微分方程模型的基本原理
- 格式:docx
- 大小:37.03 KB
- 文档页数:2
第二章:动力学系统的微分方程模型利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。
在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。
在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。
在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。
§2.1 动力学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。
1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。
惯量(质量)=)加速度(力(2/)s m N 惯量(转动惯量)=)角加速度(力矩(2/)s rad m N ⋅2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。
按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。
对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。
x k F ∆=这里k 称为弹簧刚度,x ∆是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。
3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。
阻尼力通常表示为:αxc R = 阻尼力的方向总是速度方向相反。
当1=α,为线性阻尼模型。
否则为非线性阻尼模型。
应注意当α等于偶数情况时,要将阻尼力表示为:||1--=αx xc R 这里的“-”表示与速度方向相反§2.2 动力学建模基本定理1 动力学普遍定理对于大多数力学问题,可以使用我们熟知的牛顿动力学基本定理来解决,动力学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍定理的特点是比较直观,针对不同的问题可以选择不同的力学定理,在一般情况下利用普遍定理可以得到大多数动力学系统的数学模型。
常见的微分方程模型 微分方程是数学中一类重要的方程,广泛应用于自然科学、工程技术和社会经济等各个领域。
本文通过介绍常见的微分方程模型,帮助读者了解微分方程的基本概念和应用方法,并通过举例说明,使读者更加清楚地理解微分方程的实际应用。
一、常微分方程的基本概念 常微分方程是指未知函数与其导数之间的关系式,通常使用符号形式表示。
其中,未知函数是关于一个自变量的函数。
2. 方程类型 常微分方程包括一阶常微分方程和高阶常微分方程两种类型。
一阶常微分方程是指方程中未知函数的最高导数是一阶导数的微分方程。
高阶常微分方程是指方程中未知函数的最高导数是高于一阶导数的微分方程。
1. 简单增长模型 简单增长模型常用于描述物种的繁殖或种群的增长过程。
假设种群数量是一个未知函数N(t),t表示时间。
简单增长模型的一阶常微分方程形式为dN/dt = kN,其中k是增长率常量。
举例:假设某个种群的初始数量是100个,增长率为0.05个/年,求10年后的种群数量。
解法:将初始条件代入简单增长模型方程,得到dN/dt =0.05N。
然后解这个一阶常微分方程,得到N = 100e^(0.05t)。
代入t = 10,可求得10年后的种群数量为N = 100 * e^(0.05*10)。
2. 简谐振动模型 简谐振动模型常用于描述弹簧振子或电路中的振荡状态。
假设振动的位移或电流是一个未知函数x(t),t表示时间。
简谐振动模型的二阶常微分方程形式为d^2x/dt^2 + ω^2x = 0,其中ω是振动的角频率。
举例:某个弹簧振子的质量为1kg,弹簧的劲度系数为4N/m,初始位移为1m,初始速度为0m/s,求振子在t = 2s时的位移。
解法:将初始条件代入简谐振动模型方程,得到d^2x/dt^2 + 4x = 0。
然后解这个二阶常微分方程,得到x = 1 * cos(2t)。
代入t = 2,可求得振子在t = 2s时的位移为x = 1 * cos(4)。
第二章 微分方程本章学习目的:本章的主要目的在于:学习微分方程模型的建立、求解方法、分析结果及解决实际问题的全过程。
1.知道求解微分方程的解析法、数值解法以及图形表示解的方法;2.理解求微分方程数值解的欧拉方法,了解龙格——库塔方法的思想;3.熟练掌握使用MATLAB 软件的函数求微分方程的解析解、数值解和图形解;4.通过范例学习怎样建立微分方程模型和分析问题的思想。
§2.1 引例 在《大学物理》中,我们曾学习过简谐振动(如:弹簧振子、单摆)0222=+x dtx d ω,那就是一个典型的二阶常微分方程的模型。
这里我们讨论“倒葫芦形状容 器壁上的刻度问题”。
对于圆柱形状容器壁上的容积刻度,可以利用圆柱体体积公式:4/2H D V π=,其中容器的直径D 为常数,体积V 与相对于容器底部的任意高度H 成正比,因此在容器壁上可以方便地标出容积刻度。
而对于几何形状不规则的容器,比如“倒葫芦形状”的容器壁上如何标出容积刻度呢?如图所示,建立坐标系,由微元法分析可知:dx x D dV 2)(41π=,其中x 表示高度,直径是高度的函数,记为D (x )。
可得微分方程:0)0()(412==V x D dx dV π如果该方程中的函数D(x)无解析表达式,只给出D(x)的部分测试数据,如何求解此微分方程呢?h=0.2;d=[0.04,0.11,0.26,0.56,1.04,1.17];x(1)=0;v(1)=0;for k=1:5x(k+1)=x(k)+h;v(k+1)=v(k)+(h/2)*(pi/4)*(d(k)^2+d(k+1)^2);endx=x(1:6),v=v(1:6),plot(x,v)x =Columns 1 through 50 0.2000 0.4000 0.6000 0.8000 Column 61.0000v =Columns 1 through 50 0.0011 0.0073 0.0373 0.1469 Column 60.3393§2.2 微分方程模型的建立在工程实际问题中,“改变”、“变化”、“增加”、“减少”等关键词提示我们注意什么量在变化,关键词“速率”、“增长”、“衰变”、“边际的”等常涉及到导数。
微分方程模型以及算法郑小洋数学与统计学院1.微分方程发展历史;2.微分方程模型的应用领域;3.建立微分模型的常见方法;4.常微分方程模型:算法;MATLAB程序;实例。
5.偏微分方程模型:算法;MATLAB程序;实例。
参考文献及资料[1]姜启源,谢金星,叶俊,数学模型,高等教育出版社,2003.[2]叶其孝,大学生数学建模竞赛辅导教材,湖南教育出版社,1993.[3]常微分方程的解法[4]偏微分方程的数值解[5]2007年全国大学生数学建模竞赛题1.微分方程发展历史十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与力学中的新问题。
结果是在天体力学中不仅能得到并解释早先已经知晓的那些事实,而且得到了新的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。
偏微分方程的研究要比常为分方程晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。
J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。
它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。
十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他在1822年发表的《热的解析理论》是数学史上的经典文献之一。
傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。
在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程t T k z T y T x T ∂∂=∂∂+∂∂+∂∂2222222,其中k 是一个参数,其值依赖物体的质料。
随机微分方程(stochastic differential equation,sde) 1. 引言1.1 概述随机微分方程(Stochastic Differential Equation,SDE)是一类描述随机现象的微分方程。
相比于传统的确定性微分方程,SDE中包含了一个或多个随机项,能够更准确地描述现实世界中的不确定性和变动性。
SDE在各个领域中广泛应用,特别是金融学、物理学和生物学等领域。
1.2 文章结构本文将从以下几个方面介绍随机微分方程及其应用:定义与基本概念、解随机微分方程的方法与技巧,以及在实际问题中的应用。
具体可以分为三个主要部分:引言、主体内容和结论展望。
1.3 目的本文旨在介绍随机微分方程的基本概念、解法和应用,并探讨其在金融学、物理学和生物学等领域中的实际应用。
通过对随机微分方程的深入了解,读者可以更好地理解和利用该方法来解决实际问题,并对未来研究提出展望。
以上为“1. 引言”部分的内容。
2. 随机微分方程的定义与基本概念2.1 随机过程简介随机过程是一类描述随着时间推移而随机变化的数学模型。
它可以看作是时间参数上的一族随机变量的集合。
随机过程常用于描述具有随机性质的现象,如金融市场中的股票价格、天气预报中的温度变化等。
2.2 随机微分方程的定义随机微分方程是一类描述含有随机项(通常为噪声)的微分方程。
它通常采用以下形式表示:dX(t) = a(X(t), t)dt + b(X(t), t)dW(t)其中,X(t)是未知函数,a(X(t), t)和b(X(t), t)是已知函数,dW(t)表示Wiener 过程(也称为布朗运动或白噪声)。
这个方程表示了X在无穷小时间段dt内发生微小变化dX(t),其中包含一个确定性项a(X(t), t)dt和一个随机项b(X(t), t)dW(t)。
2.3 常见的随机微分方程模型在实际应用中,有许多不同类型的随机微分方程模型被广泛使用。
- Ornstein-Uhlenbeck 过程:该模型描述了维持平衡状态的粒子在受到随机扰动时的演化过程。
数学物理中的微分方程和偏微分方程微分方程和偏微分方程是数学物理学中非常重要的一类方程。
它们被广泛应用于自然科学、工程学和社会学等各个领域。
本篇文章将简要介绍微分方程和偏微分方程的基本概念和应用,并强调它们在现代科学中的重要作用。
一、微分方程和偏微分方程的基本概念微分方程是描述一个未知函数及其导数(或微分)之间关系的方程,通常用一个变量表示时间或者空间。
比如:y''+y=sin(t)就是一个微分方程。
在这里,y是未知函数,y'和y''分别表示y的一阶和二阶导数。
偏微分方程是描述未知函数在不同变量(例如,时间、空间或两者)的偏导数之间关系的方程,比如 heat equation(热传导方程)和 wave equation(波动方程)等。
简单来说,在偏微分方程中,未知函数与某个自变量的导数是偏导数,而不是全导数。
二、微分方程和偏微分方程的应用微分方程和偏微分方程是数学和物理学中最常用的工具之一。
它们可以用来描述各种自然现象和工程过程中出现的变化,包括:1. 热传导:热传导方程是一个经典的偏微分方程。
它描述了热量如何在材料中传递。
热传导方程被广泛用于工程领域中的热传导问题,如汽车制造、航天工程等。
2. 电磁场问题:麦克斯韦方程是用偏微分方程描述电场和磁场如何随时间和空间变化的方程。
这些方程被广泛应用于电磁学、无线电通信、计算机工程等领域。
3. 经济学模型:微分方程和偏微分方程也被用于经济学中的模型开发。
比如,经济学家使用微分方程来描述价格和利润的变化,以及经济增长和衰退的模式。
4. 生命科学中的模型:微分方程和偏微分方程也可以用于生命科学研究中的模型开发。
比如,心脏的电信号可以被描述为偏微分方程,而蛋白质浓度的变化可以用微分方程描述。
总之,微分方程和偏微分方程在许多领域中都被广泛应用。
它们可以用来描述各种自然现象和工程过程中出现的变化,同时也是解决这些问题的重要工具。
微分方程全部知识点微分方程是数学中的一个重要分支,用于描述自然现象中涉及到变化的规律及其演化过程。
微分方程广泛应用于各个领域,如物理学、工程学、经济学、生物学等。
本文将全面介绍微分方程的全部知识点,帮助读者更好地理解和掌握微分方程的理论和应用。
一、微分方程的定义和基本概念微分方程是描述数学模型中变化的规律的方程,其中涉及到未知函数及其导数。
微分方程分为常微分方程和偏微分方程两种。
常微分方程中只包含一元函数的导数,偏微分方程中包含多元函数的偏导数。
微分方程的解是指能够使方程成立的未知函数,通常表示为y(x)。
微分方程的解可以是一个函数,也可以是一组函数。
二、一阶常微分方程一阶常微分方程是指只含一元函数y及其一阶导数y'的微分方程。
一阶常微分方程的一般形式为:y'=f(x,y)通过分离变量法、全微分法或者常数变易法等方法可以求得一阶常微分方程的通解和特解。
一阶常微分方程的应用广泛,如在物理学中描述运动的规律,在经济学中描述增长的规律等。
三、高阶常微分方程高阶常微分方程是指含有未知函数y和其多次导数的微分方程。
高阶常微分方程的一般形式为:y''+p(x)y'+q(x)y=f(x)其中y'和y''分别表示y的一阶和二阶导数。
通过特征方程法或常数变易法等方法可以求解高阶常微分方程的通解和特解。
高阶常微分方程的应用也很广泛,如描述物理学中的振动问题、电路分析问题等。
四、偏微分方程偏微分方程是指包含多元函数及其偏导数的微分方程。
偏微分方程的一般形式为:F(x,y,u,u_x,u_y,...,u_{xy},...)=0其中u表示未知函数,u_x和u_y分别表示u对于x和y的偏导数。
偏微分方程的求解方法通常是根据具体问题选择合适的方法,如叠加法、分离变量法、变数分离法等。
五、常用的一些微分方程模型除了上述的常微分方程与偏微分方程之外,微分方程还有一些常用的模型,如:1. 简单利率模型这个模型描述的是在简单利率下的本金增长规律。
微分方程模型的基本原理
微分方程是数学中描述变化的一种重要工具,它能够描述系统中随时间、空间或者其他变量而发生的变化规律。
微分方程模型是一种基于微分
方程的数学模型,用于描述各种实际问题的变化过程。
1.变量与变化率的关系:微分方程模型描述了系统中变量随时间的变
化率,即变量的导数。
它指出了变量如何随时间而变化,从而提供了数量
化的描述。
2.初始条件和边界条件:微分方程模型需要给定初始条件和边界条件,以确定具体的解。
初始条件是在系统起始时给定的变量值,边界条件是在
系统边界上给定的限制条件。
这些条件可以是实际问题中必须满足的条件。
3.多变量之间的关系:微分方程模型可以涉及多个变量之间的相互作用。
这些变量可以表示不同的物理量或者变化过程,它们之间的关系可以
是线性的、非线性的、常系数的或者变系数的。
这些关系可以通过微分方
程进行描述。
4.具体问题的建模过程:微分方程模型的建立需要针对具体问题进行
分析和建模过程。
这个过程中需要确定问题中涉及的变量、关系以及边界
条件,并将其转化为合适的微分方程模型。
这个过程可以涉及到数学推理、物理实验、统计分析等多个方面。
微分方程模型的应用非常广泛,几乎涉及到各个学科领域。
例如,在
物理学中,微分方程模型可以用于描述粒子的运动、电磁场的分布、热传
导等问题;在经济学中,微分方程模型可以用于描述市场供需关系、经济
增长等问题;在生物学中,微分方程模型可以用于描述生物种群的演化、
药物动力学等问题。
微分方程模型的求解方法也非常丰富多样,可以通过数值方法、解析方法、近似方法等进行求解。
数值方法通过将微分方程转化为差分方程,然后采用逼近的方式进行求解。
解析方法通过数学推导和变量分离的方式求得方程的解析解。
近似方法通过针对特定问题的特殊性质,利用适当的近似方法得到问题的近似解。
总之,微分方程模型是一种重要的数学工具,广泛用于各个学科领域中的问题描述和解决。
它通过描述变量与变化率的关系,建立初始条件和边界条件,描述多变量之间的关系等方面,为实际问题提供了准确的数学描述和求解方法。