石墨烯的功能化修饰研究进展_杨丽龙
- 格式:pdf
- 大小:1.43 MB
- 文档页数:5
石墨烯在功能性涂料应用中的研究进展石墨烯是单层二维蜂窝状碳网络结构,平面内由周期性紧密排列的碳六元环构成,各碳原子之间通过sp 2杂化轨道相连接。
它可以卷曲成零维(0D)的富勒烯和一维(1D)的碳纳米管(CNT),或通过范德华力堆垛成三维(3D)的石墨,因此石墨烯被认为是构成其他碳材料的基本单元。
目前石墨烯可以分为单层石墨烯、双层石墨烯和少层石墨烯。
顾名思义,单层石墨烯是由一层石墨烯构成;双层石墨烯是由两层石墨烯构成;少层石墨烯是由三到十层石墨烯构成;超过十层则被认为是石墨纳米微片。
不同层数的石墨烯具有不同的物理化学性质。
单层石墨烯完美的碳晶体结构使其具有优异的性能:超强的力学性能,其杨氏模量高达1100GPa,断裂强度高达130GPa;高达200000cm 2/(V·s)的电子迁移率;室温下约5000W/(m·K)的热导率;97.7%的可见光透过率;优异的物理阻隔性;高达2630 m 2 /g 的理论比表面积等。
因此石墨烯被认为是最具诱人前景的新材料之一,在纳米电子器件、储能材料、透明导电膜、传感器、树脂基复合材料等领域引起广泛关注。
在涂料应用方面,利用石墨烯的物理阻隔性能,可提高涂料的防腐、防污、阻燃效果;利用其高导电、高导热性能,可开发导电涂料、散热涂料、电磁屏蔽涂料等。
本文简单总结了石墨烯在功能性涂料方面的一些应用进展,并对其应用趋势进行了分析展望。
1 石墨烯在功能性涂料中的应用现状石墨烯自2004年发现以来,引起了世界各国研发和应用的热潮,被认为是21世纪新材料纪元的引领者和带动者,是未来高技术产业竞争的战略制高点。
石墨烯独特的特点使其在导电涂料、防火涂料、防污涂料和重防腐涂料中得到了广泛的应用。
1.1 石墨烯在导电涂料中的应用传统的导电涂料分为本征型导电涂料和添加型导电涂料,本征型导电涂料是靠树脂自身导电性达到导电的目的,以聚苯胺和聚吡咯为主;添加型导电涂料是通过在涂料中添加导电物质来实现的,导电物质通常为金属粉末和碳系粉末。
石墨烯复合材料研究进展摘要:近年来石墨烯因其优良的力学、电学、热学和光学等特性, 且添加到基体材料中可以提高复合材料的性能,拓展其功能,因此石墨烯复合材料的制备成为研究热点之一。
本文介绍了国内外对石墨烯复合材料的研究,对石墨烯复合材料的研究进展及现状进行了详细的介绍,并对石墨烯复合材料的发展趋势进行了展望。
关键词:石墨烯;复合材料;研究进展一、引言石墨烯因其优异的物理性能和可修饰性, 受到国内外学者的广泛关注。
石墨烯的杨氏模量高达1TPa、断裂强度高达130GPa,是目前已知的强度性能最高的材料,同时是目前发现电阻率最小的材料, 只有约10-8Ω·m;拥有很高的电子迁移率,且具有较高的导热系数。
氧化石墨烯作为石墨烯的重要派生物,氧化石墨烯薄片在剪切力作用下很容易平行排列于复合材料中, 从而提高复合材料的性能。
本文总结介绍了几种常见的石墨烯复合材料。
二、石墨烯复合材料(1)石墨烯及氧化石墨烯复合材料膜聚乙烯醇(PVA)结构中有非常多的羟基,因此其能与水相互溶解,溶解效果很好。
GO和PVA都可以在溶液中形成均匀、稳定的分散体系。
干燥成型后,GO在PVA中的分散可以达到分子水平,GO表面丰富的含氧官能团可以与PVA的羟基形成氢键,因此添加少量的GO可以显著提高复合材料的力学性能。
樊志敏[1]等制备出了氧化石墨烯纳米带/TPU复合膜。
通过机械测试显示,当加入氧化石墨烯纳米带的量为2%时,复合薄膜的弹性模量和抗拉强度与不加氧化石墨烯纳米带的纯TPU薄膜相比都得到了非常大的提高,分别提高了160%和123%。
马国富[2]等人发现,在聚乙烯醇(PVA)和氧化石墨烯(GO)复合制备的得复合薄膜中,GO均匀的分散在PVA溶液中,PVA的羟基与GO表面的含氧基团发生相互作用复合而不分相。
加入GO之后,大大提高了复合膜的热稳定性,当加入的GO量为3%时,纳米复合膜力学性能测试出现最大值,此时断裂伸长率也出现了最大值,这表明在此GO含量时复合膜有最佳性能;与不加GO的纯PVA膜相比,当加入的GO量为3%时,耐水性也大大地提高。
石墨烯的研究进展刘乐浩,李铁虎,赵廷凯,王大为(西北工业大学材料科学与工程学院,西安710072)摘要石墨烯是碳的又一同素异形体,具有独特的二维结构和优异的力学、电学、光学、热学等性能,成为富勒烯和碳纳米管之后的又一研究热点。
全面综述了近几年来石墨烯的制备方法,洋细讨论了微机械剥离法、化学剥离法、化学合成法、外延生长法、电弧法、化学气相沉积法的优缺点,并针对制备方法存在的产量低、结构不稳定、高污染等问题,提出了一些大规模可控制备高质量石墨烯的建议。
还结合石墨烯的结构和特性,概括了石墨烯在复合材料、微电子、光学、能源、生物医学等领域的应用进展,并展望了其主要研究方向和发展趋势。
关键词石墨烯制备方法应用中图分类号:〇613. 71 文献标识码:Research Progress on GrapheneLIU Lehao,LI Tiehu,ZHAO Tingkai,WANG Dawei (School of Materials Science and Engineering,Northwestern Polytechnical University,Xi,an 710072)Abstract As an allotrope of carbon,graphene has become a research hotspot due to its unique two-dimensional structure and excellent mechanical,electrical,optical and thermal properties. Synthesis of graphene via different approaches ,such as micro mechanical stripping, chemical stripping, chemical synthesis, epitaxial growth, arc dis- charge,and chemical vapor deposition, are discussed in detail, and strategies for producing homogeneous graphene with improved yield and structural stability while limiting its pollution are proposed. Also application progress of gre- phene in polymer composites,micro electronics, optics, energy and biomedicine are summarized, and the main research direction and development trend are imagined.Key words graphene,preparation methods,applicationo引言富勒烯[1]和碳纳米管[2]已经成为碳材料研究的热点,而在2004年,Geim等[3]又发现了碳的又一同素异形体——石墨烯(Graphene)。
石墨烯在防腐涂料中的研究进展及应用摘要:防腐涂料是指由底漆、中漆和面漆组成的具有防腐蚀功能的涂料,依据涂料应用领域的不同,可以分为常规防腐涂料和重防腐涂料。
一般常见的防腐涂料有环氧树脂涂料、醇酸树脂涂料、聚氨酯涂料、丙烯酸树脂涂料、富锌涂料等。
鉴于此,本文主要分析石墨烯在防腐涂料中的研究进展及应用。
关键词:石墨烯;防腐涂料;应用1、石墨烯简介1.1、石墨烯的结构石墨烯是碳原子sp2杂化形成的蜂窝状平面薄膜,是一种仅有单层原子厚度的二维材料,也被称为单原子层石墨。
石墨烯是世界上已知的最坚硬且最薄的纳米材料,虽然只有1个碳原子厚度,但在外应力作用下抵抗变形能力大小的模量可达1012Pa。
1.2、石墨烯的制备方法(1)机械剥离法是最早被发现并用于生产石墨烯的方法,该方法对于实验设备要求极低,操作简便,效果明显,并且获得的石墨烯样品的质量很好。
因此,实验室生产以及石墨烯用量偏小的公司,大多使用该方法来制备石墨烯。
主要是将机械力作用在石墨表面,使其受力剥离,由原来的多层变为一层或数层。
(2)氧化还原法是当前制备石墨烯最为流行的方法之一,也是实验室批量生产石墨烯所采用的方法。
该方法以石墨或膨胀石墨为原材料,首先将石墨或膨胀石墨加入到浓硫酸中,加入强氧化剂得到蓬松的氧化石墨烯,再加入强还原剂,得到石墨烯。
该法制备周期短,成本较低,设备简单,而且可以得到氧化石墨烯;但制备过程中应用强酸、强氧化物等物质,较为危险,而且得到的石墨烯有较多缺陷,如电学和力学性能不够优异。
(3)外延生长法碳化硅外延生长法:将碳化硅置于高温高压环境中,使硅原子蒸发,将碳原子留在载体上。
该方法可以制备单层大面积石墨烯,其质量十分优异。
但由于制备条件严苛、成本昂贵、转移困难,导致应用受限。
金属催化外延生长法:在超高真空的条件下,将碳氢化合物加到具有催化活性的过渡金属基底表面,并通过加热使吸附在金属表面的气体催化脱氢得到石墨烯薄膜。
对于碳原子来说要有较低的溶解度,这样才能通过化学腐蚀的方法使石墨烯与基底实现分离,不然不利于石墨烯的后续加工。
通过“点击化学”对石墨烯和氧化石墨烯进行功能化改性一、本文概述随着科学技术的不断发展,石墨烯和氧化石墨烯这两种二维纳米材料因其独特的物理和化学性质,在能源、生物医学、电子器件等领域展现出广阔的应用前景。
然而,原始的石墨烯和氧化石墨烯往往缺乏足够的反应活性或功能基团,限制了其在某些特定领域的应用。
因此,对石墨烯和氧化石墨烯进行功能化改性,以引入所需的反应活性或功能基团,已成为当前研究的热点。
“点击化学”作为一种高效、高选择性的合成方法,具有反应条件温和、产物纯度高、操作简便等优点,为石墨烯和氧化石墨烯的功能化改性提供了新的途径。
本文旨在探讨通过“点击化学”对石墨烯和氧化石墨烯进行功能化改性的方法及其潜在应用。
我们将介绍“点击化学”的基本原理,概述石墨烯和氧化石墨烯的基本性质,分析功能化改性的必要性,并重点讨论利用“点击化学”进行功能化改性的具体策略、实验步骤以及改性后材料性能的表征方法。
我们将展望石墨烯和氧化石墨烯功能化改性在各个领域的应用前景,以期推动相关领域的研究和发展。
二、石墨烯和氧化石墨烯的制备在探讨如何通过“点击化学”对石墨烯和氧化石墨烯进行功能化改性之前,首先需要理解如何制备这两种关键的碳纳米材料。
石墨烯,作为一种二维的碳纳米材料,其制备通常涉及从石墨中剥离出单层碳原子。
最常用的制备方法是机械剥离法,即通过使用胶带反复剥离石墨表面,直到获得单层石墨烯。
化学气相沉积(CVD)法也是制备大面积石墨烯的有效方法,它通过在高温下分解含碳气体,使碳原子在金属基底上沉积形成石墨烯。
而氧化石墨烯(Graphene Oxide, GO)则是石墨烯的氧化形式,其制备通常通过化学氧化石墨的方法实现。
最常用的氧化剂包括高锰酸钾(KMnO4)和浓硫酸(H2SO4)。
在这个过程中,石墨被氧化,形成带有含氧官能团(如羧基、羟基和环氧基)的氧化石墨烯。
这些官能团赋予了氧化石墨烯更好的亲水性和可加工性,使其在生物医学、能源储存和转换等领域有广泛的应用前景。
功能化石墨烯的制备及应用研究进展杨程;陈宇滨;田俊鹏;郝思嘉【摘要】石墨烯以其优异的物理化学性能,近年来受到了学术和产业界的广泛关注.将石墨烯进行功能化,可改善石墨烯的分散性,并且能根据需求对石墨烯的物理化学性能进行针对性地优化,因而赋予石墨烯更广泛的用途,因此,功能化石墨烯成为石墨烯研究领域的热点之一.综述功能化石墨烯的最新进展,从共价结合和非共价结合两个方面阐述了其制备的方法,叙述近年来功能化石墨烯在复合材料、储能材料、光电材料、催化材料、环境净化、生物及传感材料等领域的应用研究进展.总结出功能化石墨烯的特点,即大多数活性基团搭载到石墨烯的表面上都能活跃地展现其应用性能.功能化石墨烯未来的研究方向主要是判定和控制石墨烯表面引入功能化物质的量的“定量”问题和精确在石墨烯表面选择功能化的位点并进行精细化学结构设计的“定位”问题..【期刊名称】《航空材料学报》【年(卷),期】2016(036)003【总页数】17页(P40-56)【关键词】石墨烯;功能化石墨烯;共价修饰;非共价修饰;应用研究【作者】杨程;陈宇滨;田俊鹏;郝思嘉【作者单位】北京航空材料研究院,北京100095;北京航空材料研究院,北京100095;北京航空材料研究院,北京100095;北京航空材料研究院,北京100095【正文语种】中文【中图分类】TB34石墨烯是一种由碳原子以sp2杂化互相形成平面共价键而组成的蜂窝状单层碳结构,也是众多纳米碳结构例如富勒烯、碳纳米管的基本结构单元[1]。
自2004年被Geim等成功制备以来,石墨烯以极高的机械强度、载流子迁移率和电导率、热导率、透光率、化学稳定性等特性[2-4],成为近年来的明星材料,受到学术和产业界的广泛关注[5-7]。
然而,与这些无与伦比的性能相对,在生产和生活中实际应用的石墨烯材料所需要的性能则是多种多样的。
例如,石墨烯是一种理论比表面积可达2630 m2/g的材料,在表面化学、吸附等领域具有极大的应用潜力。
当代化工研究Modern Chemical Research134科研开发2020・15基于功能4匕氧化石墨烯用于药物载体的研究进展*胡建国熊耀坤*周立分袁恩李庆(江西中医药大学江西330004)摘耍:相对于其他药物载体,功能化氧化石墨烯因具有极大的比表面积、强的靶向性、可控释放以及良好的生物相容性和稳定性,作为药物载体越来越受到广泛的研究,尤其对氧化石屋烯两面进行功能化修饰,大大提高了其比表面积及增加了活性位点,从而达到高效载药的目的.本文主要综述了氧化石墨烯的功能化及其衍生物用于药物载体方面的最新研究进展.关键词:功能化氧化石墨烯;药物载体;研究进展中图分类号:R943文献标识码:AResearch Progress of Drug Carriers Based on Functionalized Graphene OxideHu Jianguo,Xiong Yaokun*,Zhou Lifen,Yuan En,Li Qing(Jiangxi University of Traditional Chinese Medicine,Jiangxi,330004)Abstracts Compared with other drug carriers,fiinctionalized graphene oxide has more and more extensive research as a drug carrier due to its large specific surface area,strong targeting,controlled release,and good biocompatibility and stability.Particularly,the J unctional modification of both sides ofgraphene oxide greatly improves its specific surface area and active site,so as to achieve the p urpose of e fficient drug loading.This article mainly reviews the latest research progress in the f imctionalization ofgraphene oxide and its derivatives f or drug carriers.Key words:fiinctionalizedgraphene oxides drug carrier^research progress引言20世纪90年代以来,药物载体及相应纳米材料的研究越来越广泛,在应用研究中,最优良的药物载体材料应符合以下几个方面:(1)药物载体材料应该具有良好的生物相容性,无毒性对人体没有刺激性,且对易降解材料容易排出体外,没有任何炎症反应,同时不会有溶血、凝血的不良后果,不影响人体机能的正常生理活动;(2)药物载体装载量大,具有较高的载药率;(3)药物载体材料性质较稳定,不会与所负载的药物发生任何反应,不会受体内环境影响而发生很大的改变,也不会影响所负载的药物的药理活性;(4)药物载体在负载药物运输时,也能保护药物免受机体和生理环境的影响,从而影响药物的药效;(5)药物载体对所负载的药物达到病灶部位后,能够全部释放药物,甚至能够起到缓释作用,从而增加药物治疗效果。
石墨烯的制备及功能化研究进展赵大洲【摘要】本文在概述石墨烯制备的基础上,着重探讨了通过非共价键和共价键分别实现石墨烯功能化的最新进展,也指出了当前石墨烯功能化的发展瓶颈,希望对未来进一步深入研究石墨烯有指导作用.【期刊名称】《皮革与化工》【年(卷),期】2018(035)006【总页数】5页(P24-28)【关键词】石墨烯;氧化石墨烯;功能化【作者】赵大洲【作者单位】陕西学前师范学院化学与化工系,陕西西安710100【正文语种】中文【中图分类】O613.711 引言20世纪30年代,科学家派尔斯和兰道就已经断言:因为准二维层面的晶体材料自身的热力学性质较活泼,在20℃左右就会自动分解或者蜷曲,所以这种晶体材料不能独立存在;科学经过了30年的发展更加肯定了这一判断[1]。
而就在人们已经对其准备盖棺定论的时候,1985年在英国发现的富勒烯和1991年在日本发现的碳纳米管轰动了全球,更加欣喜的是,2004年英国物理学家Andre Geim和Konstantin Novoselov用微机械剥离法首次从石墨中分离出了石墨烯,由此确定了石墨烯可以以游离态的形式存在。
此时,这种最新发现的只有单层二维呈蜂窝状的晶格结构的固体纳米材料——石墨烯的问世,是迄今为止科学界最令人惊叹的材料。
至此,整个以碳为中心的材料,组成了石墨 (3D)、石墨烯(2D)、碳纳米管(1D)和富勒烯(0D)的完美系统[2]。
二维晶体的厚度大约为0.335 nm,是迄今为止全球发现的最薄的纳米级材料,纳米尺度通常在距离与平面垂直1 nm的方向上,因此该晶体材料在平面内具有无限重复的周期性结构,同时也与金刚石都被定义为所有碳晶体材料的基本结构单元[3]。
石墨烯作为碳家族的成员之一,具有相当稳定的化学性质包括难以想象的高结晶度,这种二维晶体材料是由碳原子经过sp2杂化形成共价键,并且与周围最紧密的原子形成了3个σ键和1个π键,以苯六元环为基本结构单元构成的单层二维原子晶体。