序控制等功能。
经过DSP处理后输出8 bit的数字视频信号以及像素时钟信号(PCLK)、场同步(CS)、行同步(HS),一起送FPGA产生视频信号的时序逻辑,然后送视频D/A处理器(SAA7105H ),最后通过VGA视频接口输出。
静态双口RAM用于存储图像数据的,图像数据的读写控制时序通过DSP来实现。
视频D/A 处理器(SAA7105H)将FPGA输出的数字视频信号、像素时钟、行场同步信号合成为彩色全电视信号然后通过VGA输出。
该视频图像处理系统可以实现实时的数据视频信号的采集、处理及显示,可以应用于视频处理的相关领域。
关键字:DSP;FPGA;图像处理;电路设计;系统软件AbstractThis paper studies the system design principle and composition the of TI high performance DSP core processor for real-time video image processing , and it can achieve video image processing system based on the architecture of DSP and FPGA. The image processing system is composed of image acquisition circuit, image processing circuit, display circuit and system software.After the first CCD image sensor collect the composite video signal, the video A/D processor (SAA7115) is converted into a digital signal of 8 bit, which is stored in dual-port RAM through DMA, the processor also outputs pixel clock signal (PCLK), field synchronization(CS), synchronous (HS), parity field (OE), composite blanking signal (BLANK).DSP digital signal processor (TMS320VC5501) is the core part of this processor, its function is to complete the whole system of image preprocessing and the sequence of data storage control . After DSP treatment, the output of the 8 bit digital video signal and a pixel clock signal (PCLK). The field synchronization (CS), synchronous (HS), which is send to FPGA for producing video signals, then transmitted to the video processor D/A (SAA7105), the final output through a VGA video. Static double port RAM is used to store the image data, the timing control of image data read and writed is realized by DSP. Video D/A processor (SAA7105) compose output digital video signal, a pixel clock and field synchronization signal of FPGA into color TV signal and then output by VGA.The video image processing system can achieve real-time data of the video signal acquisition, processing and display, which can be applied for video processing related fields.Keywords:DSP;FPGA;image processing ;circuit design ;system software目录0 前言 (1)1 绪论 (2)1.1 课题的提出及研究的背景 (2)1.2 研究的目的和意义 (2)1.3 课题研究的主要内容及重点 (3)2 系统总体设计方案 (5)2.1 系统硬件原理框图设计 (5)2.2 系统主要工作模块划分及工作流程 (5)2.2.1 模块划分 (5)2.2.2 系统工作流程 (6)3 图像采集电路设计 (8)3.1 数字图像基础知识 (8)3.1.1 彩色图像空间模型的空间变换 (8)3.2 数字图像传感器V220 (9)3.3 视频解码器SAA7115及I2C控制电路 (10)3.3.1 I2C控制电路 (11)3.3.2 采集解码电路 (11)4 DSP和FPGA为核心的电路设计 (13)4.1 可编程逻辑器件FPGA及DSP处理器概述 (13)4.2 DSP外围电路设计 (14)4.2.1 DSP外部数据存储器和外部程序存储器设计 (15)4.2.2 DSP时钟电路设计 (17)4.2.3 UART接口设计 (18)4.3 以FPGA为核心的电路设计 (20)4.3.1 XC3S100E-4TQ144C管脚功能特性 (21)4.3.2 FPGA外围电路设计 (21)5 系统软件设计 (26)5.1 软件实现的总体方案 (26)5.2 DSP外部数据和程序存储器的读写时序 (28)5.3 DSP内部时钟电路配置 (31)5.4 UART初始化程序设计 (33)5.5 DSP中的I2C模块配置 (34)5.6 FPGA(XC3S100E-4TQ144C)配置模式 (36)6结论 (38)致谢 (39)参考文献 (40)附录A译文 (41)附录B外文文献 (47)附录C电源电路 (54)附录D复位电路 (56)XX大学毕业设计(论文)0 前言视频图像处理[1]作为一种重要的现代技术,己经在通信、航天航空、遥感、遥测、生物医学、军事、信息安全等领域得到广泛的应用,视频图像处理实现技术对相关领域的发展具有深远意义。
基于FPGA的视频采集显示系统设计
随着数字技术的迅猛发展和市场需求的急剧增长,视频采集和显示系统成为了一种必不可少的应用。
基于FPGA技术,可以开发出高效、可靠、灵活的视频采集和显示系统,满足不同领域的需求。
本文将介绍一个基于FPGA的视频采集显示系统设计方案,主要包括硬件设计和软件设计两个部分。
硬件设计:
1、采集模块:使用高清摄像头作为采集设备,通过FPGA芯片的MIPI接口采集视频信号,实现高清输出。
2、处理模块:将采集到的视频信号传输到FPGA芯片中,对视频信号进行处理和编码,包括颜色空间转换、降噪、滤波等处理方法,同时进行图像压缩,减小数据量的同时提高传输速率。
3、显示模块:将处理后的视频信号经过FPGA芯片的HDMI 接口输出到显示器上,实现高清视频的显示。
软件设计:
1、FPGA芯片的FPGA逻辑设计:采用VHDL语言进行数字电路设计,实现采集模块、处理模块和显示模块的逻辑功能。
2、CPU端软件设计:控制FPGA芯片的视频处理流程,包括采集、处理和显示过程控制,以及图像参数设置等功能。
总结:
基于FPGA技术的视频采集和显示系统,具有高效、可靠、灵活的特点。
本方案将摄像头作为采集设备,通过FPGA芯片的处理和编码模块进行处理,实现了高清视频的输出,并且简化了视频数据的传输。
通过FPGA芯片的逻辑设计和CPU 端软件设计,实现了简单的控制和参数设置功能,提高了效率和便捷性。
未来,基于FPGA的视频采集和显示系统将成为数字视频技术的重要组成部分,助力推动数字技术的发展。