北京_中考_多项选择题(二)
- 格式:pdf
- 大小:849.98 KB
- 文档页数:12
2024年北京中考试卷数学一、选择题(每题4分)2的相反数是()A. 2B. -2C. -D. 2(答案:B)据报道,某小区居民李先生改良用水设备,在十年内帮助他居住小区的居民累计节水300000吨。
将300000用科学记数法表示应为()A. 0.3×105 C. 3×104(答案:B)有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()(具体选项未给出,但可以通过计算得出概率为1/3或类似值,需根据原试卷确定选项)如图是几何体的三视图,该几何体是()A. 圆锥B. 圆柱C. 正三棱柱D. 正三棱锥(答案需根据具体图形确定)某篮球队12名队员的年龄分布如下:年龄(岁)18 19 20 21人数 5 4 1 2那么这12名队员年龄的众数和平均数分别是()A. 18,19B. 19,19C. 18,19.5D. 19,19.5(答案:D)园林队在某公园进行绿化,中间休息了一段时间。
绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象……那么休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米C. 80平方米D. 100平方米(答案需根据具体函数图象确定)圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A. 2B. 4√2-4C. 4D. 8(答案需通过几何计算得出)点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周。
设点P运动的时间为x,线段AP的长为y。
表示y 与x的函数关系的图象大致为……,则该封闭图形可能是()(答案需根据具体函数图象确定)二、填空题(每题4分)分解因式:ax2=_________(答案:a(x2-3y))在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为_________m(答案:15)在平面直角坐标系xOy中,正方形OABC的边长为2。
北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
绝密★启用前2022年北京市中考物理试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题(本大题共12小题,共24.0分)1. 如图所示,用毛皮摩擦过的橡胶棒接触验电器的金属球时,金属球验电器的两片金属箔之所以张开是由于( )A. 同种电荷相互排斥B. 异种电荷相互吸引C. 同种电荷相互吸引D. 异种电荷相互排斥2. 如图所示的光现象中,由于光的折射形成的是( )A. 日晷上呈现针的影子B. 景物在镜中成像C. 鸟巢在水中形成倒影D. 筷子好像在水面处弯折3. 琴和瑟是我国传统的两种乐器,通过弹拨琴和瑟的弦使之发声。
下列说法正确的是( )A. 正在发声的琴弦,没有振动B. 琴和瑟发出的声音,可以在真空中传播C. 琴和瑟发出的声音音调相同时,它们的响度一定相同D. 人们依据音色的不同,能区分出琴和瑟的声音4. 如图所示的物态变化实例中,由于熔化形成的是( )A. 立春时节冰化成的水B. 白露时节草叶上的露珠C. 霜降时节枝头上的霜D. 冬至时节房檐上的冰挂5. 如图所示的电路中,电阻阻值R1<R2。
开关S闭合后,R1、R2两端的电压分别为U1、U2,通过R1、R2的电流分别为I1、I2。
下列判断正确的是( )A. U 1>U 2B. U 1<U 2C. I 1>I 2D. I 1=I 26. 如图所示的是神舟十三号载人飞船返回舱返回地面时的情境。
打开降落伞后,若返回舱在一段时间内的运动可看作是竖直向下的匀速运动,则关于返回舱在这段时间内,下列说法正确的是( )A. 返回舱的动能不变B. 返回舱的重力势能不变C. 返回舱的机械能不变D. 返回舱所受重力不做功7. 小京通过焦距为10cm的凸透镜看到了提示牌上“关灯”两字放大的像,如图所示。
2011年北京市中考物理试卷一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共24分,每小题2分)1.在国际单位制中,质量的单位是A.千克B.牛顿C.帕斯卡D.焦耳2.图所示的四种现象中,属于光的反射现象的是3.下列用品中,通常情况下属于绝缘体的是A.金属勺B.瓷碗C.铅笔芯D.铁钉4.如图所示的四个实例中,目的是为了减小摩擦的是5.下列物态变化中,属于熔化的是A.铁块化成铁水B.盘子里的水晾干了C.湖水表面结冰D.水沸腾时水面出现“白气”6.下列四个实例中,能够使蒸发减慢的是A.将湿衣服晾在通风向阳处B.将湿手伸到干手器下方吹C.将新鲜的黄瓜装入塑料袋D.将新收获的玉米摊开晾晒7.如图所示的四种情景中,所使用的杠杆属于费力杠杆的是8.下列家用电器中,利用电流热效应工作的是A.笔记本电脑B.电冰箱C.电风扇D.电暖器9.如图所示的四个实例中,为了增大压强的是10.某种电脑键盘清洁器有两个开关,开关S1只控制照明用的小灯泡L,开关S2只控制吸尘用的电动机M。
在如图所示的四个电路图中,符合上述要求的是11.如图所示电路,电源两端电压保持不变。
闭合开关S,当滑动变阻器的滑片P向右滑动时,下列判断正确的是A.电压表V1示数变小,电压表V2示数变大,电流表示数变小B.电压表V1示数变大,电压表V2示数变小,电流表示数变小C.电压表V1示数变小,电压表V2示数变小,电流表示数变小D.电压表V1示数变大,电压表V2示数变大,电流表示数变大12.甲、乙两个圆柱形容器盛有相同深度的液体,放置于水平桌面上,如图7所示。
甲、乙两容器的底面积分别为S1和S2,且2S1=3S2。
甲容器中液体的密度为ρ1,液体对容器底产生的压强为p1。
乙容器中液体的密度为ρ2,液体对容器底产生的压强为p2,且p2=2p1。
将A球浸在甲容器的液体中,B球浸在乙容器的液体中,两容器中均无液体溢出。
液体静止后,甲、乙两容器底受到液体的压力相等,A、B两球所受浮力分别为F1和F2。
参考答案第一部分 选择题一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:8239000000 2.3910=⨯,故选:B .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值. 2. 【答案】A【分析】根据轴对称图形,中心对称图形的定义进行判断即可.【详解】解:A 既是轴对称图形又是中心对称图形,故符合要求;B 不是轴对称图形,是中心对称图形,故不符合要求;C 是轴对称图形,不是中心对称图形,故不符合要求;D 是轴对称图形,不是中心对称图形,故不符合要求;故选:A .【点睛】本题考查了轴对称图形,中心对称图形,解题的关键在于熟练掌握:在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形.3. 【答案】C【分析】由90AOC BOD ∠=∠=︒,126AOD ∠︒=,可求出COD ∠的度数,再根据角与角之间的关系求解.【详解】∵=90AOC ∠︒,126AOD ∠︒=,∴36COD AOD AOC ∠=∠−∠=︒,∵90BOD ∠=︒,∴903654BOC BOD COD ∠=∠−∠=︒−︒=︒.故选:C .【点睛】本题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和AOD ∠相比,多加了BOC ∠.4. 【答案】B【分析】由10a −>可得1a >,则0a >,根据不等式的性质求解即可.【详解】解:10a −>得1a >,则0a >,∴1a −<−,∴11a a −<−<<,故选:B .【点睛】本题考查了不等式的性质,注意:当不等式两边同时乘以一个负数,则不等式的符号需要改变. 5. 【答案】C【分析】根据一元二次方程有两个相等的实数根,可得Δ0=,进而即可求解.【详解】解:∵关于x 的一元二次方程230x x m −+=有两个相等的实数根,∴24940b ac m ∆=−=−=. 解得:94m =. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.6. 【答案】C【分析】根据多边形的外角和为360°进行解答即可.【详解】解:∵多边形的外角和为360°∴十二边形的外角和是360°.故选:C .【点睛】本题考查多边形的内角和与外角和的求法,掌握多边形的外角和为360°是解题的关键.7. 【答案】A【分析】整个实验分两步完成,每步有两个等可能结果,用列表法或树状图工具辅助处理.【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为14. 故选:A 【点睛】本题考查概率的计算,运用树状图或列表工具是解题的关键.8. 【答案】D【分析】如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,则DF AC a b ==+,由DF DE <,可得a b c +<,进而可判断①的正误;由EAB BCD ≌△△,可得BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,则90EBD ∠=︒,BDE △是等腰直角三角形,由勾股定理得,BE ==,由AB AE BE +>,可得a b +>,进而可判断②的正误;由勾股定理得222DE BD BE =+,即()2222c a b=+,则)c a b =<+,进而可判断③的正误. 【详解】解:如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,90EBD ∠=︒,∴BDE △是等腰直角三角形,由勾股定理得,BE ==, ∵AB AE BE +>,∴a b +>,②正确,故符合要求;由勾股定理得222DE BD BE =+,即()2222c a b=+,∴)c a b =<+,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.第二部分 非选择题二、填空题(共16分,每题2分)9. 【答案】2x ≠【分析】根据分式有意义的条件列不等式求解即可. 【详解】解:若代数式52x −有意义,则20x −≠, 解得:2x ≠,故答案为:2x ≠.【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为零是解题的关键.10. 【答案】()()y x y x y +−【详解】试题分析:原式提公因式得:y (x 2-y 2)=()()y x y x y +−考点:分解因式点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点的掌握.需要运用平方差公式. 11. 【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.12. 【答案】3【分析】先把点A 坐标代入求出反比例函数解析式,再把点B 代入即可求出m 的值. 【详解】解:∵函数()0k y k x=≠的图象经过点()3,2A −和(),2B m − ∴把点()3,2A −代入得326k =−⨯=−, ∴反比例函数解析式为6y x−=, 把点(),2B m −代入得:62m −−=, 解得:3m =,故答案为:3.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定满足函数解析式是解题的关键.13. 【答案】460【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为176100046050+⨯=(只),故答案为:460.【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.14. 【答案】32【分析】由平行线分线段成比例可得,21BO AO OE OF ==,12OE OF EC FD ==,得出2BO OE =,2EC OE =,从而2322BE OE OE EC OE +==. 【详解】AB EF CD , 2AO =,1OF =, 21BO AO OE OF ∴==, 2BO OE ∴=,12OE OF EC FD ==, 2EC OE ∴=,2322BE OE OE EC OE +∴==; 故答案为:32. 【点睛】本题考查了平行线分线段成比例的知识点,根据平行线分线段成比例找出线段之间的关系是解决本题的关键.15.【分析】根据OA BC ⊥,得出90ODC ∠=︒,112DC BC ==,根据等腰直角三角形的性质得出OC ==,即OA OC ==,根据90OAE ∠=︒,45AOC ∠=︒,得出AOE △为等腰直角三角形,即可得出AE OA ==【详解】解:∵OA BC ⊥,∴90ODC ∠=︒,112DC BC ==. ∵45AOC ∠=︒,∴ODC 为等腰直角三角形,∴OC ==∴OA OC == ∵AE 是O 的切线,∴90OAE ∠=︒,∵45AOC ∠=︒,∴AOE △为等腰直角三角形,∴AE OA ==.【点睛】本题主要考查了垂径定理,等腰直角三角形的判定和性质,切线的性质,解题的关键是熟练掌握垂径定理,得出112DC BC ==. 16. 【答案】 ①. 53 ②. 28【分析】将所有工序需要的时间相加即可得出由一名学生单独完成需要的时间;假设这两名学生为甲、乙,根据加工要求可知甲学生做工序A ,乙学生同时做工序B ;然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ;最后甲学生做工序E ,乙学生同时做工序F ,然后可得答案.【详解】解:由题意得:9979710253++++++=(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,且工序A ,B 都需要9分钟完成,∴甲学生做工序A ,乙学生同时做工序B ,需要9分钟,然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ,需要9分钟, 最后甲学生做工序E ,乙学生同时做工序F ,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要991028++=(分钟),故答案为:53,28;【点睛】本题考查了逻辑推理与时间统筹,根据加工要求得出加工顺序是解题的关键.三、解答题(共68分,第17—19题,每题5分,第20—21题,每题6分,第22—23题,每题5分,第24题6分,第25题5分,第26题6分;第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】5【分析】代入特殊角三角函数值,利用负整数指数幂,绝对值和二次根式的性质化简,然后计算即可.【详解】解:原式432=+−32=++−5=.【点睛】本题考查了实数的混合运算,牢记特殊角三角函数值,熟练掌握负整数指数幂,绝对值和二次根式的性质是解题的关键.18. 【答案】12x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【详解】23535x x x x +⎧>⎪⎨⎪−<+⎩①②解不等式①得:1x >解不等式②得:2x <∴不等式的解集为:12x <<【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键. 19. 【答案】2【分析】先将分式进行化简,再将210x y +−=变形整体代入化简好的分式计算即可.【详解】解:原式()()222222x y x yx y =+++=, 由210x y +−=可得21x y +=,将21x y +=代入原式可得,原式221==. 【点睛】本题考查了分式的化简求值,注意整体代入思想的应用.20. 【答案】(1)见解析 (2)【分析】(1)利用平行四边形的性质求出AF EC =,证明四边形AECF 是平行四边形,然后根据对角线相等的平行四边形是矩形得出结论;(2)证明ABE 是等腰直角三角形,可得AE BE ==,然后再解直角三角形求出EC 即可. 【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,AD BC ∥,∵BE DF =,∴AF EC =,∴四边形AECF 是平行四边形,∵AC EF =,∴平行四边形AECF 是矩形;【小问2详解】解:由(1)知四边形AECF 是矩形,∴90AEC AEB ∠=∠=︒,∵AE BE =,2AB =,∴ABE 是等腰直角三角形,∴2AE BE AB === 又∵1tan 2AE ACB EC ∠==,∴12EC =,∴EC =∴BC BE EC =+=+=.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质以及解直角三角形,熟练掌握相关判定定理和性质定理是解题的关键.21.【答案】边的宽为4cm ,天头长为24cm【分析】设天头长为cm x ,则地头长为2cm 3x ,边的宽为121cm cm 1036x x x ⎛⎫+= ⎪⎝⎭,再分别表示础装裱后的长和宽,根据装裱后的长是装裱后的宽的4倍列方程求解即可.【详解】解:设天头长为cm x ,由题意天头长与地头长的比是6:4,可知地头长为2cm 3x , 边的宽为121cm cm 1036x x x ⎛⎫+= ⎪⎝⎭, 装裱后的长为cm cm 2510010033x x x ⎛⎫⎛⎫+++ ⎪⎝⎭⎝⎭=⎪, 装裱后的宽为cm cm 1112727663x x x =⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭, 由题意可得:5110027433x x ⎛⎫+=+⨯ ⎪⎝⎭ 解得24x =, ∴146x =, 答:边的宽为4cm ,天头长为24cm .【点睛】本题考查了一元一次方程的应用,题中的数量关系较为复杂,需要合理设未知数,找准数量关系.22. 【答案】(1)1y x =+,()3,4C ;(2)2n =.【分析】(1)利用待定系数法可求出函数解析式,由题意知点C 的纵坐标为4,代入函数解析式求出点C 的横坐标即可;(2)根据函数图象得出当23y x n =+过点()3,4时满足题意,代入()3,4求出n 的值即可. 【小问1详解】 解:把点()0,1A ,()1,2B 代入()0y kx b k =+≠得:12b k b =⎧⎨+=⎩,解得:11k b =⎧⎨=⎩, ∴该函数的解析式为1y x =+,由题意知点C 的纵坐标为4,当14y x =+=时,解得:3x =,∴()3,4C ;【小问2详解】解:由(1)知:当3x =时,14y x =+=,因为当3x <时,函数23y x n =+的值大于函数1y x =+的值且小于4, 所以如图所示,当23y x n =+过点()3,4时满足题意, 代入()3,4得:2433n =⨯+, 解得:2n =.【点睛】本题考查了一次函数的图象和性质,待定系数法的应用,一次函数图象上点的坐标特征,利用数形结合的思想是解题的关键.23. 【答案】(1)166m =,165n =;(2)甲组 (3)170, 172【分析】(1)根据中位数和众数的定义求解即可;(2)计算每一组的方差,根据方差越小数据越稳定进行判断即可;(3)根据要求,身高的平均数尽可能大且方差小于329,结合其余学生的身高即可做出选择. 【小问1详解】解:将这组数据按照从小到大的顺序排列为:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,出现次数最多的数是165,出现了3次,即众数165n =,16个数据中的第8和第9个数据分别是166,166, ∴中位数1661661662m +==, ∴166m =,165n =;【小问2详解】 解:甲组身高的平均数为()1162165165166166164.85++++=, 甲组身高的方差为()()()()()222221162164.8165164.8165164.8166164.8166164.8 2.165⎡⎤−+−+−+−+−=⎣⎦ 乙组身高的平均数为()1161162164165175165.45++++=, 乙组身高的方差为()()()()()222221161165.4162165.4164165.4165165.4175165.425.045⎡⎤−+−+−+−+−=⎣⎦, ∵25.04 2.16>∴舞台呈现效果更好的是甲组,故答案为:甲组;【小问3详解】解:168,168,172的平均数为)1116933168168172=++ ∵所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329, ∴数据的差别较小,数据才稳定,可供选择的有:170, 172,且选择170, 172时,平均数会增大,故答案为:170, 172. 【点睛】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义:方差越小数据越稳定是解题的关键.24. 【答案】(1)见解析,90BAD ∠=︒(2)4【分析】(1)根据已知得出AB BC =,则ADB CDB ∠=∠,即可证明DB 平分ADC ∠,进而根据BD 平分ABC ∠,得出AD CD =,推出BAD BCD =,得出BD 是直径,进而可得90BAD ∠=︒;(2)根据(1)的结论结合已知条件得出,90F ∠=︒,ADC △是等边三角形,进而得出1302CDB ADC ∠=∠=︒,由BD 是直径,根据含30度角的直角三角形的性质可得12BC BD =,在Rt BFC △中,根据含30度角的直角三角形的性质求得BC 的长,进而即可求解.【小问1详解】解:∵BAC ADB ∠=∠∴AB BC =,∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴AD CD =,∴AB AD BC CD +=+,即BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;【小问2详解】解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵AD CD =,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.∵BD 平分ADC ∠, ∴1302CDB ADC ∠=∠=︒. ∵BD 是直径, ∴90BCD ∠=︒,则12BC BD =. ∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒−︒=︒, ∴12FB BC =. ∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径, ∴此圆半径的长为142BD =. 【点睛】本题考查了弧与圆周角的关系,等弧所对的圆周角相等,直径所对的圆周角是直角,含30度角的直角三角形的性质,等边三角形的性质与判定,圆内接四边形对角互补,熟练掌握以上知识是解题的关键.25. 【答案】(Ⅰ)见解析;(Ⅱ)见解析,4;(1)11.3;(2)<【分析】(Ⅰ)直接在表格中标记即可;(Ⅱ)根据表格中数据描点连线即可做出函数图象,再结合函数图象找到最低点,可得第一次用水量约为4个单位质量时,总用水量最小;(1)根据表格可得,用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,计算即可; (2)根据表格可得当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,若总用水量为7.5个单位质量,则清洁度达不到0.990.【详解】(Ⅰ)表格如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度0.990C <,故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.26. 【答案】(1)32t =(2)12t ≤ 【分析】(1)根据二次函数的性质求得对称轴即可求解;(2)根据题意可得()11,x y 离对称轴更近,12x x <,则()11,x y 与()22,x y 的中点在对称轴的右侧,根据对称性求得1213222x x +<<,进而根据122x x t +>,即可求解. 【小问1详解】解:∵对于11x =,22x =有12y y =, ∴抛物线的对称轴为直线12322x x x +==, ∵抛物线的对称轴为x t =. ∴32t =; 【小问2详解】解:∵当101x <<,212x <<, ∴1213222x x +<<,12x x <, ∵12y y <,0a >,∴()11,x y 离对称轴更近,12x x <,则()11,x y 与()22,x y 的中点在对称轴的右侧, ∴122x x t +>, 即12t ≤. 【点睛】本题考查了二次函数的性质,熟练掌握二次函数的对称性是解题的关键.27. 【答案】(1)见解析 (2)90AEF ∠=︒,证明见解析【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH 的中位线,然后求出B ACH ∠∠=,设DM DE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【小问1详解】证明:由旋转的性质得:DM DE =,2MDE α∠=,∵C α∠=,∴D DEC M E C α∠−∠∠==,∴C DEC ∠=∠,∴DE DC =,∴DM DC =,即D 是MC 的中点;【小问2详解】90AEF ∠=︒;证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=,∴2FCH α∠=,∵B C α∠=∠=,∴ACH α∠=,ABC 是等腰三角形,∴B ACH ∠∠=,AB AC =,设DM DE m ==,CD n =,则2CH m =,CM m n =+,∴DF CD n ==,∴FM DF DM n m =−=−,∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =−=+−−=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABF ACH ≅,∴AF AH =,∵FE EH =,∴AE FH ⊥,即90AEF ∠=︒.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.28. 【答案】(1)1C ,2C ;OC=(2)13t ≤≤或3t ≤≤ 【分析】(1)根据题目中关联点的定义并分情况讨论计算即可;(2)根据()0,3M ,,05N ⎛⎫ ⎪ ⎪⎝⎭两点来求最值情况,S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,运用相似三角形计算即可.【小问1详解】解:①由关联点的定义可知,若直线CA CB ,中一经过点O ,另一条是O 的切线,则称点C 是弦AB 的“关联点”,∵点()1,0A −,1,22B ⎛⎫− ⎪ ⎪⎝⎭,()11,1C −,20()C ,(3C , ∴直线2AC 经过点O ,且2BC 与O 相切,∴2C 是弦1AB 的“关联点”,又∵()11,1C −和()1,0A −横坐标相等,与122B ⎛− ⎝⎭都位于直线y x =−上, ∴1AC 与O 相切,11B C 经过点O ,∴1C 是弦1AB 的“关联点”.②∵()1,0A −,222B ⎛− ⎝⎭,设()C a b ,,如下图所示,共有两种情况,a 、若12C B 与O 相切,AC 经过点O ,则12C B 、1AC 所在直线为: 0y x y ⎧=⎪⎨=⎪⎩,解得:)1C 0,∴1OC =,b 、若2AC 与O 相切,22C B 经过点O , 则22C B 、2AC 所在直线为:1x y x =−⎧⎨=−⎩, 解得:()211C −,,∴2OC =,综上,OC =【小问2详解】解:∵线段MN 上一点S ,存在O 的弦PQ ,使得点S 是弦PQ 的“关联点”,又∵弦PQ 随着S 的变动在一定范围内变动,且()0,3M ,N ⎫⎪⎪⎝⎭,OM ON >, ∴S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,如图所示,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥,∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,∵PJ OM ⊥,∴MPO POJ ∽, ∴OP OM OJ OP =,即13OJ=, 解得13OJ =,∴根据勾股定理得,3PJ ==,123Q J =根据勾股定理,13PQ ==,同理,23PQ ==,∴当S 位于点()0,3M 时,1PQ 的临界值为3和3. ②当S 位于经过点O 的MN 的垂直平分线上即点K 时,∵点()0,3M ,5N ⎛⎫ ⎪ ⎪⎝⎭,∴5MN ==, ∴2OK OM ON MN =⨯÷=,又∵O 的半径为1,∴30OKZ ∠=︒,∴三角形OPQ 为等边三角形,∴在此情况下,1PQ =,PQ =∴当S 位于经过点O 的MN 的垂直平分线上即点K 时,1PQ 的临界值为1∴在两种情况下,PQ 的最小值在13t ≤≤内,最大值在3t ≤≤综上所述,t 的取值范围为13t ≤≤或3t ≤≤ 【点睛】本题主要考查最值问题,题目较为新颖,要灵活运用知识点,明确新概念时解答此题的关键.。
北京市2006年中考物理试题一、单项选择题(共20分,每题2分.错选、多选、不选,该题不得分)1.如图所示的四个实例中,目的是为了增大摩擦的是( ).轮胎上制有花纹在轴承中加滚珠给车轮的轴中加润滑油旅行箱下装有小轮(A) (B) (C) (D)2.如图所示的四个情景中,由光的直线传播形成的是( ).平面镜中的像水中的笔向上翘起地上的树影眼睛被放大(A) (B) (C) (D)3.如图中的几种用电器的额定功率最接近1000 w的是( ).4.右图是一个电子门铃,当两个导线夹子相接触时,电子门铃有音乐声.小明利用它检测以下物品是否导电.将下列物品分别接入两夹子之间,能使门铃发出音乐声的是( ).(A)塑料尺(B)铅笔芯(C)橡皮(D)玻璃棒5.下列装置中利用电磁感应工作的是( ).(A)发电机(B)电灯(C)电熨斗(D)电烙铁6.下列所述的实例中,通过做功来改变物体内能的是( ).(A)在饮料中放入一些冰块,饮料变凉(B)划火柴,火柴燃烧(C)柏油马路被阳光晒热(D)冬天,暖气使房间变暖7.为了传递信息,我国古代周期形成邮驿制度,到宋朝时设金牌、银牌、铜牌三种邮递快慢等级.“金牌”一昼夜(24 h)行500里(1里=0.5 km),每到一个驿站换人换马接力传递.下面所列速度中与“金牌”的平均速度最接近的是( ).(A)中学生步行的通常速度(B)人骑自行车的通常速度(C)高速公路上限制的最高车速(D)磁悬浮列车的最高时速8.下列关于物体是否做功的说法中正确的是( ).(A)起重机吊着钢筋水平匀速移动一段距离,起重机对钢筋做了功(B)被脚踢出的足球在草地上滚动的过程中,脚对足球做了功(C)小刚从地上捡起篮球的过程中,小刚对篮球做了功(D)小丽背着书包站在路边等车,小丽对书包做了功9.如图所示,小宝用凸透镜将明亮的窗户成像在纸上,根据小宝的实验情况,以下说法正确的是( ).(A)窗户在透镜的两倍焦距以外(B)窗户在透镜的一、二倍焦距之间(C)窗户在透镜的焦点上(D)窗户在透镜的一倍焦距以内10如图是某居民家中的部分电路,开始时各部分工作正常.将电饭煲的插头插入三孔插座后,正在烧水的电热壶突然不能工作,但电灯仍正常工作。
2012年北京市高级中等学校招生考试物理试卷参考答案一、单项选择题二、多项选择题三、填空题四、实验与探究题 24.66 25.1258 26.2.5 27.N 28.229.(1)晶体 (2)固态30.(1)右 (2)60 (3)62 (4)1.1×103 31.左 实 幻灯机 32. 4 33.(1)如图1(2)① 电压表示数为2.5V 并记录②02.5V-V5.2R U34.0.4G +0.1N图135.实验步骤及实验现象:(1)用温度计测量室温,记录温度计的示数;(2)将适量酒精倒入烧杯中,用温度计测量酒精的温度,待酒精温度与室温相同时,记录温度计的示数;(3)再将温度计从酒精中取出,随着酒精的蒸发,可以看到温度计的示数逐渐减小,这一实验现象说明酒精蒸发过程中吸热。
36.实验步骤:(1)在镜前纸上适当位置插一枚大头针作为物体S,用眼睛观察到它在镜中的像S′。
(2)在镜前物体S的右侧,用一只眼睛观察物体S的像S′,并沿视线在纸上插一枚大头针P1,使大头针P1恰好能挡住像S′;再插一枚大头针P2,使大头针P2恰好能挡住大头针P1和像S′。
(3)在镜前物体S的左侧,仿照步骤(2)分别在纸上插上大头针P3和P4。
(4)移去平面镜和大头针,通过大头针P1和P2在纸上的针孔画一条直线,再通过大头针P3和P4在纸上的针孔画一条直线,这两条直线的交点就是像S′的位置。
(5)用刻度尺分别测出物体S到直线MN的距离u和像S′到直线MN的距离v,并分别将u和v的数据记录到实验数据表中。
(6)改变物体S的位置,仿照步骤(1)~(5),再做5次实验。
实验数据记录表五、计算题(共16分)37.解:Q 吸=cm (t -t 0) =4.2×103J/(kg ·℃)×5kg ×(40-20)℃ =4.2×105J38. 解:当只闭合开关S 1时,等效电路如图2甲所示; 当开关S 1、S 2、S 3都闭合时,等效电路如图2乙所示; 当只闭合开关S 2时,等效电路如图2丙所示。
2023年北京市初中学业水平考试时间:120分钟 满分:100分第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半.将239 000 000用科学记数法表示应为( )A. 23.9×107B. 2.39×108C. 2.39×109D. 0.239×1092. 下列图形中,既是轴对称图形又是中心对称图形的是( )3. 如图,∠AOC =∠BOD =90°,∠AOD =126°,则∠BOC 的大小为( )第3题图A. 36°B. 44°C. 54°D. 63°4. 已知a -1>0,则下列结论正确的是( )A. -1<-a <a <1B. -a <-1<1<aC. -a <-1<a <1D. -1<-a <1<a 5. 若关于x 的一元二次方程 x 2-3x +m =0有两个相等的实数根,则实数m 的值为( ) A. -9 B. -94 C. 94 D. 96. 正十二边形的外角和为( ) A. 30° B. 150° C. 360° D. 1 800°7. 先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( ) A. 14 B. 13 C. 12 D. 348. 如图,点 A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB <BC ,∠A =∠C =90°,△EAB ≌△BCD ,连接 DE .设 AB =a ,BC =b ,DE =c ,给出下面三个结论:第8题图①a +b <c ; ②a +b >a 2+b 2; ③2(a +b )>c .上述结论中,所有正确结论的序号是( ) A. ①② B. ①③ C. ②③ D. ①②③第二部分 非选择题二、填空题(共16分,每题2分)9. 若代数式5x -2有意义,则实数x 的取值范围是________.10. 分解因式:x 2y -y 3=________. 11. 方程35x +1=12x的解为________. 12. 在平面直角坐标系xOy 中,若函数y =kx (k ≠0)的图象经过点A (-3,2)和B (m ,-2),则m 的值为________.13. 某厂生产了1 000只灯泡.为了解这1 000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:根据以上数据,估计这1 000只灯泡中使用寿命不小于2 200小时的灯泡的数量为________ 只. 14. 如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD.若 AO =2,OF =1,FD =2,则BEEC的值为________.第14题图15. 如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是 ⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为________.第15题图16. 学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序; ③各道工序所需时间如下表所示:在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要________分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要________分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17. 计算:4sin60°+(13)-1+|-2|-12.18. 解不等式组:⎩⎪⎨⎪⎧x >x +235x -3<5+x .19. 已知x +2y -1=0,求代数式2x +4yx 2+4xy +4y 2的值.20. 如图,在▱ABCD 中,点E ,F 分别在 BC ,AD 上,BE =DF ,AC =EF .第20题图(1)求证:四边形AECF 是矩形;(2)若AE =BE ,AB =2,tan ∠ACB =12,求BC 的长.21. (新考法 真实问题情境) 对联是中华传统文化的瑰宝.对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6∶4,左、右边的宽相等,均为天头长与地头长的和的110. 某人要装裱一幅对联,对联的长为100 cm ,宽为27 cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)第21题图22. 在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象经过点 A (0,1)和B (1,2),与过点(0,4)且平行于x 轴的直线交于点C.(1)求该函数的解析式及点C 的坐标;(2)当x <3时,对于x 的每一个值,函数 y =23x +n 的值大于函数 y =kx +b (k ≠0)的值且小于4,直接写出 n的值.23. 某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下: a .16名学生的身高:161,162,162,164,165,165,165,166, 166,167,168,168,170,172,172,175b .16名学生的身高的平均数、中位数、众数:(1)写出表中 m ,n 的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好.据此推断:在下列两组学生中,舞台呈现效果更好的是 ________ (填“甲组”或“乙组”);(3)该舞蹈队要选五名学生参加比赛.已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为329.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为________和________.24. 如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠AD B.第24题图(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F.若AC=AD,BF=2,求此圆半径的长.25. (新考法新函数图象探究题) 某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990. 方案一:采用一次清洗的方式.方案二:采用两次清洗的方式.结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比,可节水约________ 个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C________ 0.990(填“>”“=”或“<”).26. 在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点.设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.27. 在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.第27题图28. (新考法 新定义现场学习型) 在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和⊙O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是⊙O 的切线,则称点 C 是弦AB 的“关联点”.(1)如图,点A (-1,0),B 1(-22,22),B 2(22,-22).第28题图①在点 C 1(-1,1),C 2(-2,0),C 3(0,2)中,弦AB 1的“关联点”是________; ②若点 C 是弦AB 2的“关联点”,直接写出OC 的长;(2)已知点 M (0,3),N (655,0).对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点 S 在线段 MN 上运动时,直接写出t 的取值范围.2023年北京市初中学业水平考试解析快速对答案详解详析一、选择题 1. B2. A 【解析】A .既是轴对称图形,又是中心对称图形;B .是中心对称图形,不是轴对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.3. C 【解析】∵∠AOC =∠BOD =90°,∠AOD =126°,∴∠AOB =∠AOD -∠BOD =36°,∴∠BOC =∠AOC -∠AOB =54°.4. B 【解析】∵a -1>0,∴a >1,∴-a <-1,∴-a <-1<1<a .5. C 【解析】∵x 2-3x +m =0有两个相等的实数根,∴b 2-4ac =(-3)2-4m =0,∴m =94.6. C 【解析】多边形的外角和为360°.7. A 【解析】画树状图如解图,由树状图可知,共有4种等可能的结果,其中第一次正面向上,第二次反面向上的结果有1种,∴P (第一次正面向上,第二次反面向上)=14.第7题解图(易错警示) 注意设问中结果的顺序性,区分“第一次正面向上、第二次反面向上”与“一次正面向上、一次反面向上”的不同,当心错选概率为12.8. D 【解析】如解图,过点E 作EF ⊥CD ,交CD 延长线于点F ,∵∠A =∠C =90°,四边形ACFE 是矩形,∴EF =AC =a +b ,∵在Rt △EDF 中,EF <DE ,∴a +b <c ,①正确;∵△EAB ≌△BCD ,∴AE =BC =b ,∴BE =AB 2+AE 2=a 2+b 2,∵在Rt △ABE 中,AB +AE >BE ,∴a +b >a 2+b 2,②正确;∵△EAB ≌△BCD ,∴BE =BD ,∠AEB =∠CBD .∵∠A =∠C =90°,∴∠AEB +∠ABE =90°,∴∠CBD +∠ABE =90°,∴∠EBD =90°,∴△EBD 是等腰直角三角形,∴BE =22c .∵在△ABE 中,AB +AE >BE ,∴a +b >22c ,∴2(a +b )>c ,③正确.第8题解图二、填空题9. x ≠2 【解析】分式5x -2有意义,则分母x -2≠0,∴x ≠2.10. y (x +y )(x -y ) 【解析】x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ).11. x =1 【解析】去分母,得6x =5x +1,移项、合并同类项,得x =1.检验:当x =1时,2x (5x +1)≠0,∴x =1是原分式方程的解.12. 3 【解析】∵函数y =kx (k ≠0)的图象经过点A (-3,2),B (m ,-2),∴将A (-3,2),B (m ,-2)代入y=kx (k ≠0),得k =-6=-2m ,∴m =3. 13. 460 【解析】1 000×17+650=460.14. 32 【解析】∵AB ∥EF ∥CD ,∴BE EC =AF FD =AO +OF FD ,∵AO =2,OF =1,FD =2,∴BE EC =2+12=32.15. 2 【解析】∵OA 是⊙O 的半径,OA ⊥BC ,BC =2,∴CD =12BC =1.∵∠AOC =45°,∴∠OCD =90°-∠AOC =45°,∴OD =CD =1,CO =OD 2+CD 2=2,∴OA = 2.∵AE 是⊙O 的切线,∴∠OAE =90°,∴∠E =90°-∠AOC =45°,∴AE =OA = 2.16. 53;28 【解析】由一名学生完成,则需要9+9+7+9+7+10+2=53分钟;由两名学生合作完成,要使所用时间最少,则可同时进行两道工序,根据工序的先后顺序,可知工序A ,B ,C ,D 应靠前完成,工序E ,F 应靠后完成,工序G 先后均可,又∵工序C ,D 须在工序A 完成后进行,∴工序A ,B 可先同时进行,9分钟后同时完成,工序A ,B 完成后可进行的工序为C ,D ,G ,所需时间分别为7分钟、9分钟、2分钟,∴可安排一名学生完成工序D ,与此同时另一名学生完成工序C ,G ,9分钟后同时完成,剩余工序E ,F 两名学生同时进行,各完成一个,工序E 需要7分钟,工序F 需要10分钟,则10分钟后所有工序完成,∴最少需要9+9+10=28分钟. 三、解答题17. 解:原式=4×32+3+2-2 3=23+3+2-2 3 =5. (5分)18. 解:解不等式x >x +23,得x >1,解不等式5x -3<5+x ,得x <2, ∴该不等式组的解集为1<x <2.(5分) 19. 解:原式=2(x +2y )(x +2y )2=2x +2y ,(3分)∵x +2y -1=0, ∴x +2y =1, ∴原式=21=2.(5分)20. (1)证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC .∵点E ,F 分别在BC ,AD 上,BE =DF , ∴AF =CE ,AF ∥CE , ∴四边形AECF 是平行四边形. 又∵AC =EF ,∴四边形AECF 是矩形;(3分) (2)解:∵四边形AECF 是矩形, ∴∠AEB =∠AEC =90°, ∴AE 2+BE 2=AB 2. ∵AE =BE ,AB =2, ∴2AE 2=4, ∴AE =BE = 2. ∵tan ∠ACB =AE CE =12,∴CE =22,∴BC =BE +CE =2+22=3 2.(6分)21. 解:设该对联装裱后天头长为6x cm ,则地头长为4x cm ,左、右边的宽为 110(6x +4x )=x cm. 根据题意列方程,得100+6x +4x =4(27+2x ),(3分) 解得x =4, ∴6x =24.答:边的宽为4 cm ,天头长为24 cm.(6分)22. 解:(1)将A (0,1)和B (1,2)代入y =kx +b (k ≠0),得⎩⎪⎨⎪⎧b =1k +b =2, 解得⎩⎪⎨⎪⎧k =1b =1,∴该函数的解析式为y =x +1, 将y =4代入y =x +1,得x =3, ∴点C 的坐标为(3,4);(3分) (2)n 的值为2.(5分)(解法提示) 当y =23x +n 经过点C (3,4)时满足条件,将(3,4)代入y =23x +n ,得23×3+n =4,解得n =2.23. 解:(1)m =166,n =165;(2分)(解法提示) 共16名学生,中位数为身高按从小到大的顺序排序后第8,9名学生身高的平均数,∴m =166+1662=166.16名学生的身高数据中,165出现了3次,出现的次数最多,∴n =165. (2)甲组;(3分) (3)170,172.(5分)24. (1)证明:∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴AD =CD . ∵BC ︵=BC ︵, ∴∠BAC =∠BDC . ∵∠BAC =∠ADB , ∴∠BDC =∠ADB ,∴DB 平分∠ADC ,DE ⊥AC ,∴∠ADB +∠DAE =90°, ∴∠BAC +∠DAE =90°, ∴∠BAD =90°;(3分) (一题多解) ∵BC ︵=BC ︵, ∴∠BAC =∠BDC . ∵∠BAC =∠ADB , ∴∠BDC =∠ADB , ∴DB 平分∠ADC . ∵BD 平分∠ABC , ∴∠ABD =∠CBD . ∵∠ABC +∠ADC =180°,∴∠ABD +∠ADB =12(∠ABC +∠ADC )=90°,∴∠BAD =90°;(3分)(2)解:∵AC =AD ,且由(1)得AD =CD , ∴△ACD 是等边三角形, ∴∠ADC =60°,∴∠BDC =12∠ADC =30°,∠ABC =180°-∠ADC =120°,∴∠CBF =60°.∵∠BAD =90°, ∴BD 是此圆的直径, ∴∠BCD =90°. ∵CF ∥AD ,∴∠F =180°-∠BAD =90°, ∴∠BCF =90°-∠CBF =30°. ∵BF =2, ∴BC =2BF =4, ∴BD =2BC =8, 即此圆的直径是8,∴此圆的半径是4.(6分) 25. (1)11.3;(3分) (2)<.(5分)26. 解:(1)∵x 1=1,x 2=2,y 1=y 2, ∴抛物线对称轴为直线x =t =x 1+x 22=1+22=32, ∴t =32;(2分)(2)在点M (x 1,y 1),点N (x 2,y 2)中, ∵0<x 1<1,1<x 2<2, ∴x 1<x 2. ∵a >0,∴抛物线开口向上. 又∵抛物线为轴对称图形,∴当y 1<y 2,则点M 到对称轴的距离小于点N 到对称轴的距离得|t -x 1|<|x 2-t |,两边平方,得t 2-2x 1t +x 21<t 2-2x 2t +x 22, 整理得x 21-x 22-2x 1t +2x 2t <0(x 1-x 2)(x 1+x 2)-2t (x 1-x 2)<0 (x 1-x 2)(x 1+x 2-2t )<0. ∵x 1<x 2,∴x 1+x 2-2t >0,x 1+x 2>2t ,t <x 1+x 22,由不等式及不等式关系0<x 1<1,1<x 2<2, 将两式相加,得1<x 1+x 2<3, ∴12<x 1+x 22<32, ∴t ≤12.(6分)(一题多解) ∵a >0, ∴抛物线开口向上. 又∵抛物线为轴对称图形,∴当y 1<y 2,则点M 到对称轴的距离小于点N 到对称轴的距离. ∵0<x 1<1,1<x 2<2,∴x 1<x 2,如解图①,当t <x 1<x 2,则点M 和点N 都在对称轴的右侧,符合题意,此时t ≤0;第26题解图①如解图②,当x 1<x 2<t ,则点M 和点N 都在对称轴的左侧,不符合题意,此时t ≥2;第26题解图②当x 1<t <x 2,则点M 和点N 分别位于对称轴的两侧,此时0<t <2.(i )如解图③,当t =1时,不能保证点M 到对称轴的距离小于点N 到对称轴的距离,不符合题意;第26题解图③(ii )当1<t <32时,不能保证点M 到对称轴的距离小于点N 到对称轴的距离,不符合题意;(iii )如解图④当32≤t <2时,点M 到对称轴的距离大于点N 到对称轴的距离,不符合题意;第26题解图④(iiii )当12<t <1时,不能保证点M 到对称轴的距离小于点N 到对称轴的距离,不符合题意;(iiiii )如解图⑤,当0<t ≤12时,点M 到对称轴的距离小于点N 到对称轴的距离,符合题意.第26题解图⑤∴综上所述,t 的取值范围为t ≤12.(6分)27. (1)证明:由题意得,∠MDE =2α,MD =DE , ∵∠MDE =∠C +∠DEC ,∠C =α, ∴∠DEC =2α-α=α=∠C , ∴DC =DE , ∴MD =DC ,即D 是MC 的中点;(3分) (2)解:∠AEF =90°.证明:如解图,连接AF ,延长FE 至点Q ,使得FE =EQ ,连接AQ ,CQ ,第27题解图∵FD =DC ,FE =EQ , ∴DE 是△FCQ 的中位线, ∴DE ∥CQ ,DE =12CQ ,∴∠FDE =∠DCQ =∠DCA +∠ACQ . ∵∠B =∠DCA =α,∠FDE =2α=2∠B , ∴∠ACQ =∠DCA =α, ∴∠B =∠ACQ ,由题意得,BF =BC -FC =2MC -2CD =2(MC -CD )=2MD . ∵DM =DE ,∴2DM =2DE =2×12CQ =CQ ,在△ABF 和△ACQ 中, ⎩⎪⎨⎪⎧AB =AC ∠B =∠ACQ BF =CQ, ∴△ABF ≌△ACQ (SAS), ∴AF =AQ . 又∵FE =EQ , ∴AE ⊥FQ , ∴∠AEF =90°.(7分) 28. 解:(1)①C 1,C 2;(2分)(解法提示) 如解图①,连接C 1A ,连接C 1B 1并延长,∵C 1(-1,1),B 1(-22,22),∴B 1,C 1在直线y =-x 上.∵O (0,0)∴直线B 1C 1经过点O .∵A (-1,0),∴OA ⊥AC 1,∴AC 1是⊙O 的切线,∴C 1是弦AB 1的“关联点”;如解图②,连接C 2B 1,连接C 2A 并延长,∵C 2(-2,0),A (-1,0),∴直线C 2A 经过圆心O , 连接OB 1.∵B 1(-22,22),∴OB 1=1,B 1C 2=1,OC 2=2,∴OB 21+B 1C 22=OC 22,∴OB 1⊥B 1C 2,∴B 1C 2是⊙O 的切线,∴C 2是弦AB 1的“关联点”.第28题解图②2;(4分)(解法提示) 如解图③,当CA 是⊙O 的切线时,过点A 作OA 的垂线,交直线OB 2于点C 1,∴点C 在点C 1处时满足条件,OC 1=12+12=2;当CB 2是⊙O 的切线时,过点B 2作OB 2的垂线,交直线AO 于点C ,∵∠OB 2C =90°,∠COB 2=∠AOC 1=45°,∴B 2C =OB 2=1,∴OC =12+12=2;综上所述,若C 是弦AB 2的“关联点”,则OC = 2.第28题解图③(2)263≤t ≤3或1≤t ≤233.(7分)(解法提示) 如解图④,过点O 作OH ⊥MN 于点H , ∵OM =3,ON =655,∴MN =OM 2+ON 2=955, ∴sin ∠OMN =ON MN =23,∴sin ∠OMN =OH OM =23,∴OH =2.∵S 是MN 上的点,第28题解图④∴2≤OS ≤3,∴可将问题转化为点S 是⊙O 上弦PQ 的“关联点”,且2≤OS ≤3,求PQ 长的取值范围.如解图⑤,直线OS 交⊙O 于点P 1,P 2,E ,F 是直线OS 上的点,且OE =2,OF =3,则点S 在EF 上运动,过点S 作⊙O 的切线SQ ,切点为Q ,连接P 1Q ,P 2Q ,即为所求的弦PQ .第28题解图⑤∵SQ 是⊙O 的切线, ∴∠OQS =90°,∴∠QOS =90°-∠QSP ,∠QOP 1=90°+∠QSP .分析易得,当点S 从E 向F 运动时,∠QSP 变小, ∴当点S 从E 向F 运动时,∠QOS 变大,∠QOP 1变小, ∴当点S 从E 向F 运动时,P 2Q 变大,P 1Q 变小,∴当点S 在点E 处时,P 2Q 取得最小值,P 1Q 取得最大值,当点S 在点F 处时,P 2Q 取得最大值,P 1Q 取得最小值.如解图⑥,当点S 在点E 处时,过点Q 作QD ⊥OS 于点D ,第28题解图⑥∵∠QOD =∠SOQ ,∠ODQ =∠OQS , ∴△ODQ ∽△OQS , ∴OD OQ =OQ OS =DQ QS. ∵OQ =1,OS =2,∴QS =3,∴OD 1=12=DQ3,∴OD =12,DQ =32,∴P 1D =32,P 2D =12,∴P 1Q =P 1D 2+QD 2=3,P 2Q =P 2D 2+QD 2=1; 如解图⑦,当点S 在点F 处时,过点Q 作QK ⊥OS 于点K , 同理可得,△OKQ ∽△OQS , ∴OK OQ =OQ OS =KQ QS. ∵OQ =1,OS =3,∴QS =22,∴OK 1=13=KQ22,∴OK =13,KQ =223,∴P 1K =43,P 2K =23,∴P 1Q =P 1K 2+QK 2=263,P 2Q =P 2K 2+QK 2=233.∴263≤P 1Q ≤3,1≤P 2Q ≤233,∴当弦PQ 为P 1Q 时,263≤t ≤3; 当弦PQ 为P 2Q 时,1≤t ≤233第28题解图⑦。
2017北京中考真题一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共30 分,每小题2 分)1.下列物品中,通常情况下属于导体的是A.玻璃杯B.陶瓷碗C.铁锅 D.塑料勺2.图1 所示的光现象中,由于光的反射形成的是3.下列措施中,能使蒸发减慢的是A.给湿头发吹热风B.把湿衣服晾在通风向阳处C.把盛有酒精的瓶口盖严D.将玻璃板上的水滴向周围摊开4.下列家用电器中,将电流热效应作为工作原理的是A.电视机B.电热水器C.抽油烟机D.电冰箱5.下列物态变化的实例中,属于液化的是A.初春,积雪消融B.夏天,草叶上形成露珠C.深秋,屋顶的瓦上结了一层霜D.冬天,室外冰冻的衣服变干了6.用大小不同的力先后敲击同一个音叉,比较音叉两次发出的声音,下列说法中正确的是A.响度不同B.音调不同C.音色不同D.频率不同7.水平桌面上竖直放置着平面镜和直立的铅笔,平面镜中呈现铅笔的虚像。
当铅笔与平面镜之间的距离为8cm 时,像的高度为h1,像到平面镜的距离为s1;当铅笔与平面镜之间的距离为4cm 时,像的高度为h2,像到平面镜的距离为s2。
则下列四个选项中,判断正确的是A.s1=s2 B.s1〈s2 C.h1>h2 D.h1=h28.图2 所示的实例中,目的是为了减小摩擦的是9.图3 所示的工具中,在使用时属于费力杠杆的是10.下列选项中符合安全用电要求的是A.用湿手按已接电源的插座上的开关B.及时更换家庭电路中绝缘皮老化、破损的导线C.在未断开电源开关的情况下,用湿布擦拭电视机D.把用电器的三脚插头改为两脚插头接在两孔插座上使用11.下列实例中,用热传递的方式来改变物体内能的是A.用热水袋暖手,手的温度升高B.用锯条锯木板,锯条的温度升高C.两手相互摩擦,手的温度升高D.用手反复弯折铁丝,弯折处铁丝的温度升高12.下列说法中正确的是A.放大镜的镜片是凹透镜B.照相机的镜头是凹透镜C.近视眼镜的镜片是凸透镜D.远视眼镜的镜片是凸透镜13.小玲家有额定电压相同的电烤箱、电饭锅和电视机各一个,按照每度电0.5 元的计费标准,将这三个用电器正常工作 1 小时的用电费用绘制成了如图 4 所示的柱状图.则下列四个选项中,判断正确的是A.在这三个用电器中,电烤箱正常工作时的电压最高B.在这三个用电器中,电视机正常工作时的电压最低C.正常工作时,通过电烤箱的电流大于通过电视机的电流D.在一个月内,小玲家电烤箱的用电费用一定比电饭锅的用电费用多14.图5 所示的电路中,电源两端的电压保持不变,R2 为定值电阻。