几个ansys流固耦合的例子
- 格式:doc
- 大小:125.00 KB
- 文档页数:43
ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。
在设计热沉时,流体流动和热传导是两个重要的物理过程。
Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。
在这个案例中,我们考虑了一个由铝合金制成的热沉。
热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。
通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。
通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。
2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。
通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。
3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。
通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。
通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。
我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。
2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。
在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。
Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。
在这个案例中,我们考虑了一个三叶式风力发电机叶片。
叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。
通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。
通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。
2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。
ansys流固耦合案例流固耦合是指流体和固体之间相互作用的一种现象,也是工程实际中经常遇到的一种情况。
在ANSYS软件中,可以通过流固耦合分析来模拟和研究这种相互作用。
下面列举了10个符合要求的ANSYS 流固耦合案例。
1. 水流对桥梁的冲击分析:通过ANSYS流固耦合分析,研究水流对桥梁结构的冲击力和应力分布情况,以评估桥梁的稳定性。
2. 水下管道的流固耦合分析:通过ANSYS软件中的流固耦合模块,模拟水下管道在水流作用下的应力和变形情况,以确定管道的安全性能。
3. 水泵的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟水泵在工作状态下的流体流动和叶轮的应力分布,以优化水泵的设计。
4. 风力发电机叶片的流固耦合分析:通过ANSYS流固耦合分析,研究风力发电机叶片在风力作用下的变形和应力分布情况,以提高叶片的性能和可靠性。
5. 汽车底盘的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟汽车底盘在行驶过程中的气动力和振动响应,以改善车辆的稳定性和乘坐舒适性。
6. 船舶结构的流固耦合分析:通过ANSYS流固耦合分析,研究船舶结构在船体运动和海洋波浪作用下的应力和变形情况,以提高船舶的稳定性和安全性。
7. 石油钻井过程中的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟石油钻井过程中的井筒流体流动和井壁的应力分布,以优化钻井工艺和提高钻井效率。
8. 液压缸的流固耦合分析:通过ANSYS流固耦合分析,研究液压缸在工作过程中的液体流动和缸体的应力分布情况,以提高液压缸的性能和可靠性。
9. 燃烧室的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟燃烧室内燃烧过程中的流体流动和壁面的热应力分布,以改善燃烧室的燃烧效率和寿命。
10. 水轮机的流固耦合分析:通过ANSYS流固耦合分析,研究水轮机叶片在水流作用下的变形和应力分布情况,以提高水轮机的转换效率和可靠性。
以上是符合要求的10个ANSYS流固耦合分析案例,这些案例涵盖了不同领域和不同类型的流固耦合问题,可以帮助工程师和设计师更好地理解和解决实际工程中的流固耦合问题。
达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。
ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。
在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。
即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。
ANSYS CD中包含有MpCCI库和一个相关实例。
关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。
流固耦合FSI分析分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。
流体网格:流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。
网格导出:CFX可以很好的支持Fluent的.cas格式。
直接导出这个格式即可。
流体的其余设置都在CFX-PRE中设置。
固体网格即设置:HyperMesh9.0划分固体网格。
设置边界条件,载荷选项,求解控制,导出.cdb文件。
实例练习:以CFX12实例CFX tutorial 23作为练习。
为节省时间,将计算时间缩短为2s。
网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。
分别导出为fluent的.cas格式和ansys的cdb格式。
流体网格如下:网格文件见:fluid.cas固体网格为:特别注意:做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1的set,以方便在.cdb中手动添加命令SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。
另一个set:pressure用于施加压强。
这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件详细.cdb文件请参看plate.cdb将固体部分在ansys中计算一下,以确定没有问题。
通过ansys计算检查最大位移:最上面的点x向变形曲线至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。
以下在CFX-PRE中进行设置由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。
启动workbench,拖动fluid flow(CFX)到工作区直接双击setup进入CFX-PRE 导入流体网格然后设置分析选项:注意:mechanical input file即是固体部分网格。
承蒙“水若无痕”版主信任,我把我做过的血管流固耦合以小火车的形式发出来,与大家共同讨论学习。
首先概述一下:1:血管建的比较短,这样单元会少些,调试比较方便,但效果可能没官方视频的好看,但原理步骤没错就行2:原来流体为自己建的Blood,为可压缩流体,我自己试了下,用Water也可以,所以就简化了建新材料这一步3:我用的是Ansys12.0版本,我建的模型保存成多种格式,欢迎大家下载做着玩玩2009-12-14 13:07:11 上传下载附件(36.54 KB)geometry.rar(31.03 KB, 下载次数: 1275)A:首先打开Ansys Workbench 拖出各个模块,连接关系如下图:2009-12-14 14:16:45 上传B:可双击Engineering Data编辑材料,因为进入Ansys结构部分设置时候要用到血管材料,默认是结构钢,太硬了,所以要自己重新设材料,这点很重要!C:单击我画的第一个大圈(左列),右击我画的第二个大圈(左列)——Duplicate,复制一个同种材料。
在复制的材料后面框里有链接,这个链接是链接到材料库的,右键把链接打断,我是这么做的。
如果双击Engineering Data看不到我图中的界面的话,可以在主菜单中——View——Properties以及接下来的两个选项给选上就可以看见了。
改好材料后可以把对新材料重命名,用右键。
然后再主菜单上点击update project,材料就可以在材料设置里用了。
D:更改密度,杨氏模量,和泊松比。
重命名。
上一步给出了怎么保存修改结果E:这个是Ansys model部分,这里是不需要用到流体部分的,不需要删掉,只要右键对它Suppress就可以了。
单击Pipe,可以在下面设置材料:对血管加约束,可以把两端完全约束,对称面部分在垂直面内不可运动,也可以所有平面部分都完全约束,这个没关系,都可以计算。
G:右键插入流固耦合面,当然就是流体固体接触面了本帖最后由panxu09 于2009-12-14 14:02 编辑H:注意还要给出要Ansys求解什么量,我这里给出了要求Von mises和全部变形,然后要保存*.inp文件,这个就是进行流固耦合的Ansys部分求解文件,保存时如果Tools菜单下保存按钮不可用可以点一下下面的——solution,当然做这个之前保证各部分设好了:1)只有血管壁模型有效;2)划分网格,这个网格与流体部分是独立的,没有形状要求;3)施加约束;4)定义流固耦合面;5)设置Ansys求解项;最后保存就好了I:打开CFX,由于是在Workbench下运行的,所以模型都是直接自动导入的(不包括Ansys 结构文件),下图是我设置好的概图::Analysis Type的设置,看我在图中画的圈,仔细设置,一般不会有错。
Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。
谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。
图1 模型图2、新建工程。
在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。
先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。
图4 模型导入图5、进入FLUENT网格划分。
在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。
我们这里需要去掉血管部分,只保留血液几何。
图5 进入网格划分图6 禁用血管模型6、设置网格方法。
默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。
另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。
这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。
ansys流固耦合案例
ANSYS流固耦合是一种模拟分析技术,用于研究流体和固体之间的相互作用。
它可以在一个模拟中同时考虑流体和固体的运动和变形,从而更准确地预测系统的行为。
以下是一些ANSYS流固耦合的应用案例:
1. 水下爆炸冲击分析:在这种情况下,流固耦合分析可以用于研究水中的爆炸冲击对周围结构的影响。
通过考虑水的流动和固体结构的变形,可以更准确地预测爆炸冲击的传播路径和结构的破坏程度。
2. 风力发电机叶片设计:在风力发电机中,叶片的设计对其性能至关重要。
流固耦合分析可以用于优化叶片的形状和材料,以最大限度地提高能量转换效率。
通过考虑风的流动和叶片的变形,可以预测叶片的受力情况和振动特性。
3. 水力润滑轴承分析:在水力润滑轴承中,流体的流动对轴承的性能和寿命有重要影响。
流固耦合分析可以用于优化轴承的设计,以减少摩擦和磨损,并提高轴承的承载能力。
通过考虑流体的流动和轴承的变形,可以预测轴承的润滑性能和寿命。
4. 波浪对海洋结构物的影响分析:在海洋工程中,波浪对海洋结构物的影响是一个重要的研究领域。
流固耦合分析可以用于研究波浪对海洋平台、堤岸和海底管道等结构物的冲击和振动情况。
通过考虑波浪的流动和结构物的变形,可以预测结构物的破坏程度和安全
性能。
这些案例只是流固耦合分析的一小部分应用领域,实际上在工程和科学研究中有很多其他的应用。
ANSYS作为一种强大的模拟软件,可以帮助工程师和科学家更好地理解和优化流体和固体系统的相互作用。
一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。
在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。
即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。
ANSYS CD中包含有MpCCI库和一个相关实例。
关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合的例子length=2width=3height=2/prep7et,1,63et,2,30 !选用FLUID30单元,用于流固耦合问题r,1,0.01mp,ex,1,2e11mp,nuxy,1,0.3mp,dens,1,7800mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水mp,sonc,2,1400mp,mu,0,!block,,length,,width,,heightesize,0.5mshkey,1!type,1mat,1real,1asel,u,loc,y,widthamesh,allalls!type,2mat,2vmesh,allfini/soluantype,2modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,frontmxpand,10,,,1nsel,s,loc,x,nsel,a,loc,x,lengthnsel,r,loc,yd,all,,,,,,ux,uy,uz,nsel,s,loc,y,width,d,all,pres,0allsasel,u,loc,y,width,sfa,all,,fsi !定义流固耦合界面allssolvfini/post1set,firstplnsol,u,sum,2,1fini再给大家一个实例!考虑结构在水中的自振频率:例子是一加筋板在水中的模态分析。
命令流如下:FINISH/CLEAR/FILENAME,plane/UNITS,SI/TITLE,plane/PREP7!*********ELEMENT DEFINE********ET,63,63ET,4,beam4et,30,fluid30!****MATERIAL DEFINE*********MP,EX,1,2.10E11MP,DENS,1,7850MP,NUXY,1,0.3mp,dens,30,1025mp,sonc,30,1500mp,mu,30,0.5!*******REAL CONSTANT***********r,30,1e-06r,50,0.05r,75,0.375e-02,0.78125e-06,0.000016406k,1k,4,1kfill,1,4,2,,1kgen,4,1,4,1,,1/3,,10a,1,2,12,11*do,i,0,2*do,j,0,2*10,10a,1+i+j,2+i+j,12+i+j,11+i+j*enddo*enddo!***************************fluid element****************k,100,-14.5,-14.5k,101,-14.5,15.5k,102,15.5,15.5k,103,15.5,-14.5k,140,-14.5,-14.5,30k,141,-14.5,15.5,30k,142,15.5,15.5,30k,143,15.5,-14.5,30a,100,101,102,103,4,14,24,34,33,32,31,21,11,1a,1,2,3,4,103,100a,140,141,142,143a,100,101,141,140a,101,102,142,141a,142,143,103,102a,140,143,103,100a,14,24,34,33,32,31,21,11,1,2,3,4asel,u,,,1,FLST,2,8,5,ORDE,FITEM,2,FITEM,2,V A,nummrg,allallsMSHKEY,0 MSHAPE,0esize,1lsel,s,loc,y,1/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,y,2/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,1/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,2/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,allasel,s,,,1,9aatt,1,50,63amesh,allallsMSHAPE,1,3desize,3vsel,s,,,1type,30 $mat,30 $real,30 vmesh,allallsFINISH/solualls!**** 求解***********!********************* ANTYPE,MODAL MODOPT,lanb,25,0 SOLVEFINISH总是出现error 说矩阵不对称,不可以用lanb计算。
总结:流体单元不能用对称的解法应该采用非对称解法。
例子是一圆环在水中的模态分析。
命令流如下:finish/clear/PREP7!定义单元类型ET,1,PLANE42 ! structural elementET,2,FLUID29 ! acoustic fluid element with ux & uyET,3,129 ! acoustic infinite line elementr,3,0.31242,0,0ET,4,FLUID29,,1,0 ! acoustic fluid element without ux & uy !材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0MP,DENS,2,1030MP,SONC,2,1460! 创建四分之一模型CYL4,0,0,0.254,0,0.26035,90CYL4,0,0,0.26035,0,0.31242,90! 选择属性,网格划分ASEL,S,AREA,,1AA TT,1,1,1,0LESIZE,1,,,16,1LESIZE,3,,,16,1LESIZE,2,,,1,1LESIZE,4,,,1,1MSHKEY,1MSHAPE,0,2D ! mapped quad meshAMESH,1ASEL,S,AREA,,2AA TT,2,1,2,0LESIZE,5,,,16,1LESIZE,7,,,16,1LESIZE,6,,,5LESIZE,8,,,5MSHKEY,0MSHAPE,0,2D ! mapped quad meshAMESH,2! 关于Y轴镜像nsym,x,1000,all ! offset node number by 1000 esym,,1000,all! 关于y轴镜像nsym,y,2000,all ! offset node number by 2000 esym,,2000,allNUMMRG,ALL ! merge all quantitiesesel,s,type,,1nsle,sesln,s,0nsle,sesel,invensle,semodif,all,type,4esel,allnsel,all! 指定无限吸收边界csys,1nsel,s,loc,x,0.31242type,3real,3mat,2esurfesel,allnsel,all! 标识流固交接面nsel,s,loc,x,0.26035esel,s,type,,2sf,all,fsi,1nsel,allesel,allFINISH/soluantype,modalmodopt,damp,10mxpand,10,,,yessolvefinish为了便于对比,也对圆环在空气中做了模态分析finish/clear/PREP7!定义单元类型ET,1,PLANE42 ! structural element!材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0! 创建四分之一模型CYL4,0,0,0.254,0,0.26035,90! 选择属性,网格划分ASEL,S,AREA,,1AA TT,1,1,1,0LESIZE,1,,,16,1LESIZE,3,,,16,1LESIZE,2,,,1,1LESIZE,4,,,1,1MSHKEY,1MSHAPE,0,2D ! mapped quad meshAMESH,1! 关于Y轴镜像nsym,x,1000,all ! offset node number by 1000esym,,1000,all! 关于y轴镜像nsym,y,2000,all ! offset node number by 2000esym,,2000,allNUMMRG,ALL/soluantype,modalmodopt,lanb,10mxpand,10,,,yessolvefinish在水中的自振频率为SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE 1-0.19544E-10 1 1 12 0.29640E-03 1 1 13-0.21663E-10 1 2 24-0.29640E-03 1 2 25 0.30870E-03 1 3 36 0.0000 1 3 37-0.30870E-03 1 4 48 0.0000 1 4 49-0.53726E-03 1 5 510 0.57522E-11 1 5 511 0.53726E-03 1 6 612-0.89057E-11 1 6 613 0.98059E-01 1 7 714 35.232 1 7 715 0.98059E-01 1 8 816 -35.232 1 8 817 0.98061E-01 1 9 918 35.233 1 9 919 0.98061E-01 1 10 1020 -35.233 1 10 10在空气中的自振频率为SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 0.0000 1 1 12 0.0000 1 2 23 0.73609E-03 1 3 34 60.805 1 4 45 60.805 1 5 56 172.97 1 6 67 172.97 1 7 78 334.40 1 8 89 334.40 1 9 910 546.59 1 10 10主要有以下疑问:1)考虑流固耦合,做模态分析时流体单元是否只能用fluid29(2d)和fluid30(3d),对于fluid129和fluid130在耦合中具体起到什么作用,能不能不设,而用边界约束条件代替?2)流体范围怎样确定,如本例中(CYL4,0,0,0.26035,0,0.31242,90),外半径为0.31242。