2017年世界青少年奥林匹克数学竞赛(中国区)选拔赛七年级数学试题(含答案)
- 格式:doc
- 大小:249.50 KB
- 文档页数:10
2017春季省级初赛考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A 卷)一、填空(每题3分,共30分)1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.2、在等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.6、若关于x 、y 的方程组 无解,则a 的值是________.7、正整数._______,698的最大值是则满足、m mn n m n m +=+8、已知关于x 的不等式组 无解,则a 的取值范围是________.9、 都是正数,那么N M 、的大小关系是________.10、若n 为不等式 的解,则n 的最小正整数的值是________.二、选择题(每题5分,共25分)11、三元方程 的非负整数解的个数有( ). A.20001999个 B.19992000个 C.2001000个 D.2001999个12、如图已知 分别 为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥; ②A D ∠-︒=∠2190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.A.200B.300C.384D.420 14、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则d c a 、、的值是:A.不能确定B.1,1,3===d c aC.d c 、不能确定,3=aD.2,2,3-===d c a15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.A.4380B.4200C. 4750D.3750三、计算题(16~20题每题5分,21~22题每题10分,共45分)16、已知,9,27,81614131===c b a 则c b a 、、的大小关系是多少?17、计算:20002000200020001998357153)37(++⨯18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c ),试确定c b a 、、的值。
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
2013世界少年奥林匹克数学竞赛(中国区)选拔赛地方晋级赛(三年级试题答案及评分标准)一、填空题(每题8分,共计64分)1・2002年5月31日2.1993・804.5・4分钟6.7.80 + 123 - 116 + 53 — 40=1008・31一、计算题(每题10分,共计20分)9・原式=53 X 32+53X 13+53 X 31+53X 2+53X22=53X (32+13+31+2+22)=53X100=530010.原式=222X4X111+222X556二222X444+222X556=222X (444+556)=222X1000=222000三、解答题(第11题12分,第12题12分,第13题12分,第14题15分,第15题15分,共计66分)11.18+18+22=58584-2=29三年级:3284-2+29=193三年级=193 (人)...... 算出三年级人数6分四年级:3284-2-29=13 ........... 算出四年级人数6分(注:此题有多种解法,得出与题目对应的答案,根据评分标准分别给分)12.正方形边长:484-4=12 (厘米)小长方形:边长:124-2=6 (厘米) ....... 3分宽:124-4=3 (厘米)....... 3分周长:(6+3)x2=18 (厘米) ........ 3分面积:6x3=18 (平方厘米) ....... 3分13.(220+270) 4-7=70 (页)............ 8 分14004-70=20 (天)............ 12 分14.7 年前小明:(15+6) 4-(8-1) =3(岁)............. 8 分今年小明:7+3=10(岁)............ 12分今年大伯:10+15+6=31 (岁)............ 15分15.哥哥(26+2)/2=14 块弟弟14-2=12块................. 8分弟弟给哥哥5块以前,哥哥:14-5=9块弟弟:26-9=17块................. 10分弟弟从哥哥那儿抢走一半以前,哥哥:9X2=18块弟弟:26-18=8块................. 12分哥哥从弟弟那儿抢走一半以前,弟弟:8X2=16块................. 15分(注:此题有多种解法,得出与题目的对应答案,根据评分标准分别给分。
七年级A试卷答案一、填空题:(每题5分,共计50分)1.1.8752.15,7.5,53.15004.10005.6.3.57.乙8.2250,7509.133.68平方厘米10.4二、计算题(每题6分,共计12分)11.原式=.........................................6分12.∵∴.............................6分三、解答题(第13,14,15,每题8分,第16题10分,第17题12分,第18题12分,共计58分)四、13.设A所表示的数为x则............2分所以4(x-30)=x或4(x-30)=-x.............6分X=40或24............8分14.a=-b,所以.........................................2分所以a=..............................4分所以a+b=0,ab=,..............................6分所以原式=..............................8分15.设全程为x千米5×(1-20﹪)︰4×(1+20﹪)=5︰6.......................2分......................4分解得x=450(千米)..................................8分16.解:由题意知=-(a+b)+(a-c)+(b+c)........................4分=-a-b+a-c+b+c..................................8分=0....................10分17.设该国库券的年利率为x2000x×5=780............................6分解得x=7.8﹪..............................12分18.36分钟=小时.........................................1分行程若由顺风速度的2倍行驶,则可于1个小时到达。
绝密★启用前【竞赛试题】2017年世界青少年奥林匹克数学竞赛(中国区)选拔赛初赛试卷★注意事项:1、考生按要求用黑色、蓝色圆珠笔或钢笔在密封线内填好考生的相关信息。
2、考试时间90分钟。
3、本试卷共4页,满分100分。
4、不得在答卷上做任何标记。
5、考生超出答题区域答题将不得分。
6、考生在考试期间不得作弊,否则试卷记零分处理。
小学二年级试题一、选择题。
(把相应答案的序号填在括号里,每题5分,共25分)1.计算9+8+7+6+5+4+3+2+1= ( )(5分)A、40B、45C、50D、552.农妇卖鸡蛋,第一次卖掉篮子中的一半多一个,第二次又卖掉剩下的一半多一个。
这时篮子里还剩下一个。
那么篮子里原来有()个鸡蛋。
(5分)A、7B、8C、9D、103.幼儿园门前有三层台阶,若规定每次只能上一层或者两层台阶,那么上这个台阶一共有()种不同的方法。
(5分)A、2B、3C、5D、84.5只兔子储存了50个胡萝卜作为食物,前2天这5只兔子吃掉了20个胡萝卜,假如每只兔子每天吃的胡萝卜同样多,剩下的胡萝卜够剩下的兔子吃()天。
(5分)A、3B、4C、5D、65.从北京到徐州,除起点、终点外,中间还要停靠济南站,那铁路公司需要准备()种车票。
(5分)A、2B、6C、12D、24 二、填空题。
(每题6分,共30分)1.在367个七岁小朋友中,至少有2个小朋友是同年同月同日生的。
2.阿凡提在集市上花了600元买了一头小毛驴,转手以640元卖给了别人,随后又以650元买回了这头驴,第二天,阿凡提又以680元把驴卖了,请问:阿凡提一共赚了70元钱。
(6分)3.49位同学排成7行7列的方阵表演体操,小明在方阵中,他左边有2位同学,前边有3位同学,则小明的右边有4位同学,后边有3位同学。
(6分)4.每3个空瓶可以换一瓶汽水,有人买了9瓶汽水,喝完后又用空瓶换汽水,那么,他最多能喝13瓶汽水。
(6分)5.有一个数,在它的右面填上数字1,就成为一个两位数。
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD=S△CND+S△CNP+S△DNP.因此只需证明S△AND=S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP=S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP=S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,②AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m=19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,②BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
AF EDCB世界奥林匹克数学竞赛(中国区)总决赛七年级数学试题一、选择题(10个小题,每小题5.2分,共52分) 1、已知c a 、、b 是互不相等的有理数,那么ba ac a c c b c b b a ------,,中,正数有( )A. 0个B. 1个C. 2个D.3个 2、方程0|3||1|)1(2=+--++x x x 解的个数有( )A. 1个 B. 2个 C.3个D.无穷多个3、已知200919200817)1()1(++-+-=n n a ,当n 依次取1,2,…,2009时,a 的值为负数的个数是( )。
A .0个 B. 1个 C. 1004个 D.1005个 4、已知c a 、、b ,m 是有理数,且1b +>--=++m c b a m c a ,,则有( )A. b < 0B. c < 0C.21-<+c b D. 1>bc 5、已知200920082010200720102008200920072010200920082007⨯⨯-=⨯⨯-=⨯⨯-=c b a ,,,则有( )A .c b a<< B.c b a >> C.b a c << D. a c b >>6、已知⎩⎨⎧=+=+3||||0||y x x y x 中,0≠xy ,则有=y x( )A .1 B. -1 C. 2 D. -27、小明在三张卡片上分别写上2,3,5,每张卡片作为数轴上的一个点,卡片上的数表示这个离原点的距离,把三张卡片摆放到数轴上,不同的摆放方法最多有( ) A .12种 B. 8种 C. 6种 D. 2种 8、设三角形三边的长为c a 、、b ,且c b a>>,下面三个式子:①bc a +2;②ca b +2;③ab c +2,其中值最大的是( ) A .① B. ②C. ③D. 不确定9、已知:如图,△ABC 中,D 是BC 上的点,BD= 2DC ,E 在AD上,AE = DE ,BE 交AC 于F ,若△ABC 的面积是302cm ,那么四边形CDEF 的面积是( ) A .92cm B. 8.52cm C. 82cm D. 7.52cm10、圆周上有9个点,以这些为顶点构成三角形,那么所构成的三角形的个数共有( ) A .24个 B. 27个 C. 72个 D. 84个 二、填空题(8个小题,每小题6分,共48分)1、已知a 是质数,则方程组⎩⎨⎧=-=+ay x ay x 4的正整数解是;2、正整数1400的正因数的个数有个;3、已知有理数c b a>>,且0=++c b a ,则ac 的值的范围是;4、已知b a ,是正整数,2734=+ba ,则代数式22b ab a +-的值是;5、已知:如图,长方形ABCD 中,P 是CD 边上任一点,过点P 作AC 、BD 的垂线分别交AC 、BD 于E 、F ,若长方形的一条对角线的长为lcm ,面积为l 42cm ,则PE+PF=cm6、已知z y x 、、都是有理数,且绝对值都不大于2,那么方程3=+-z y x 的整数解个数是个;7、对于数x ,[x ]表示不超过x 的最大整数,已知关于x 的方程24||3=⎥⎦⎤⎢⎣⎡+a x 有正整数解,则a 的值的范围是;8、平面上5个圆和一条直线,最多能把平面分成部分。
初一奥林匹克数学竞赛真题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是()A.有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有()A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是()A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1.______.2.198919902-198919892=______.3.=________.4.关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案及解析一、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。
WMO 世 界 奥 林 匹 克 数 学 竞 赛 ( 中 国 区 ) 选 拔 赛姓名 年级 学校 准考证号 考场 赛区_________ 父母姓名 、 联系电话_ 、---------------------------------------装-----------------------------订---------------------------线----------------------------------第15届WMO 世界奥林匹克数学竞赛(中国区)选拔赛---------------------------------------------------------------------------------考生须知:1. 每位考生将获得考卷一份。
考试期间,不得使用计算工具或手机。
2. 本卷共120分,选择题每小题4分,填空题每小题5分,解答题共5小题,共50分。
3. 请将答案写在本卷上。
考试完毕时,考卷及草稿纸会被收回。
4. 若计算结果是分数,请化至最简。
七年级地方晋级赛复赛A 卷(本试卷满分120分 ,考试时间90分钟 )一、选择题(每小题4分,共40分)1.33)1(-的立方根是( )A .-1B .0C .1D .±1 2.已知⎩⎨⎧==1,2y x 是方程组⎩⎨⎧=+=+1,5ay bx by ax 的解,则a +b 的值是( )A .-1B .2C .3D .43.大华、小宇两兄弟与父母一起量体重,已知母亲和大华共重110公斤,父亲和小宇共重120 公斤.若大华比小宇重3公斤,则父亲比母亲重( )A.7公斤 B .10公斤 C .13公斤 D .17公斤 4.已知S =2+4+6+…+200,T =1+3+5+…+199,则S -T 的值为( ) A .50 B .100 C .200 D .4005.如图是将积木放在等臂天平上的三种情形.若一个球形、方形、锥形的积木重量分别用x 、 y 、z 表示,则x 、y 、z 的大小关系是( )A .x >y >zB .y >z >xC .y >x >zD .z >y >x6.将边长是10cm 的正方形纸片中间挖一个正方形洞,成为一个边宽是1cm 的方框.把5个 这样的方框放在桌上,成为如图所示图形,则桌面上被这些方框盖住的部分面 积是( )A .262cm 2B .260cm 2C .180cm 2D .172cm 2 7.当x 变化时,|x -4|+|x +t |有最小值3,则常数t 的值为( )A .-1B .7C .-1或-7D .3或-1 8.如右面左图,P 点在O 点正北方.一只机器狗从P 点按逆时针 方向绕着O 点作匀速圆周运动,经过一分钟,其位置如右面右 图所示.那么经过101分钟,机器狗的位置会是下列图形中的 ( )A .B .C .D .9.如图,AB ∥CD ,EG 、EM 、FM 分别平分∠AEF ,∠BEF ,∠EFD , 则图中与∠DFM 相等的角(不含它本身)的个数为( ) A .5 B .6C .7D .810.若a 、c 、d 是整数,b 是正整数,且a +b =c ,b +c =d ,c +d =a ,则a +b +c +d 的最大值是( ) A .5 B .2 C .-5 D .-2二、填空题(每小题5分,共30分)11.当x ____________时,式子523--x 的值是非正数.12.设a 、b 、c 都是实数,且满足(2-a )2+c b a ++2+|c +8|=0,ax 2+bx +c =0,则代数式x 2+2x-2016的值为______________.13.在平面直角坐标系中,线段AB 两个端点分别是A (-3,1),B (1,3),点C 是线段AB 的中点.把线段AB 平移后得到线段A'B',点A 、B 、C 分别与A'、B'、C'对应,若点 A'的坐标是(-1,-1),则点C'的坐标为_______________.14.许久未见的蜜蜜,圆圆,西西,豆豆,琪琪五位同学欢聚在Let’s party 餐厅,他们相互拥抱一次,中途统计各位同学拥抱次数为:蜜蜜拥抱了4次,圆圆拥抱了3次,西西拥抱 了2次,豆豆拥抱了1次,那么此时琪琪拥抱了 次.15. 1059、1417和2312分别除以d 所得余数均为r (d 是大于1的整数),则d -21r = . 16.在一次数学游戏中,老师在A 、B 、C 三个盘子里分别放了一些糖果,糖果数依次为a 0,b 0,c 0,记为G 0=(a 0,b 0,c 0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果。
2017imc国际数学竞赛初一组初赛试题2017年IMC(International Mathematics Competition)国际数学竞赛是一项面向全球中学生的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是2017年IMC国际数学竞赛初一组初赛的试题内容,供参考:一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个等边三角形的内角和是多少度?A. 90B. 180C. 270D. 3604. 以下哪个表达式等于 \( 2^3 \)?A. \( 2 \times 2 \)B. \( 2 \times 2 \times 2 \)C. \( 2 +2 + 2 \) D. \( 2 \times 2 + 2 \)5. 一个数的立方根是它自己,这个数可能是:A. 0B. 1C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 负数B. 正数C. 零D. 任意数7. 以下哪个数是质数?A. 1B. 2C. 3D. 48. 如果两个数的和是正数,且其中一个数是负数,那么另一个数:A. 必须为正数B. 可以是正数或零C. 必须为零D. 可以是负数或零9. 一个圆的半径增加一倍,它的面积增加:A. 2倍B. 4倍C. 8倍D. 16倍10. 一个长方体的体积是其长、宽、高的乘积,如果长宽高各增加一倍,体积增加:A. 2倍B. 3倍C. 4倍D. 8倍二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数是______。
12. 如果一个直角三角形的两条直角边分别是3和4,那么它的斜边长是______。
13. 一个数的倒数是1/4,这个数是______。
14. 如果一个数的立方是27,那么这个数是______。
15. 一个圆的直径是14厘米,那么它的半径是______厘米。
世界少年奥林匹克数学竞赛(中国区)选拔赛 2012-2013 初赛试卷 七年级(A 卷) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 考生须知:本卷共120分,考试时间90分钟。
第1至20题,每题6分。
考试期间,不得使用计算工具或手机Part 1 填空题1. 计算: 211⨯+321⨯+431⨯+……+100991⨯= 。
2. 当1±≠x 时,方程20111133=--+++x x x x 的解是 。
3. 计算:3001×2999= 。
4. 计算: 97×103×10009= 。
5. 计算:1234712345-1234620122⨯= 。
6. 计算:当3-=x ,31=y 时,5y 3-2+x 的值是 。
7. 计算:=2-2-2--2-2-223201********* 。
8. 计算:有两个质数的平方和是125,这两质数的和是 。
9.当=x 时,分式 32+x x的值为0。
10. 732012÷的余数是 。
Part 2 单项选择题(把字母填在空格处)11. 如果4a-3b=7,并且3a+2b=19,14a-2b 的值是 。
A.52B.55C.58D.62 12.若m 为实数,则代数式m +m 的值一定是( ).A 、正数B 、0C 、负数D 、非负数 _______学校 姓名_________辅导教师__________年级____考场____考号手机电话 ---------------------------------------装-----------------------------订---------------------------线----------------------------------13.已知m 是方程01x -x 2=+2006的一个根,则3+1++22m 20062005m -m 的值等于( ). A 、2005 B 、2006 C 、2007 D 、.200814.将一段72cm 长的绳子,从一端开始每3cm 作一记号,每4cm 也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为( ).A 、37B 、36C 、35D 、3415.某旅游团92人在快餐店就餐,该店备有9种菜,每份菜单单价分别为1、2、3、4、5、6、7、8、9(元),旅游团领队交代:每人可选不同的菜,但金额都须正好10元,且每一种菜最多只能买一份,这样,该团成员在购菜完全符合要求的所有方案中,至少有一个方案的人数不少于( ).A 、9人B 、10人C 、11人D 、12人16.如图4是由几块相同的小正方体搭成的立体图形的三视图,则这立体图形中小正方体共有( )块.A 、9B 、10C 、11D 、12Part 3 计算:17. 20022003)2()2(-+-; 18. 5.702.04.01.05.201.03.02.0-+=--x xPart 4 列方程解应用题。
世界青少年奥林匹克数学竞赛(中国区)选拔赛考生须知:本卷考试时间90分钟,共120分,每题5分,不得使用计算工具或手机。
【竞赛试题】2017年春季世界青少年奥林匹克数学竞赛(中国区)选拔赛初赛试卷★九年级试题一.考试加分(5分)1.请选手认真仔细的在装订线外的内容,把自己的名字,年级,考号,辅导教师,家长手机的信息用正楷准确的填写好,符合要求加5分。
二.单项选择题(把字母填在横线上)2. 方程)25(11091981871761651541431321+=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯x的解是 。
A. 21B. 21-C.0D. 1013. 已知三角形的三边长分别是5cm,12cm,13cm, 那么该三角形是 三角形。
A. 锐角B.直角C.钝角D.不确定4.三角形三内角平分线的关系是 。
A. 交于一点 B.互不相交 C.两两相交 D.不确定5. a 有若干本图书,b 借走一半加一本;剩下的书,c 借走一半加两本;再剩下的书,d 借走一半加3本;最后a 还有2本书。
a 原来有 本书。
A. 50B. 55C.60D. 80 6. 方程33-x +195-x -82+x =0的解是 。
A.1=x B. 2=x C.4=x D. 无解7. 一块草地长满了草,草每天还在匀速生长。
已知3头牛36天可把草吃光;5头牛20天可把草吃光。
现在要求12天把草吃光,需要 头牛去吃。
A. 5B. 6C.8D. 108. 方程31535322=-+--x x x x 的解是=x 。
A. 1 B. 3 C.3 D. 49. 一项工程,甲、乙合做20天完成;如果单独完成全工程,甲比乙要多用9天。
甲单独做全工程需 天。
(甲、乙独做的工作时间都是整天数)A. 20B. 30C.40D. 4510. 一只猴子吃一棵树上的桃子,第一天吃了树上桃子的101,以后八天分别吃了当天现有桃子的91,81,71,...,21,最后树上还剩下10个桃子。
绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛试题:七年级试题(A卷)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
七年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。
(每题5分,共计50分)1、甲数和乙数的比7:3,乙数和丙数的比是6:5,甲数和丙数的比是 。
2、购买3斤苹果,2斤橘子需6.90元;购买8斤苹果,9斤橘子需22.80元。
那么苹果、橘子各买1斤需 元。
3、有盐的质量分数为16%的盐水800克,要得到盐的质量分数为20%的盐水,应蒸发水 克。
4、将5,6,7,8,9,0这6个数字填入下面算式中,使乘积最大□□□×□□□5、一个正方形,把它的边长增加4厘米,那么它的面积就增加96平方厘米,则原来正方形的面积是 。
6、单独完成某工程,甲队需要10天,乙队需要15天,丙队需要20天,开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程,问甲队实际工作了 天。
7、在平面上有10条直线,任何两条都不平行,并且任何三条都不交于同一点,这些直线能把平面分成 部分。
8、大客车有48个座位,小客车有30个座位,现在306名旅客,要使每个旅客都有座位而且车上无空位,需要大客车 辆,小客车 辆。
9、在16点16分这个时刻,钟表盘面上时针和分针的夹角是 度。
10、若│a+2014│与│b-2015│互为相反数,则a+b 的值是_________。
二、计算题。
(每题6分,共计12分)11、6513.3838525.4415÷+÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-12、201520141...541431321211⨯++⨯+⨯+⨯+⨯三、解答题。
2017年世界青少年奥林匹克数学竞赛(中国区)选拔赛七年级数学试题(含答案)
2017春季省级初赛
考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A 卷)
一、填空(每题3分,共30分)
1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.
2、在等腰△ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.
3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.
4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.
5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.
6、若关于x 、y 的方程组 无解,则a 的值是________.
⎩⎨⎧-==1
1y x ⎩⎨⎧=-=+1293y x y ax
7、正整数._______,698的最大值是则满足、m mn n m n m +=+
8、已知关于x 的不等式组 无解,则a 的取值范围是________.
9、 都是正数,
那么N M 、的大小关系是________.
10、若n 为不等式 的解,则n 的最小正整数的值是________.
二、选择题(每题5分,共25分)
11、三元方程 的非负整数解的个数有( ).
A.20001999个
B.19992000个
C.2001000个
D.2001999个
12、如图已知 分别 为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥;
⎩⎨⎧-≥--1250x a x >,
如果))((),
)((,,,2003322004212004322003212004
21a a a a a a N a a a a a a M a a a ++++++=++++++=ΛΛΛΛΛ300
2006>n 1999=++z y x CD BD ACB CP ACB A ABC 、,平分,中,∠∠=∠∆
②A D ∠-︒=∠2
190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③
13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.
A.200
B.300
C.384
D.420
14、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩
⎨⎧==15y x , 而正确的解是⎩
⎨⎧-==13y x ,则d c a 、、的值是: A.不能确定 B.1,1,3===d c a
C.d c 、不能确定,3=a
D.2,2,3-===d c a
15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.
A.4380
B.4200
C. 4750
D.3750
三、计算题(16~20题每题5分,21~22题每题10分,共45分)
16、已知,9,27,81
614131===c b a 则c b a 、、的大小关系是多少?
17、计算:
20002000200020001998357153)37(++⨯
18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c
),试确定c b a 、、的值。
19、已知,)
2(23455f ex dx cx bx ax x +++++=+则f d b ++416的值是?
20、解不等式:x n mx 3)32(<-+
21、已知正数f e d c b a 、、、、、满足,4=a bcdef
,9=b
acdef
,161,91,41,16====f abcde e abcdf d abcef c abdef 求-++)(e c a
)(f d b ++的值。
22、如图①,已知中ABC ∆,∠ABC=∠ACB ,D 为BC 上一点,E 为直线AC 上一点,且∠ADE=∠AED.
(1)求证: ∠BAD=2∠CDE ;
(2)如图②,若D 在BC 的反向延长线上,其他条件不变,
(1)中的结论是否依然成立?证明你的结论。
参考答案:
一、
1、120度或60度
2、7或11
3、6
4、17
5、1
6、-6
7、75
8、a≥3
9、M >N
10、15
二、
1、C
2、D
3、C
4、B
5、A
三、
1、a >b >c
2、9/49
3、a=4;b=4;c=1
4、512
5、
6、- 31/12
7、 (1)
(2) 3
23--m n x <则时,>当3n 为任意数x 时,当3≤n 无解323--m n x >则。