当前位置:文档之家› 分子生物学与中心法则

分子生物学与中心法则

分子生物学与中心法则
分子生物学与中心法则

分子生物学与中心法则

分子生物学是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。分子生物学的发展大致可分为以下三个阶段。

(一)准备和酝酿阶段

19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破:

1.确定了蛋白质是生命的主要基础物质

19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。

2.确定了生物遗传的物质基础是DNA

1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年A.D.Hershey和M.Cha-se 用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。在对DNA结构的研究上,1949-52年S.Furbery等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基配对的DNA结构认识打下了基础。

(二)现代分子生物学的建立和发展阶段

这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl用同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。

(三)初步认识生命本质并开始改造生命的深入发展阶段

1967-1970年R.Yuan和H.O.Smith等发现的限制性核酸内切酶为基因工程提供了有力的工具; 1972年Berg等将SV-40病毒DNA与噬菌体P22DNA在体外重组成功,转化大肠杆菌,使本来在真核细胞中合成的蛋白质能在细菌中合成,打破了种属界限;1977年Boyer等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽;1978年Itakura(板仓)等使人生长激素191肽在大肠杆菌中表达成功;1979年美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素。至今我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用,世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献。

二.中心法则的定义

1.DNA是自身复制的模板;

2.DNA通过转录作用将遗传信息传递给中间物质RNA;

3.RNA通过翻译作用将遗传信息表达成蛋白质。

中心法则揭示了遗传信息的传递方向,反映了DNA、RNA和蛋白质之间的相互关系。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充.RNA的自我复制和逆转录过程,在病毒单独存在时是不能进行的,只有寄生到寄主细胞中后才发生.

三. 中心法则的产生背景

最早由克里克于1958年提出,用以表示生命遗传信息的流动信息方向或传递规律。由于当时对转录,翻译,遗传密码,肽链折叠等都还了解不多,当时的中心法则带有一定的假设性质。在DNA结构提出后,克里克最初提出中心法则是: DNA-RNA-蛋白质,它说明遗传信息在不同的大分子之间的转移都是单项的,不可逆的,只能从DNA到RNA,从RNA到蛋白质。这两种形式的信息转移在所有生物的细胞中得到了证实。

随着生物遗传规律的进一步探索,中心法则也逐步得到了完善和证实。1970年H.M.特明和D.巴尔的摩在一些RNA分子致癌病毒中发现它们的宿主细胞中的复制过程是先以病毒的RNA分子为模板合成一个DNA分子,再以DNA分子为模板合成新的病毒RNA。前一个步骤被称为反向转录,是上述中心法则提出后的新的发现。因此克里克在199年重申了中心法则的重要性,提出了更为完整的图解形式。

四.中心法则的重要意义

遗传信息传递规律的中心法则(Central Dogma),是现代生物学中最基本、最重要的规律之一,该法则的产生有其深刻的科学思想和科学社会基础.自其产生以后,随着研究的深入,内容和形式都得到了丰富和修正,显示出其核心思想不是简单的单向决定作用,而是复杂的相互作用,确立这一核心思想有助于预测其未来的发展.中心法则在探讨生命现象的规律方面显示出巨大的作用,极大地推动了生物科学的发展,是现代生物学的理论基石,它阐释了在遗传的过程中信息传递的路径,这为后来的基因工程计划、蛋白质工程提供了可行性的基础,并为生物学基础理论的统一指明了方向,在生命科学史上占有重要的地位.

殷樱安泰经济与管理学院

5141209032

高中生物中心法则知识点-word

高中生物中心法则知识点 高中生物中心法则基础知识点 1.提出者:克里克。 2.中心法则图解 3.不同生物的遗传信息传递途径不同 (1)以DNA力遗传物质的生物遗传信息的传递 (2)以RNA为遗传物质的生物遗传信息的传递 4.中心法则体现了DNA的两大基本功能 (1)遗传信息的传递主要是通过DNA复制完成的,发生于亲代产生子代的生殖过程或细胞增殖过程中。 (2)遗传信息的表达是通过转录和翻译完成的,发生在个体发育过程中。 病毒进行逆转录将遗传信息进行传递。 反转录病毒的最基本特征是在生命过程活动中,有一个从RNA到DNA的复制过程,即反转录过程——病毒在反转录酶的作用下,以病毒RNA为模板,合成互补的负链DNA后,形成RNA:DNA中间体。中间体的RNA酶H水解,在DNA聚合酶的作用下,由DNA复制成双链DNA。 高中生物中心法则重要知识点 1 内容 中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以

从DNA传递给DNA,即完成DNA的复制过程。这是所有细胞结构的生物所遵循的法则。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充和发展。 2 图解 从图解看出,遗传信息的转移分为两类: 一类是以DNA为遗传物质的生物(包括具有细胞结构的真核生物和原核生物以及DNA病毒)遗传信息传递。用实线箭头表示,包括DNA复制、RNA转录和蛋白质的翻译。 另一类以RNA为遗传物质的生物遗传信息传递。包括虚线箭头表示过程,即RNA复制、RNA逆转录。RNA的自我复制和逆转录过程,在病毒单独存在时是不能进行的,只有寄生到寄主细胞中后才发生。 ①RNA病毒(如烟草花叶病毒)遗传信息传递过程: ②逆转录病毒(如某些致癌病毒)遗传信息传递过程。 3 含义 包括五个方面,而且均遵循碱基互补配对原则。 过程 模板 原料 碱基互补 产物

分子生物学名词解释最全

第一章名词解释 1.基因(gene)是贮存遗传信息的核酸(DNA或RNA)片段,包括编码RNA和蛋白质的结构基因以及转录调控序列两部分。 2. 结构基因(structural gene)指基因中编码RNA和蛋白质的核苷酸序列。它们在原核生物中连续排列,在真核生物中则间断排列。 3.断裂基因(split gene真核生物的结构基因中,编码区与非编码区间隔排列。 4. 外显子(exon)指在真核生物的断裂基因及其成熟RNA中都存在的核酸序列。 5.内含子(intron)指在真核生物的断裂基因及其初级转录产物中出现,但在成熟RNA中被剪接除去的核酸序列。 6.多顺反子RNA(polycistronic/multicistronic RNA)一个RNA分子上包含几个结构基因的转录产物。原核生物的绝大多数基因和真核生物的个别基因可转录生成多顺反子RNA。 7.单顺反子RNA(monocistronic RNA)一个RNA分子上只包含一个结构基因的转录产物。真核生物的绝大多数基因和原核生物的个别基因可转录生成单顺反子RNA。 8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA)是真核生物细胞核内的转录初始产物,含有外显子和内含子转录的序列,分子量大小不均一,经一系列转录后加工变为成熟mRNA。 9. 开放阅读框(open reading frame, ORF)mRNA分子上从起始密码子到终止密码子之间的核苷酸(碱基)序列,编码一个特定的多肽链。 10.密码子(codon) mRNA分子的开放读框内从5' 到3' 方向每3个相邻的核苷酸(碱基)为一组,编码多肽链中的20种氨基酸残基,或者代表翻译起始以及翻译终止信息。

一个科技里程碑_分子生物学的中心法则

?评 述?一个科技里程碑:分子生物学的中心法则 王志珍(中国科学院生物物理研究所,北京100101) 编者按 王志珍院士的这篇评述,从历史的角度简述了“分子生物学的中心法则”的发展过程。正如作者指出的“中心法则所包含的划时代的生物学意义在于它揭示了生命最本质的规律,今天和昨天的生命科学都是建立在分子生物学的中心法则上”。文中也提到了蛋白质空间结构的“第二遗传密码”在本世纪的研究前景。本文想必会受到读者的欢迎。本刊希望今后能收到更多的这类评述。 一、分子生物学中心法则的提出 分子生物学的中心法则最早是由英国剑桥大学的物理学家佛郎西斯.克里克(Francis H. C.Crick)在1958年提出的,在英国的实验生物学会第12届讨论会“大分子的生物复制”会议录(Sym p.S oc. Exp.Biol.XII,138,1958)发表。中心法则是在前人工作的基础上,特别是在克里克本人和杰姆斯.沃森(James Wats on)一起揭示了DNA分子的双螺旋结构的基础上,总结出来的生命遗传信息的流动方向或传递规律。但是由于当时对转录、翻译、遗传密码、肽链折叠等都还了解不多,在那个时候与其说中心法则是一种准确的科学原理,不如说是一种强烈的科学信念。这个科学信念在以后分子生物学的发展过程中越来越成为多数人的坚定信念,因为它的正确性得到越来越多的实验证明,为越来越丰富的内容所充实、延伸、发展而变得越来越完善。 二、早期对中心法则的认识 克里克在1958年描绘的中心法则,如图1所示,箭头表示在三大类生物大分子脱氧核糖核酸DNA、核糖核酸RNA和蛋白质之间信息传递或流动所有可能的方向。这里的信息是指这些大分子的组成单元的序列所赋予的信息,即组成DNA的脱氧核糖核苷酸的序列,组成RNA的核糖核苷酸的序列,以及组成蛋白质的氨基酸的序列所赋予的信息。他做了进一步的分析,如图2所示,这些可能的信息传递大体上可以分成三大类:实线箭头表示很有可能的(probable)信息流动,而虚线箭头表示有可能发生的(possible)信息流动,从蛋白质流向蛋白质或DNA 或RNA的三条途径被认为是不可能的(im possible),因而应该取消 。 图1 1958年克里克最初提出的 分子生物学中心法则 图2 克里克对中心法则进行的分析

分子生物学检验

第二章临床分子生物学检验标志物 1. 分子生物标志物:指可以反映机体生理,病理状态的核酸、蛋白质、代谢产物等生物分子,是生物标志物的一种类型。 2. 中心法则:指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。在某些病毒中的RNA自我复制(如烟草花叶病毒等)和在某些病毒中能以RNA为模板逆转录成DNA的过程(某些致癌病毒)是对中心法则的补充。 3. 基因组:是一个细胞或一种生物体的整套遗传物质,包括基因和非编码DNA。 4. 原核生物基因组特征: 1)原核生物基因组较小:大小一般在106—107碱基对之间; 2)原核生物的类核结构:原核生物基因组DNA位于细胞中央的核区,没有核膜将其与细胞质隔开在蛋白质的协助下,以一定的形式盘曲,折叠包装起来,形成类核; 3)原核生物的操纵子结构:原核生物的结构基因大多数按功能相关性成簇地串联排列于染色体上。结构基因同其上游的调控区以及下游的转录终止信号,共同组成了一个基因表达单位,即操纵子结构; 4)原核生物的结构基因:原核生物的结构基因中无内含子成分,多数是单拷贝基因,基因与基因之间有重复序列存在; 5)具有编码同工酶的基因:这类基因表达产物的功能相同,但基因结构不完全相同;6)含有可移动DNA序列:可移动的DNA序列通过不同的转移方式发生基因重组,改变生物体的遗传性状,使生物体更适应环境的变化; 5. 质粒:指细菌细胞染色体以外,能独立复制并稳定遗传的共价闭合环状分子; 6. 人类基因组包括细胞核内的核基因组(3X109bp)和细胞质内的线粒体基因组(16569bp),人类基因组中存在大量的非编码序列和重复序列; 7. 小卫星DNA:由10—100bp组成的重复单位重复几十到几百甚至几千次,形成的1—5bp 的短DNA,又称可变数目串联重复; 8. 微卫星DNA:核心序列为1—6bp,可以重复上百次,又称短串联重复; 9. 多基因家族:指由某一祖先基因经过重复和变异所产生的一组基因,在多基因家族中,某些成员并不产生有功能的基因产物,这些基因称为假基因; 10. 多态性:当某种变异相对常见,在群体中的频率高于1%时,则称为多态性,频率低于

分子生物学研究方法(下)概论

第六章 分子生物学研究法(下)——基因功能研究技术

基因功能的研究思路主要包括: 1. 基因的亚细胞定位和时空表达谱; 2. 基因在转录水平的调控; 3. 细胞生化水平的功能研究:对该基因的表达产物做一个细胞信号转导通路的定位; 4. gain-of-function & loss-of-function: 分别在细胞和个体水平,做该基因的超表达和敲除,从表型分析该基因的功能。 功能研究应从完整的分子-细胞-个体三个层次研究,综合分析。

本章内容 ?基因表达研究技术 ?基因敲除技术 ?蛋白质及RNA相互作用技术?基因芯片及数据分析 ?利用酵母鉴定靶基因功能?其他分子生物学技术

6.1 基因表达研究技术 6.1.1 基因表达系列分析技术6.1.2 RNA的选择性剪接技术6.1.3 原位杂交技术 6.1.4 基因定点突变技术

6.1.1 基因表达系列分析技术 基因表达系列分析技术(serial analysis of gene expression,SAGE)是1995年由Velculescu 等建立的技术,在整体水平上对细胞或者组织中的大量转录本同时进行定量分析,而无论其是否为已知基因。 9概念: 以DNA测定为基础定量分析全基因组表达模式的技术,能直接读出任何一种细胞类型或组织的基因表达信息。

9原理: 根据理论上任何长度超过9~10(49=262144)个碱基的核苷酸片段可代表一种转录产物的特异序列(转录本),因此,选择特定的限制性内切酶分离转录产物中这些代表基因特异性9~10个碱基的核苷酸序列并制成标签,将这些序列标签连接、克隆和测序,根据其占总标签数的比例即可分析其对应编码基因的表达频率。

高中生物必修二知识点总结(精华版)

生物必修2复习知识点 第二章基因和染色体的关系 第一节减数分裂 一、减数分裂的概念 减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。 (注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。) 二、减数分裂的过程 1、精子的形成过程:精巢(哺乳动物称睾丸) ●减数第一次分裂1、精子的形成过程:精巢(哺乳动物称睾丸)间期:染色体复制(包括DNA复制和蛋白质的合成)。 前期:同源染色体两两配对(称联会), 形成四分体。四分体中的非姐妹染色单 体之间常常交叉互换。 中期:同源染色体成对排列在赤道板上 (两侧)。 后期:同源染色体分离;非同源染色体 自由组合。 末期:细胞质分裂,形成2个子细胞。 ●减数第二次分裂(无同源染色体 ......) 前期:染色体排列散乱。 中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。 后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极。 末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。

2、卵细胞的形成过程:卵巢 附:减数分裂过程中染色体和DNA 的变化规律 三、精子与卵细胞的形成过程的比较 精子的形成 卵细胞的形成 不 同点 形成部位 精巢(哺乳动物称睾丸) 卵巢 过 程 有变形期 无变形期 子细胞数 一个精原细胞形成4个精子 一个卵原细胞形成1个卵细胞+3个极体 相同点 精子和卵细胞中染色体数目都是体细胞的一半

分子生物学地研究及发展

分子生物学的应用及发展 摘要:本文在文献检索的基础上,对分子生物学的发展简史,基本原理,研究领域等作了简单介绍,阐述了分子生物学在人们日常生活中的应用并结合药学专业着重讨论了其在药学及中药开发发面的应用,并进一步对分子生物学未来的研究技术、方向和前景做了展望。 一前言 生物以能够复制自己而区别于非生物。生命现象最基本的特征是进行“自我更新”。进行“自我更新”体现了一种最高级和最复杂的运动状态。这种运动就是生物机体从环境中摄取物质和能量,以更新本身的物质组成,而山现生长、繁殖,在这样的过程中保证了将自身的特征传给历代;同时也不断地向环境输送一些物质和释放能量。在生物机体的组成物质中,防水分外,有各种无机盐类和各种有机化合物。其中生物大分子——核酸和蛋白质在进行自我更新运动中,以其功能的重要性占第一位。为探索生命现象的本质问题,产生了分子生物学这一学科[1]。 分子生物学(molecular biology)是从分子水平研究生命本质为目的的一门新兴边缘学科,它是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域[2]。 分子生物学的最终目标是远大的,从产生基本细胞行为类型的各种分子的角度,来理解这五类行为类型:生长、分裂、分化、运动和相互作用。即分子生物学力图完整地描述细胞大分子的结构、功能和相互联系,从而理解细胞为什么要采取这种方式[3]。 分子生物学作为一门新兴的边缘学科。它的迅速发展及其在整个生命科学领域的广泛渗透和应用,促使人们对生物学等生命科学的认识从细胞水平进入分子水平。在农业、畜牧、林业、微生物学等领域发展十分迅速,如转基因动植物等。在医学领域,为医学诊断、治疗及新的疫苗、新药物研制等开辟了新的途径,使医学科学中原有的学科发生分化组合,医学分子生物学等新的学科分支不断产生,使医学科学发生了深刻的变革,不认识到这一点就很难跟上科学发展的步伐。 分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。 二分子生物学发展简史 分子生物学的发展大致可分为三个阶段[4-7]:

分子生物学总结

分子生物学总结 1.分子生物学的三大原则 根据“序列假说”、“中心法则”这两个基本原则,分子生物学作为所有生命物质的共性学科遵循“三大原则:其一,构成生物大分子的单体是相同的。在动物、植物、微生物3大系统的所有生物物种间都具有共同的核酸语言,即构成核酸大分子的单体均是A、T(U)、C、G。所有生物物种间都具有共同的蛋白质语言,即构成蛋白质大分子的单体均是20种基本氨基酸。 其二,生物大分子单体的排列决定了不同生物性状的差异和个性特征。 其三,所有遗传信息表达的中心法是相同的。 2.简述Morgan基因论 经典基因概念:即基因是孤立的排列在染色体上的实体,是具有特定功能的,能独立发生突变和遗传交换的,“三位一体”的、最小的遗传单位。 3.简述“顺反子假说”的主要内容 顺反子理论认为:基因(即顺反子)是染色体上的一个区段,在一个顺反子内有若干个交换单位,最小的交换单位被称为交换子。在一个顺反子中有若干个突变单位,最小的

突变单位被称为突变子。在一个顺反子结构区域内,若果发生突变就会导致功能丧失,所以顺反子即基因只是一个具有特定功能的、完整的、不可分割的最小的遗传单位。 4.名词解释:等位基因、全同等位基因、非全同等位基因等位基因(allele):同一座位存在的两个不同状态的基因 全同等位基因(homoallele):在同一基因座位(locus)中,同 一突变位点(site)向不同方向 发生突变所形成的等位基因非全同等位基因(heteroallele):在同一基因座位(locus) 中,不同突变位点(site)发 生突变所形成的等位基因 5.简述DNA作为遗传物质的优点(自然选择的优势) DNA作为主要的遗传物质的优点在于: 1)储存遗传信息量大,在1kb DNA序列中,就可能编码出41000种遗传信息 2)以A / T, C / G 互补配对形成的双螺旋,结构稳定,利于复制,便于转录,可以突变以求不断进化,方便修复以求遗传稳定; 3)核糖的2’ – OH 脱氧,使其在水中的稳定性高于RNA,DNA中有T无U,消除了C突变为U带来进化中的负担

高中生物教案模板

高中生物教案基因详解

第四章第2节基因对性状的控制 学校:*****高中学科:生物 一、教材分析: 本节包括“中心法则的提出及其发展”和“基因、蛋白质与性状的关系”两部分内容。中心法则是生物学的核心规律,“基因、蛋白质与性状的关系”是对三者关系的总结。 二、教学目标 1、知识目标: ⑴解释中心法则的基本内容 ⑵举例说明基因与性状的关系 2、能力目标 ⑴锻炼学生根据实验证据得出结论的能力 ⑵理解结构与功能相适应的生物学原理。 3、情感、态度和价值观目标 通过中心法则的修改,基因、蛋白质与性状三者关系的确立,让学生认识到科学是一个逐步完善的过程,同时科学发展是永无止境的。 三、教学重难点 重点:(1)中心法则的理解 (2)基因、蛋白质与性状的关系。 难点:基因、蛋白质与性状的关系。 四、学情分析 在初中生物课以及前三章的学习中,阐述的都是基因与性状的关系,学生对蛋白质在其中的作用并不很明确。教材中的几个实例也都是着眼与此,与前面的遗传因子等遥相呼应,是学生从整体上把握三者的关系。 五、教学方法 1、教师讲述、举例、演示、启发与学生阅读、思考、讨论探索相结合。 2、学案导学 六、课前准备 1、学生的学习准备:完成课前预习学案,提出疑惑 2、教师的教学准备:课前预习学案、课内探究学案、课后训练与提高、 七.课时安排:1课时 八.教学过程 ㈠预习检查、总结疑惑 ㈡情境导入、展示目标 〖问〗水中的叶比空气中的叶要狭小细长一些,这两种形态的叶,其细胞的基因组成应是一样的。为什么叶片细胞的基因组成相同,而叶片却表现出明显不同的形态?

㈢合作探究,精讲点拨 探究活动一:中心法则的提出及发展 引导学生阅读P69资料分析,小组内讨论交流,尝试根据提供的实验证据,分析最初的中心法则的不足,并作出适当的修改;鼓励学生展示小组讨论结果;最后阐述中心法则的基本内容。 〖提示〗1.没有。实验证据指出了原有的中心法则所没有包含的遗传信息的可能传递途径,是对原有中心法则的补充而非否定。 2.遗传信息从RNA流向DNA、从RNA流向RNA的结论是确信无疑的,而从蛋白质流向蛋白质的途径是有可能存在的。 3.尝试归纳中心法则与基因表达的关系,如图: 引导学生阅读教材P69-70, 〖问〗1、如何用中心法则来解释豌豆的圆粒和皱粒这一对相对性状?与人的白化病的形成有何相似之处?两个例子中的蛋白质都属于哪一类物质?并尝试用基因、蛋白质、性状画出概念图。 2、囊性纤维病的形成中,基因控制合成的蛋白质也是酶吗?能否再举一个相似的例子?(可提示这种蛋白质叫做结构蛋白)也用概念图画出三者的关系。 3、对比两个概念图,进行归纳。 学生思考问题,小组内交流,教师要适时与学生互动,及时发现、解决学生产生的疑问,并引导学生得出正确结论。然后教师进行归纳总结: 基因控制性状是通过控制蛋白质合成来实现的,一类是类似豌豆的圆粒与皱粒、白化病和侏儒症等实例,说明基因通过控制酶或激素的合成来控制细胞代谢过程,从而控制生物性状;另一类是类似囊性纤维病、镰刀型贫血症等实例,说明基因通过控制结构蛋白的合成,从而直接控制性状。以上分析综合如下图。由此可见,基因控制性状是通过控制蛋白质的合成来实现的。) 探究活动三:基因控制生物性状的影响因素 教师可演示果蝇翅的发育需要经过酶催化的反应,而酶是在基因指导下合成的,酶的活性受温度、pH等条件的影响等资料,对人身高的研究资料,并组织学生讨论影响人身高的因素还有那些;学生阅读P70的细胞质基因的资料,来丰富对基因控制性状的认识;教师最后进行归纳: (1)一个基因能决定一种性状,但有的性状受多对基因的控制(如人的身高)。多因一效与一因多效 (2)基因控制性状还受到环境的影响

分子生物学名词解释

Central dogma (中心法则):DNA 的遗传信息经RNA 一旦进入蛋白质就不能再输出了。Reductionism (还原论):把问题分解为各个部分,然后再按逻辑顺序进行安排的研究方法。Genome (基因组):单倍体细胞的全部基因。 transcriptome(转录组):一个细胞、组织或有机体在特定条件下的一组完整基因。roteome (蛋白质组):在大规模水平上研究蛋白质特征,获得蛋白质水平上的关于疾病的发生、细胞代谢等过程的整体而全面的认识。 Metabolome (代谢组):对生物体内所有代谢物进行定量分析并寻找代谢物与生病理变化的相关关系的研究方法。 Gene (基因):具有遗传效应的DNA 片段。 Epigenetics (表观遗传学现象):DNA 结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。 Cistron (顺反子):即结构基因,决定一条多肽链合成的功能单位。 Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。 recon(交换子):意同突变子。 Z DNA(Z型DNA) :DNA 的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。Denaturation (变性):物质的自然或非自然改变。 Renaturation (复性):变形的生物大分子恢复成具有生物活性的天然构想的现象。egative superhelix (负超螺旋):B-DNA 分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。 C value paradox (C值矛盾):生物 overlapping gene(重叠基因):不同的基因公用一段相同的DNA序列。体的大C值与小c值不相等且相差非常大。 interrupted gene (断裂基因):由若干编码区和非编码区连续镶嵌而成的基因。 splitting gene(间隔基因):意思与断裂基因相同。 jumping gene(跳跃基因):一段可以从原位上单独复制并断裂下来,环化后插入另一位点并对其后的基因起调控作用。 Transposon (转座子):与跳跃基因意思相同。 eudo gene(假基因):与功能基因相似却失去基因活性的基因。 Retro-transposon(反转录转座子):转座子从DNA到RNA再到DNA的转移过程。Replicon (复制子):从复制起点到复制终点的DNA区段。 emiconservative replication(半保留复制):DNA复制过程中亲代DNA双链分开作为模板合成两条新生子链,每条新生链均含有一条母链和一条新合成的链。 emi-discontinuous replication(半不连续复制):前导链以连续复制的方式完成子代DNA的合成,而后随链以不连续复制的方式完成冈崎片段的合成。 leading strand(前导链):随着复制叉的分开,以显露的单链DNA为模板聚合dNTP而延伸的链。 lagging strand (后随链):复制叉的延伸与新生链的延伸背道而驰的链。 dUMP fragment (dUMP片段):约1200个核苷酸中有一个错配而引起的DNA 链被切断而形成的大小形似冈崎片段的DNA 分子片段。 replisome (复制体):连接酶等内在的酶分子集中于复制叉处组成一个复合体协同互作,完成DNA 复制的复合体。 Telomerase (端粒酶):端粒酶是参与真核生物染色体末端的端粒DNA 复制的一种核糖核蛋白酶。由RNA 和蛋白质组成,其本质是一种逆转录酶。它以自身的RNA 作为端粒DNA 复制的模版,合成出富含脱氧单磷酸鸟苷Deoxyguanosine Monophosphate(dGMP)

分子生物学简答题全

简答题 6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。 答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关 酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链 SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进 而导致其彻底降解。 反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全 被抑制。 8.简述真核基因表达的调控机制。 答:(1)DNA和染色质结构对转录的调控: ①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作 用,④基因重排,⑤染色质的丢失,⑥基因扩增; (2)转录起始调控: ①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用 调节),②反式作用因子与顺式作用原件结合对转录过程进行调控; (3)转录后调控: ①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA 稳定性调控; (4)翻译起始的调控: ①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编 码区的调控,⑤小分子RNA; (5)翻译后加工调控: ①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。 9.简述mRNA加工过程。 答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因 子的辅助)。 (3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。内含子两端的结构通常是5′-GU……AG-3′。选择性剪接的作 用机制包括;A使用不同的剪接位点,B选择使用外显子,C、反式剪接,D、使用 不同的启动子,E、使用不同的多腺苷酸化位点)。 (4)RNA的编辑(发生于转录后水平,改编mRNA序列,C→U或A→G,增加遗传信息容量)。 10.简述生物的中心法则。 答:中心法则(genetic central dogma),是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。

分子生物学(选择题)

第三章 DNA生物合成(复制)选择题 【A型题】 1.根据F.Crik中心法则,遗传信息的传递方式是 A.蛋白质→ RNA→DNA B.RNA→DNA→蛋白质 C.RNA→RNA→DNA D.DNA→RNA→蛋白质 E.DNA→DNA→蛋白质 2.F.Crik中心法则遗传信息的传递方式不包括 A.DNA→rRNA B.DNA→DNA C.RNA→蛋白质 D.mRNA→DNA E.DNA→tRNA 3.H.Temin对中心法则的补充内容是A.mRNA→蛋白质 B.DNA→DNA C.RNA→DNA D.DNA→mRNA E.蛋白质→mRNA 4.H.Temin对中心法则的补充内容是

A.转录 B. 逆转录 C.翻译 D. DNA复制 E. RNA复制 5.下面说法不正确的是 A.转座是RNA→RNA B.转录是DNA→RNA C.复制是DNA→DNA D.逆转录是RNA→DNA E.翻译是RNA→蛋白质 6.M.Meselson和F.W.Stahl用15NH4Cl证明的机制是 A.DNA转录为mRNA B. DNA半保留复制 C. mRNA翻译为蛋白质 D. DNA混合式复制 E. DNA全保留复制 7.以15N标记DNA双链为模板,当以NH4Cl作氮源复制DNA时,开始产生不含15N的子代DNA分子时在 A.第 1代 B.第 2代 C.第 3代 D.第 4代 E.第 5代

8.真核DNA生物合成的特点不包括 A. 半不连续复制 B.多复制子复制 C.半保留复制 D.双向复制 E.滚环复制 9.如果以15N标记的DNA双链作模板,NH4Cl作氮源进行复制,对子一代DNA分子做密度梯度离心分析,其密度带应位于 A.重DNA带下方 B.普通DNA带 C.普通DNA带上方 D. 重DNA带 E.普通带与重DNA带之间 10.证实DNA半保留复制的技术是 A.Sanger法 B. 密度梯度离心 C. α互补 D.斑点杂交 E. 蛋白质印迹 11.真核生物DNA复制的方式是 A. 滚环复制 B. D环复制 C. 全保留复制 D. 混合式复制

高中生物专题复习《中心法则》强化训练试题

1.某种RNA病毒在增殖过程中,其遗传物质需要经过某种转变后整合到真核宿主的基因组中。物质Y与脱氧核苷酸结构相似,可抑制该病毒的增殖,但不抑制宿主细胞的增殖,那么Y抑制该病毒增殖的机制是( ) A.抑制该病毒RNA的转录过程 B.抑制该病毒蛋白质的翻译过程 C.抑制该RNA病毒的逆转录过程 D.抑制该病毒RNA的自我复制过程 2.人们通过对青霉素、链霉素、四环素、氯霉素等抗生素研究发现,抗生素能够杀死细菌等病原体而对人体无害,其原因是抗生素能够有效地阻断细菌细胞内的蛋白质合成,而不影响人体内蛋白质的合成。人们对此现象提出了许多假设,其中最不合理的是( ) A.抗生素能阻断细菌DNA的转录过程,而不影响人体DNA的转录过程 B.抗生素能阻断细菌转运RNA的功能,而不影响人体转运RNA的功能 C.抗生素能阻断细菌内核糖体的功能,而不影响人体内核糖体的功能 D.抗生素能阻断细菌线粒体的功能,而不影响人体线粒体的功能 3.人体未成熟红细胞中的PK基因编码丙酮酸激酶(PK)。如果PK基因突变会导致PK活性降低,红细胞中ATP生成量减少使Na+累积而成球形,最终破裂导致溶血性贫血。以下说法正确的是( ) A.该病说明基因通过控制蛋白质的结构直接控制生物性状 B.人体正常成熟的红细胞排出Na+所需能量主要由线粒体提供 C.RNA聚合酶读取到突变PK基因上的终止密码子时停止转录 D.翻译时,遗传信息借助mRNA表达为蛋白质的氨基酸序列 4.如图表示有关遗传信息传递的模拟实验,相关叙述合理的是( ) A.若X是mRNA,Y是多肽,则管内必须加入氨基酸 B.若X是DNA一条链,Y含有U,则管内必须加入逆转录酶

(完整版)分子生物学习题与答案

第0章绪论 一、名词解释 1.分子生物学 2.单克隆抗体 二、填空 1.分子生物学的研究内容主要包含()、()、()三部分。 三、是非题 1、20世纪60年代,Nirenberg建立了大肠杆菌无细胞蛋白合成体系。研究结果发现poly(U)指导了多聚苯丙氨酸的合成,poly(G)指导甘氨酸的合成。(×) 四、简答题 1. 分子生物学的概念是什么? 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 3. 分子生物学研究内容有哪些方面? 4. 分子生物学发展前景如何? 5. 人类基因组计划完成的社会意义和科学意义是什么? 6.简述分子生物学发展史中的三大理论发现和三大技术发明。 7. 简述分子生物学的发展历程。 8. 二十一世纪生物学的新热点及领域是什么? 9. 21世纪是生命科学的世纪。20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域? 答案: 一、名词解释 1.分子生物学:分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究。

2.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 二、填空 1.结构分子生物学,基因表达与调控,DNA重组技术 三、是非题 四、简答题 1. 分子生物学的概念是什么? 答案: 有人把它定义得很广:从分子的形式来研究生物现象的学科。但是这个定义使分子生物学难以和生物化学区分开来。另一个定义要严格一些,因此更加有用:从分子水平来研究基因结构和功能。从分子角度来解释基因的结构和活性是本书的主要内容。 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 3. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来

分子生物学(朱玉贤第四版)复习纲要

绪论 一、名词 1、分子生物学Molecular Biology 2、中心法则Central Dogma 二、问答 1、简述孟德尔、摩尔根、Avery、沃森和克里克、雅各布和莫诺,尼伦伯格和科拉纳等人 对分子生物学发展的贡献 2、早期验证遗传物质是DNA的实验有哪些,具体过程是? 3、分子生物研究的内容包括哪些? ●DNA的复制、转录与翻译 ●DNA重组技术 ●基因表达调控研究 ●生物大分子的结构功能研究—结构分子生物学 ●基因(组)、功能基因(组)与生物信息学研究 第1章、染色体与DNA 第一节、染色体与DNA 名词 1、DNA双螺旋:两条多核苷酸链反向平行盘绕所生成的双链结构. 2、DNA三级结构:DNA 双螺旋进一步扭曲盘绕形成的特定空间结构。 3、核小体:是由核心颗粒(H2A、H2B、H3、H4各两个分子生成的八聚体)和连接区DNA (大约200bpDNA)组成 4、卫星DNA:又称随体DNA。因为真核细胞DNA的一部分是不被转录的异染色质成分, 其碱基组成与主体DNA不同,因而可用密度梯度离心。卫星DNA通常是高度串联重复的DNA 5、端粒(Telomere):是位于真核细胞线性染色体末端的特殊结构,由一段重复串联的DNA 序列与端粒结合蛋白构成. 6、端粒T环结构:端粒形成T环结构使染色体末端封闭起来,免遭破坏. 7、单顺反子:真核基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点 和一个终止点,因而一个基因编码一条多肽链或RNA链。 8、断裂基因(splitting gene):真核生物结构基因,由若干个编码区和非编码区互相间隔 开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因 9、间隔基因(Interrupted gene):由于这组基因发生突变时会导致果蝇体节模式发生间隔缺 失现象,所以将它们称为间隔基因 10、外显子(Exon) 是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可 在蛋白质生物合成过程中被表达为蛋白质 11 12 13

分子生物学研究法

第五章分子生物学研究法(上)------DNA、RNA及蛋白质操作技术 1、哪些重要的科学发现和实验推动了DNA重组技术的生产和发展? 三大成就:a、在20世纪40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;b、50年代提出了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;c、50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功的破译了遗传密码,阐明了遗传信息的流动与表达机制。 2、如何理解PCR扩增的原理和过程? PCR (Polymerase Chain Reaction) 是体外高效复制DNA的技术,该技术几乎贯穿于现在分子生物学的各个领域。PCR体系由模板,特异性引物,高温聚合酶,脱氧核糖核酸几部分组成。反应过程分模板高温变性(Denaturation),引物与模板低温退火(Annealing),引物在高温聚合酶的作用下延伸(Extention),在一定的条件下,退火和延伸可以合二为一。 3、简述定量PCR的原理和过程。 原理:1;在含有插入性染料或特异性探针的体系中扩增目标序列. 2 光学系统激发并检测报告荧光 3 报告荧光的强度与所扩增DNA的量呈比例关系 反应过程分模板高温变性(Denaturation),引物与模板低温退火(Annealing),引物在高温聚合酶的作用下延伸(Extention),在一定的条件下,退火和延伸可以合二为一。 4、基因组DNA文库和cDNA文库在构建原理和用途上的主要区别是什么? 基因组DNA文库含有一种生物的全部基因,从基因组文库中获得的基因是完整的,cDNA文库含有一种生物的部分基因,cDNA本质就是外显子,基因组文库大,其中基因含有启动子和内含子,cDNA文库小,没有内含子和启动子 5、基因克隆的方法主要有哪几种?简述各种方法的原理和用途。 6、在基因操作实践中有哪些检测核酸和蛋白质相对分子质量的方法? 电泳,核酸通过琼脂糖、聚丙烯酰胺凝胶电泳,蛋白质通过SDS-PAGE 7、蛋白质组学的研究对象和目的是什么?主要有哪些技术和方法? 8、SNP作为第三代遗传标记的优点是什么? 9、基因分型的方法有哪些?简述其原理。 10、已知一个cDNA3'端的部分序列,请设计实验流程得到该基因的全长cDNA。

高二生物知识点总结中心法则

高二生物知识点总结:中心法则 高二生物知识点总结:中心法则 中心法则一直是考试的重点,生物界遗传信息的传递图解如下: 1.“中心法则”主要内容解读中心法则主要包括五个过程:①DNA 复制,②转录,③翻译,④逆转录,⑤RNA复制。每一个过程都需要模板、原料、酶、能量,也都遵循碱基互补配对原则。具体比较如下表:比较项目 DNA复制转录翻译逆转录 RNA复制场所主要在细胞核中主要在细胞核中核糖体―― ―― 模板 DNA的每一条链DNA的一条链 mRNA RNA RNA 原料 4种脱氧核苷酸 4种核糖核苷酸20种氨基酸 4种脱氧核苷酸 4种核糖核苷酸酶 DNA解旋酶、DNA 聚合酶、DNA连接酶等 DNA解旋酶、 RNA聚合酶等酶逆转录酶等 RNA聚合酶等产物两个相同DNA分子mRNA 蛋白质(多肽)、水 DNA RNA 能量 ATP 碱基互补 配对原则G→C,C→G A→T,T→A A→U,T→A A→U,U→A A→T,U→A A→U,U→A 工具―― ―― tRNA ―― ―― 实例乙肝病毒、动植物等绝大多数生物绝大多数生物艾滋病病毒甲型H1N1病毒等 2.生物的遗传物质⑴以DNA为遗传物质的生物的遗传信息传递:DNA 是自身复制和RNA合成的模板,RNA又是蛋白质合成的模板。如动植物、原核生物、DNA病毒等 ⑵以RNA为遗传物质的生物的遗传信息传递:①实例:流感病毒、甲型H1N1流感病毒等 ②实例:艾滋病病毒 3.典型考题赏析例1.请据图分析,下列相关叙述正确的是()A.①过程实现了遗传信息的传递和表达 B.③过程只需要mRNA、氨基酸、核糖体、酶、ATP就能完成 C.人的囊性纤维病体现了基因可通过控制蛋白质的结构直接控制生物体的性状 D.图中只有①②过程发生碱基互补配对解析:通过DNA分子的复制,只是实现了遗传信息的传递,③翻译过程还需要特殊的运输工具―tRNA和适宜的外界条件,同时也发生了碱基互补配对。本题错选的主要原因是对DNA复制、转录和翻译的过程理解不清。答案:C 例2.乙肝病毒是一种约由3200个脱氧核苷酸组成的双链DNA病毒,这种病毒的复制方式比较特殊,

分子生物学与中心法则

分子生物学与中心法则 分子生物学是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。分子生物学的发展大致可分为以下三个阶段。 (一)准备和酝酿阶段 19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破: 1.确定了蛋白质是生命的主要基础物质 19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20-40年代提纯和结晶了一些酶(包括尿素酶、胃蛋白酶、胰蛋白酶、黄酶、细胞色素C、肌动蛋白等),证明酶的本质是蛋白质。随后陆续发现生命的许多基本现象(物质代谢、能量代谢、消化、呼吸、运动等)都与酶和蛋白质相联系,可以用提纯的酶或蛋白质在体外实验中重复出来。 2.确定了生物遗传的物质基础是DNA 1944年O.T.Avery等证明了肺炎球菌转化因子是DNA;1952年A.D.Hershey和M.Cha-se 用DNA35S和32P分别标记T2噬菌体的蛋白质和核酸,感染大肠杆菌的实验进一步证明了是遗传物质。在对DNA结构的研究上,1949-52年S.Furbery等的X-线衍射分析阐明了核苷酸并非平面的空间构像,提出了DNA是螺旋结构;1948-1953年Chargaff等用新的层析和电泳技术分析组成DNA的碱基和核苷酸量,积累了大量的数据,提出了DNA碱基组成A=T、G=C的Chargaff规则,为碱基配对的DNA结构认识打下了基础。 (二)现代分子生物学的建立和发展阶段 这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl用同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。 (三)初步认识生命本质并开始改造生命的深入发展阶段 1967-1970年R.Yuan和H.O.Smith等发现的限制性核酸内切酶为基因工程提供了有力的工具; 1972年Berg等将SV-40病毒DNA与噬菌体P22DNA在体外重组成功,转化大肠杆菌,使本来在真核细胞中合成的蛋白质能在细菌中合成,打破了种属界限;1977年Boyer等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽;1978年Itakura(板仓)等使人生长激素191肽在大肠杆菌中表达成功;1979年美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素。至今我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用,世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献。 二.中心法则的定义 1.DNA是自身复制的模板; 2.DNA通过转录作用将遗传信息传递给中间物质RNA;

相关主题
文本预览
相关文档 最新文档