Ansys CFX 流固耦合分析
- 格式:doc
- 大小:776.16 KB
- 文档页数:17
第 1 章 流固耦合分析基础近年来,流固耦合分析研究和应用取得了飞速的发展,尤其是 ANSYS Workbench 推广以 来,流固耦合分析变得容易起来,也因此很快在相关工程领域得到广泛应用。
本章是学习 ANSYS 流固耦合分析的入门篇,旨在介绍 ANSYS 流固耦合分析的基本知识,引导初学者由 浅入深地了解流固耦合分析的基本操作和应用。
本章内容包括:ü 流固耦合基础ü ANSYS 流固耦合分析ü ANSYS 流固耦合分析的基本步骤1.1 流固耦合基础下面简单介绍什么是流固耦合作用、流固耦合分析,流固耦合的重要性,以及流固耦合分 析用到的控制方程。
1.1.1 认识流固耦合分析的重要性随着计算科学以及数值分析方法的不断发展, 流固耦合或交互作用 (fluid structure coupling 或 fluid structure interaction )研究从 20 世纪 80年代以来,受到了世界学术界和工业界的广泛 关注。
流固耦合问题是流体力学(Computational Fluid Dynamics ,CFD )与固体力学 (Computational Solid Mechanics ,CSM )交叉而生成的一门力学分支,同时也是多学科或多 物理场研究的一个重要分支, 它是研究可变形固体在流场作用下的各种行为以及固体变形对流 场影响这二者相互作用的一门科学。
流固耦合问题可以理解为既涉及固体求解又涉及流体求解, 而两者又都不能被忽略的模拟 问题。
因为同时考虑流体和结构特性,流固耦合可以有效节约分析时间和成本,同时保证结果 更接近于物理现象本身的规律。
所以, 近年来流固耦合分析在工程设计特别是虚拟设计和仿真 中的应用越来越广泛和深入。
1流固耦合分析基础ANSYS 流固耦合分析与工程实例2 图 11 显示了流固耦合分析在产品虚拟设计中的层次以及与各学科之间的相互联系。
ANSYS流固耦合分析成功的条件1.首先在建模和条件设置方面要按照这样的设置顺序:(1)选取流体单元,(打开keyopt(4)选项),建立流体模型,注意此处挖去固体所占的空间,然后分区划分流体场网格(好像在ls_dyna里面不要挖去固体所占空间),注意靠近挖去空间的部分网格应该细小些,还有若要采用remesh在计算中重划网格,一定要使用三角形单元(所有流体场)(2)流体场模型建立完成后,首先要在流固耦合的边界上施加流体耦合标签FSI,然后在在流体场区域施加必要的边界条件,诸如位移约束,速度、压力等等。
然后设置求解流体场的时间步长、求解时间、流体属性,打开ALE选项(瞬态分析)网格重画属性等等(3)这样的工作完成后,进入/prep7,加入固体单元,设置固体材料属性,在挖去的部分建立固体模型,划分固体网格,在固体网格与流体场接触的固体边界上施加流体耦合标签FSI,注意要和前面的number相同。
(4)为固体实际必要的约束条件(看是固体推动流体还是流体推动固体)(5)设置固体求解的时间步长和求解结束时间(6)设置流固耦合属性,(看是固体推动流体还是流体推动固体),求解时间步长和求解时间,收敛准则,迭代次数等等。
(7)保存求解。
-----------------------------总之,在流固耦合分析中,你最好要按着先流体后固体再耦合的属性设置顺序,流固耦合标签FSI要分别加在流固耦合边界的流体边界上和固体边界上,加在的顺序要按照上面所述。
在实际的建模中,流固耦合的边界上由于建模的原因会出现节点的重合现象,注意一定不要使用捏合节点的命令来将重合的节点变成一个,这个很重要。
固体单元一定要设置求解的时间步长和求解中止时间,时间步长一般和求解流体场和流固耦合的时间步长相等。
ALE+remesh选项是解决瞬态流固耦合问题的一个很重要的方法,流固耦合一般要伴随着流体的形状改变和位置的移动,因此首先启动ALE选项使流体与固体的耦合边界保持一致并规则化流场内部由于挤压而畸变的网格,其次若网格畸变的过于严重,就要启动remesh选项重新划分网格单元。
ANSYS-CFX单向流固耦合分析的方法
刘志远;郑源;张文佳;司佳钧
【期刊名称】《水利水电工程设计》
【年(卷),期】2009(028)002
【摘要】在用Ansys软件对风轮进行结构静力分析的过程中,无法从流体计算软件FLUENT中直接获取叶片在流场中所受的压力,即风施加在叶片上的瞬态压强值.此类问题的研究属于流固耦合的范畴,也是目前流、固体力学研究领域比较前沿的课题.通过研究ANSYS-CFX组合软件,发现了分析单向流固耦合问题的方法,从而在3D软件Ansys Workbench中实现了对风轮受力变形更合理、更精确的数值模拟.【总页数】3页(P29-31)
【作者】刘志远;郑源;张文佳;司佳钧
【作者单位】河海大学水利水电工程学院,江苏南京,213022;河海大学水利水电工程学院,江苏南京,213022;河海大学水利水电工程学院,江苏南京,213022;河海大学水利水电工程学院,江苏南京,213022
【正文语种】中文
【中图分类】TV734.1
【相关文献】
1.基于Ansys-CFX的混流式水轮机转轮双向流固耦合数值模拟方法 [J], 方兵;金连根;张仁贡;胡杰;单澜;毛建生
2.双辐板涡轮盘盘腔单向流固耦合分析 [J], 韩玉琪;贾志刚;刘红;朱大明
3.半开式离心压缩机叶轮叶片单向流固耦合分析 [J], 吴海燕;张朝磊;黄淑娟
4.风力机叶片单向流固耦合分析 [J], 成诚;程筱胜;戴宁
5.混流式水轮机上冠空腔结构内部流场及单向流固耦合分析 [J], 梁武科;黄汉维;吴子娟;董玮;严欣;刘云琦
因版权原因,仅展示原文概要,查看原文内容请购买。
ansys单向流固耦合步骤一、引言在工程领域中,单向流固耦合是一种常见的分析方法,用于研究流体与固体之间的相互作用。
而在ansys软件中,我们可以利用其强大的功能来进行单向流固耦合分析。
本文将介绍ansys中进行单向流固耦合分析的步骤。
二、建立流体模型在进行单向流固耦合分析之前,首先需要建立流体模型。
在ansys 中,我们可以通过几何建模工具来构建流体的几何模型。
可以根据实际情况选择不同的方法,如直接绘制、导入外部几何模型等。
三、设置流体属性在建立流体模型后,接下来需要设置流体的属性。
这包括流体的密度、粘度、流体模型等。
ansys提供了丰富的流体模型选项,如理想气体模型、不可压缩流体模型等。
根据实际情况选择合适的流体模型,并设置相应的参数。
四、建立固体模型在流体模型建立完成后,接下来需要建立固体模型。
在ansys中,我们可以利用几何建模工具来构建固体的几何模型。
可以根据实际情况选择不同的方法,如直接绘制、导入外部几何模型等。
五、设置固体属性在建立固体模型后,需要设置固体的材料属性。
这包括固体的弹性模量、泊松比、密度等。
ansys提供了多种材料模型选项,如线性弹性模型、非线性材料模型等。
根据实际情况选择合适的材料模型,并设置相应的参数。
六、设置边界条件在建立流体模型和固体模型后,接下来需要设置边界条件。
边界条件是指模型的边界上的约束条件和加载条件。
在单向流固耦合分析中,边界条件包括固体表面的约束条件和流体模型的入口和出口条件。
根据实际情况设置边界条件,并确保边界条件的准确性。
七、进行网格划分在设置边界条件后,需要对模型进行网格划分。
网格划分是指将模型划分为小的离散单元,以便进行数值计算。
在ansys中,我们可以利用网格划分工具对模型进行网格划分。
需要注意的是,网格划分的精度对分析结果有很大影响,因此需要根据实际情况选择合适的网格划分方法和参数。
八、设置求解器和求解参数在进行单向流固耦合分析之前,需要设置求解器和求解参数。
ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。
在设计热沉时,流体流动和热传导是两个重要的物理过程。
Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。
在这个案例中,我们考虑了一个由铝合金制成的热沉。
热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。
通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。
通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。
2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。
通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。
3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。
通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。
通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。
我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。
2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。
在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。
Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。
在这个案例中,我们考虑了一个三叶式风力发电机叶片。
叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。
通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。
通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。
2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。
有问题可以发邮件给我一起讨论**************FSI流固耦合命令求解流固耦合问题使用ANSYS计算结构在水中的模态时, FLUID29,FLUID30单元分别用来模拟二维和三维流体部分,相应的结构模型则利用PLANE42单元和SOL ID45等单元来构造,其中,PLANE42和SOL ID45分别是用来构造二维和三维结构模型的单元。
FLUID30是流体声单元,主要用于模拟流体介质及流固耦合问题。
该单元有8 个节点,每个节点上有4 个自由度,分别是XYZ上3个方向位移自由度和1个压力自由度,为各向同性材料。
输入材料属性时,需要输入流体的材料密度(作为DENS 输入)及流体声速(作为SONC输入),流体粘性产生的损耗效应忽略不计。
FLUID29是FLUID30单元在二维上的简化,少了一个Z向的位移。
SOLID45单元用于构造三维实体结构。
单元通过8 个节点来定义,每个节点有3 个沿着XYZ方向平移的自由度。
PLANE42是SOLID45单元在二维上的简化。
在利用ANSYS建模分析时,流场域单元属性分为2种,由KEYOPT(2)(指定流体和结构分界面处结构是否存在) 控制,在流固耦合交界面上的单元KEYOPT(2) = 0 ,表示分界面处有结构,其他流体单元KEYOPT(2)=1,表示分界面处无结构。
流体-结构分界面通过面载荷标志出来,指定FSI label可以把分界面处的结构运动和流体压力耦合起来,分界面标志在分界面处的流体单元标出。
数值分析的步骤1) 建立流体单元的实体模型。
建立流体模型,需要确定流体域的范围,可以把无限边界流体简化成流体区域的半径为固体结构半径的10倍。
2) 标记流固耦合界面。
选取流体单元中流固交界面上的节点,执行FSI 命令,流固耦合交界面的处理:流体与固体是两个独立的实体,在划分单元时在两者交界面上的单元网格要划分一致,这样在交界面上的同一位置一般就有两个重合的节点,一个节点属于流体单元,一个节点属于固体单元,这两个重合节点在交界面的位移强制保持一致。
ansys流固耦合案例流固耦合是指流体和固体之间相互作用的一种现象,也是工程实际中经常遇到的一种情况。
在ANSYS软件中,可以通过流固耦合分析来模拟和研究这种相互作用。
下面列举了10个符合要求的ANSYS 流固耦合案例。
1. 水流对桥梁的冲击分析:通过ANSYS流固耦合分析,研究水流对桥梁结构的冲击力和应力分布情况,以评估桥梁的稳定性。
2. 水下管道的流固耦合分析:通过ANSYS软件中的流固耦合模块,模拟水下管道在水流作用下的应力和变形情况,以确定管道的安全性能。
3. 水泵的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟水泵在工作状态下的流体流动和叶轮的应力分布,以优化水泵的设计。
4. 风力发电机叶片的流固耦合分析:通过ANSYS流固耦合分析,研究风力发电机叶片在风力作用下的变形和应力分布情况,以提高叶片的性能和可靠性。
5. 汽车底盘的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟汽车底盘在行驶过程中的气动力和振动响应,以改善车辆的稳定性和乘坐舒适性。
6. 船舶结构的流固耦合分析:通过ANSYS流固耦合分析,研究船舶结构在船体运动和海洋波浪作用下的应力和变形情况,以提高船舶的稳定性和安全性。
7. 石油钻井过程中的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟石油钻井过程中的井筒流体流动和井壁的应力分布,以优化钻井工艺和提高钻井效率。
8. 液压缸的流固耦合分析:通过ANSYS流固耦合分析,研究液压缸在工作过程中的液体流动和缸体的应力分布情况,以提高液压缸的性能和可靠性。
9. 燃烧室的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟燃烧室内燃烧过程中的流体流动和壁面的热应力分布,以改善燃烧室的燃烧效率和寿命。
10. 水轮机的流固耦合分析:通过ANSYS流固耦合分析,研究水轮机叶片在水流作用下的变形和应力分布情况,以提高水轮机的转换效率和可靠性。
以上是符合要求的10个ANSYS流固耦合分析案例,这些案例涵盖了不同领域和不同类型的流固耦合问题,可以帮助工程师和设计师更好地理解和解决实际工程中的流固耦合问题。
ansys流固耦合案例
ANSYS流固耦合是一种模拟分析技术,用于研究流体和固体之间的相互作用。
它可以在一个模拟中同时考虑流体和固体的运动和变形,从而更准确地预测系统的行为。
以下是一些ANSYS流固耦合的应用案例:
1. 水下爆炸冲击分析:在这种情况下,流固耦合分析可以用于研究水中的爆炸冲击对周围结构的影响。
通过考虑水的流动和固体结构的变形,可以更准确地预测爆炸冲击的传播路径和结构的破坏程度。
2. 风力发电机叶片设计:在风力发电机中,叶片的设计对其性能至关重要。
流固耦合分析可以用于优化叶片的形状和材料,以最大限度地提高能量转换效率。
通过考虑风的流动和叶片的变形,可以预测叶片的受力情况和振动特性。
3. 水力润滑轴承分析:在水力润滑轴承中,流体的流动对轴承的性能和寿命有重要影响。
流固耦合分析可以用于优化轴承的设计,以减少摩擦和磨损,并提高轴承的承载能力。
通过考虑流体的流动和轴承的变形,可以预测轴承的润滑性能和寿命。
4. 波浪对海洋结构物的影响分析:在海洋工程中,波浪对海洋结构物的影响是一个重要的研究领域。
流固耦合分析可以用于研究波浪对海洋平台、堤岸和海底管道等结构物的冲击和振动情况。
通过考虑波浪的流动和结构物的变形,可以预测结构物的破坏程度和安全
性能。
这些案例只是流固耦合分析的一小部分应用领域,实际上在工程和科学研究中有很多其他的应用。
ANSYS作为一种强大的模拟软件,可以帮助工程师和科学家更好地理解和优化流体和固体系统的相互作用。
ANSYS流固耦合分析9.2 问题的描述(2)进入前处理器,定义所需的单元类型。
对于该问题而言,模型中只含有Plane 42一种单元,由于本计算是针对二维平面应变问题,因而需将Plane 42的KEYOPT(3)设置为2。
对应的命令流如下:/prep7et,1,plane42KEYOPT,1,3,2 !平面应变选项(3)定义模型中的材料参数。
模型中共有7种材料,包括基岩和不同饱和度下的滑体材参。
定义材参的命令如下:mp,ex,1,20e9 !岩体弹性模型mp,prxy,1,0.22 !岩体泊松比mp,dens,1,2600 !岩体密度mp,ex,2,3e9 !滑体初始参数mp,prxy,2,0.35mp,dens,2,2140mp,ex,3,2.7e9 !饱和度为35%mp,prxy,3,0.35mp,dens,3,2180mp,ex,4,2.4e9 !饱和度为50%mp,prxy,4,0.35mp,dens,4,2210mp,ex,5,2.1e9 !饱和度为65%mp,prxy,5,0.35mp,dens,5,2240mp,ex,6,1.8e9 !饱和度为80%mp,prxy,6,0.35mp,dens,6,2270mp,ex,7,1.5e9 !饱和度为100%的弹性模量mp,prxy,7,0.35 !饱和度为100%的泊松比mp,dens,7,2300 !饱和度为100%的密度save !存储数据库(4)建立几何模型并划分单元。
由于模型的几何形状较为复杂,故采用自底向上的建模方式,即先生成点,然后生成面,最后划分单元。
k,1,0,0,0 !根据坐标生成关键点k,2,0,505,0k,3,562,505,0k,,621,459,0k,,658,433,0k,,693,393,0k,,802,313,0k,,850,303,0k,,892,273,0k,,913,253,0k,,930,243,0k,,1034,233,0k,,1186,228,0k,,1216,223,0k,,1232,208,0*do,i,1,14 !以循环的方式创建直线,共画了14条l,i,i+1*enddok,16,660,387,0 !再创建关键点k,,770,248,0k,,827,230,0k,,888,217,0k,,930,216,0k,,1034,213,0k,,1186,209,0l,4,16 !再根据关键点创建直线l,16,17l,17,18l,18,19l,19,20l,20,21l,21,22l,22,15nummrg,all !合并所有元素numcmp,all !压缩所有元素编号k,23,1243,198,0 !再创建关键点k,,612,380,0k,,745,214,0k,,884,181,0k,,1242,174,0l,3,24 !再根据关键点创建直线l,24,25l,25,26l,26,27l,27,23l,23,15nummrg,all !合并所有元素numcmp,all !压缩所有元素编号k,28,1610,198,0 !再创建关键点k,,1610,0,0k,,1243,0,0k,,884,0,0k,,745,0,0k,,612,0,0l,6,16 !再根据关键点创建直线l,7,17l,8,18l,9,19l,11,20l,13,22l,16,24l,17,25l,19,26l,24,33l,25,32l,26,31l,27,30l,1,33l,30,31l,31,32l,32,33l,23,28l,28,29l,29,30saveal,4,5,15,29 !根据线创建面al,29,6,16,30al,7,17,30,31al,8,18,31,32al,9,10,19,32,33al,11,12,20,21,33,34al,13,14,22,34al,3,15,35,23al,35,16,24,36al,36,17,18,37,25al,19,20,21,22,26,27,28,37al,1,2,23,38,42al,38,39,24,45al,39,40,25,44al,40,41,26,43al,46,47,48,27,41allsel,all !选择所有元素type,1 !选择要划分单元的类型mat,1 !选择要划分单元的材料模型mshape,1,2d !设置成平面三角形单元mshkey,0 !设置成自由方式ESIZE,10,0, !设置单元大小amesh,1,11,1 !对面1到面11划分单元ESIZE,,, !设置单元大小为默认值allsel,all !选择所有元素amesh,12,16,1 !划分面12到16 savefinish!划分好后的有限元网格如图9-2所示。
达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。
ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。
在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。
即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。
ANSYS CD中包含有MpCCI库和一个相关实例。
关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。
ansys流固耦合核数-回复
ANSYS流固耦合的核数取决于使用的ANSYS版本和许可证类型。
对于ANSYS Mechanical APDL软件(ANSYS经典),它主要使用单个核心运行。
但是可以使用ANSYS的并行处理功能来在多个核心上运行,并加快求解过程。
对于ANSYS Workbench软件,它内置了FLUENT流体动力学分析软件,可以利用多个核心进行流固耦合分析。
核心数量取决于计算机硬件和许可证类型。
对于高级许可证,可以同时使用多个核心进行流固耦合分析。
需要注意的是,计算机硬件的性能和安装的ANSYS版本也会对多核处理的效果产生影响。
一般来说,拥有更多的核心和更快的处理器速度可以显著提高流固耦合分析的求解速度和性能。
Ansys 高级流体动力学分析软件:CFX 介绍作为世界上唯一采用全隐式耦合算法的大型商业软件。
算法上的先进性,丰富的物理模型和前后处理的完善性使ANSYS CFX 在结果精确性,计算稳定性,计算速度和灵活性上都有优异的表现。
除了一般工业流动以外,ANSYS CFX 还可以模拟诸如燃烧,多相流,化学反应等复杂流场。
ANSYS CFX 还可以和ANSYS Structure 及ANSYS Emag 等软件配合,实现流体分析和结构分析,电磁分析等的耦合。
ANSYS CFX 也被集成在ANSYS Workbench 环境下,方便用户在单一操作界面上实现对整个工程问题的模拟。
特色功能∙先进的全隐式耦合多网格线性求解器 ∙收敛速度快(同等条件下比其他流体软件快1-2个数量级) ∙可以读入多种形式的网格,并能在计算中自动加密/稀疏网格 ∙优秀的并行计算性能 ∙强大的前后处理功能 ∙丰富的物理模型,可以真实模拟各种工业流动 ∙简单友好的用户界面,方便使用 ∙CCL 语言使高级用户能方便加入自己的子模块 ∙支持批处理操作 ∙支持多物理场耦合 ∙ 支持Workbench 集成 广州有道科技培训中心 ht t p ://w w w .020f e a .c o m客户价值∙能拥有从几何到网格到流体计算及后处理的整体解决方案 ∙前后接口丰富稳定,用户不用放弃原来熟悉的工具 ∙支持多物理场耦合,满足实际工程流体模拟需要 ∙能方便地加入自己编写的模型 ∙ Combustion and Chemical Reaction, 燃烧和化学反应模块。
在ANSYS CFX 的燃烧和化学反应模块中包含了多种工业常用的流体及固体材料,用户可以方便定义。
可以模拟单步和多步反应。
可以用EDM 或FRC 模型来模拟燃烧,ANSYS CFX 里对部分反应也自带小火焰库,可以用Mixture Fraction 进行模拟。
∙ Radiation,辐射模块此模块用来设定流/固体表面的辐射特性。
1.问题描述:一根弯管,里面有流体入口流体速度10m/s ,开放出口压力(opening),管道两端固支。
现在想用ansys和cfx的MFX的流固耦合做个练习,观察在水流冲击下管道的变形情况。
2.模型描述:管道模型,网格,边界条件和接触面apdl/prep7!Selection tolerance!set element typeet,1,shell63 ! 3-D 20-Node StructuralR,1,0.01, , , , , ,!!set materialmp,ex,1,2.1E11 !Young modulusmp,prxy,1,0.3 !Poisson coefficientmp,dens,1,7800!simple pipe modelk,1,k,2,1k,3,0,1l,1,2l,1,3LFILLT,2,1,0.25, ,LPLOT WPSTYLE,,,,,,,,1 KWPA VE, 2 wpro,,,-90.000000 CSYS,4CYL4, , , ,0,0.1,90 CYL4, , , ,-90,0.1,0VDRAG,1,2 , ,, , ,1,3,2 vglue,allvdele,all,,0aplotFLST,2,6,5,ORDE,6 FITEM,2,4 FITEM,2,12 FITEM,2,20 FITEM,2,30 FITEM,2,33 FITEM,2,36 ADELE,P51X, , ,1FLST,2,7,5,ORDE,7 FITEM,2,5 FITEM,2,-6 FITEM,2,13 FITEM,2,-14 FITEM,2,21 FITEM,2,28 FITEM,2,31 ADELE,P51X, , ,1FLST,2,4,5,ORDE,4 FITEM,2,1 FITEM,2,22 FITEM,2,27 FITEM,2,34 ADELE,P51X, , ,1 aglue,alltype,1real,1esize,0.03MSHAPE,0,2DMSHKEY,1Amesh,all!boundary conditionnsel,s,loc,x,0D,all, , , , , ,ALL, , , , ,nsel,s,loc,z,0D,all, , , , , ,uz, , , , ,allsel,all!set fsi conditionsf,all,fsin,1allselsavecdwrite,db,example_shell,cdbfinish流体模型,网格,边界集合apdl/prep7/prep7et,2,fluid142,,,,1 !3D Fluid element with diplacement DOF optionet,3,shell63 !Mesh only element (3D quad 4 nodes) to mesh surfaces used in CFXpre !Fluid domain geometryk,1,k,2,1k,3,0,1l,1,2l,1,3LFILLT,2,1,0.25, ,LPLOTWPSTYLE,,,,,,,,1KWPA VE, 2wpro,,,-90.000000CYL4, , , ,0,0.1,90CYL4, , , ,-90,0.1,0VDRAG,1,2 , ,, , ,1,3,2vglue,allaplot!Fluid domain meshingallseltype,2mat,2esize,0.02vsweep,all!FSI interface surface meshasel,s,,,3asel,a,,,11asel,a,,,19asel,a,,,29asel,a,,,32asel,a,,,35ALLSEL,BELOW,AREAaplottype,3 !with mesh only elements amesh,allcm,fsi,elem !Create component named fsi allselASEL,S, , ,34ASEL,a, , ,22ALLSEL,BELOW,AREAtype,3 !with mesh only elements amesh,allcm,inlet,elem !Create component named inlet allsel,allASEL,S, , ,1ASEL,a, , ,27ALLSEL,BELOW,AREAtype,3 !with mesh only elementsamesh,allcm,outlet,elem !Create component named inletallsel,allasel,s,,,4asel,a,,,20asel,a,,,12asel,a,,,33asel,a,,,36asel,a,,,30ALLSEL,BELOW,AREAaplottype,3 !with mesh only elementsamesh,allcm,sym,elem !Create component named symallsel,allcdwrite,db,fluid,cdb !Create fluid.cdb file for CFXpre3.生成dat和defSet up the CFX Model and Create the CFX Definition FileSet up the example in the CFX preprocessor1.Start CFXpre from the CFX launcher.2.Create a new simulation and name it cfx_mfx3.Load the mesh from the ANSYS file named fluid.cdb. The mesh format is ANSYS.Accept the default unit of meters for the model.4.Define the simulation type:1.Set Option to Transient.2.Set Time duration - Total time to 0.5 s. Note: this value will be overridden byANSYS.3.Set Time steps - Timesteps to 0.005 s. Note: this value must be equal to the timestep set in ANSYS.4.Set Initial time - Option to Value, and accept the default of 0 s.5.Create the fluid domain and accept the default domain name. Use Assembly as thelocation.6.Edit the fluid domain using the Edit domain - Domain1 panel.1.Set Fluids list to Air at 25 C.2.Set Mesh deformation - Option to Regions of motion specified. Accept thedefault value of mesh stiffness.3.In the Fluid models tab, set Turbulence model - Option to None (laminar).4.Accept the remainder of the defaults.5.Initialize the model in the Initialisation tab. Click Domain Initialisation, and thenclick Initial Conditions. Select Automatic with value and set velocities and staticpressure to zero.7.Create the interface boundary condition. This is not a domain interface. Set Name toInterface1.1.In the Basic settings tab: - Set Boundary type to Wall. Set Location to FSI.2.In the Mesh motion tab: Set Mesh motion - Option to ANSYS Multifield.3.Accept the defaults for boundary details.8.Create the opening boundary condition. Set Name to Opening.1.In the Basic settings tab: Set Boundary type to Opening. Set Location to outle.2.In the Boundary details tab: Set Mass and momentum - Option to Static pres.(Entrain). Set Relative pressure to 0 Pa.3.In the Mesh motion tab: Accept the Mesh motion - Option default of Stationary. 9.Create the inlet boundary condition. Set Name to inlet. Edit the inlet boundary conditionusing Edit boundary: inlet in Domain: Domain1 panel.1.In the Basic settings tab: Set Boundary type to inlet. Set Location to inlet.2.In the Boundary details tab: Set Mass and momentum - Option to normal speed.Set normal speed value to 03.In the Mesh motion tab: Set Mesh motion to Stationary.10.Generate transient results to enable post processing through the simulation period.1.Click Output Control.2.Go to Trn Results tab.3.Create New. Accept Transient Results as the default name.4.Choose Time Interval and set to 0.005。
流固耦合FSI分析
分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。
流体网格:流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。
网格导出:CFX可以很好的支持Fluent的.cas格式。直接导出这个格式即可。
流体的其余设置都在CFX-PRE中设置。
固体网格即设置:HyperMesh9.0划分固体网格。设置边界条件,载荷选项,求解控制,导出.cdb
文件。
实例练习:
以CFX12实例CFX tutorial 23作为练习。
为节省时间,将计算时间缩短为2s。
网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。分别导出为
fluent的.cas格式和ansys的cdb格式。
流体网格如下:
网格文件见:fluid.cas
固体网格为:
特别注意:
做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任FSIN_1
建立hm在文件需要添加一个命令,.CDB所以导出的,何操作就能直接计算出结果).
的set,以方便在.cdb中手动添加命令SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之
后。
另一个set:pressure用于施加压强。
这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件
详细.cdb文件请参看plate.cdb
将固体部分在ansys中计算一下,以确定没有问题。
通过ansys计算检查最大位移:最上面的点x向变形曲线
至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合
选项。
以下在CFX-PRE中进行设置
由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。
到工作区fluid flow(CFX),拖动workbench启
动.
直接双击setup进入CFX-PRE
导入流体网格
然后设置分析选项:
注意:mechanical input file即是固体部分网格。
再新建一个流体,取名fluid。
设置domain
添加边界条件
取名为interface设置流固耦合界面,对应为abc。
这就是流固耦合界面的设置过程。
同理,建立sym1
Sym2
这个选项默认为no slip 的 wall,最普通的那种,不必特殊设置
初始化:
求解控制
输出控制:
Output variables list
看清楚字母,别搞错
了!.
Monitor板最上面的一个角点,也是ansys中计算关心的点
如这个十字号
保存以上设置即可。
启动计算器。solution,双击workbench返回
到.
不用更改设置,直接计算即可。
以上过程小心仔细,一般不会出现错误的。
至此,几分钟后即可计算完成。
先看收敛曲线
再看monitor点
曲线跟单独的板的振动十分相似,说明计算是正确的。
后处理:
,启动后处理。results,双击workbench再次返回
先查看板的应力
是对的
以前我用CFX11做过同样的例子,所以以下提供CFX11中的结果,与cfx12类似。
可用 。查看速度矢量
从以上结果来看,分析是完全正确的!
动画制作略。
关于后处理,大家可以自己参考官方帮助做一下。.