(2021年整理)哈工大数字图像处理知识点总结
- 格式:doc
- 大小:5.72 MB
- 文档页数:49
数字图像处理学习总结这个学期学习了数字图像处理这门课程,主要学习了图像的点运算、几何变换、空间域图像增强、频率域图像增强、形态学图像处理、图像分割(边缘检测)、纹理方向等方面的知识。
(1) 图像的点运算。
○1灰度直方图 灰度直方图描述了一幅图像的灰度级统计信息,一般用于图像分割和图像灰度变换等的处理过程中。
从数学角度来说,图像直方图描述图像各个灰度级的统计特征,它是图像灰度级的函数,统计一幅图像中各个灰度级出现的次数或频率。
从图形上来说,灰度直方图是一个二维图,横坐标为图像中各个像素的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或频率。
○2直方图的均衡化 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。
从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉比较协调。
因此将原图像直方图通过T(r)调整为均匀分布的直方图,这样修正后的图像能满足人眼视觉要求。
因为归一化假定()1()()r P s d s p r dr==两边积分得0()()rr s T r p r dr ==⎰上式表明,当变换函数为r 的累积直方图函数时,能达到直方图均衡化的目的。
对于离散的数字图像,用频率来代替概率,则变换函数T (rk)的离散形式可表示为:直方图均衡化的步骤:(1)求原直方图。
()H s [0,255]s ∈ (2)求累加值(原直方图) ()F s (3)将累加值乘以255 (4)变换(,)((,))()I i j F I i j r T r →→○3直方图规定化 直方图规定化增强处理的步骤如下: ①对原始图像作直方图均衡化处理;②按照希望得到的图像的灰度概率密度函数p z(z),求得变换函数G(z); ③用步骤①得到的灰度级s 作逆变换z= G-1(s)。
经过以上处理得到的图像的灰度级将具有规定的概率密度函数p z(z)。
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
1、选择2、填空3、简答题4、计算第一章1、图像:事件或事物的一种表示、写真或临摹,或一个生动的或图形化的描述2.图像处理(选择): 是对图像信息进行加工处理,以满足人的视觉心理和实际应用的需求图像处理方法:光学方法、电子学方法3.模拟图像(物理图像):直接从观测系统(输入系统)获得、未经采样和量化的图像;模拟图像在空间分布和亮度取值上均为连续分布。
连续的:指从时间上和从数值上是不间断的4.数字图像(填空)由连续的模拟图像采样和量化而得。
组成数字图像的基本单位是像素,所以数字图像是像素的集合。
5、数字图像处理基本特点(掌握)信息量大:512×512×8bit=256KB 256KB×25帧/s=6400KB=6.25MB占用的频带较宽:电视图像的带宽5~6MHz,而语言带宽4KHz,频带越宽,技术实现难度越大。
6.处理基本结构图7.图像变换(傅里叶),空间变换的意义(掌握)8.相关领域的联系(名词解释):图像处理与计算机图形学的区别与联系是什么?第二章1.人眼模型,作用,细胞分类和内容瞳孔:透明的角膜后是不透明的虹膜,虹膜中间的圆孔称为瞳孔,其直径可调节,控制进入人眼内之光通量(照相机光圈作用)。
晶状体:瞳孔后是一扁球形弹性透明体,其曲率可调节,以改变焦距,使不同距离的图在视网膜上成象(照相机透镜作用)。
•锥状细胞:明视细胞,在强光下检测亮度和颜色;•杆(柱)状细胞:暗视细胞,在弱光下检测亮度,无色彩感觉。
•其中,每个锥状视细胞连接着一个视神经末梢,故分辨率高,分辨细节、颜色;多个杆状视细胞连接着一个视神经末梢,故分辨率低,仅分辨图的轮廓。
2.人眼成像过程:3.人的视觉模型4.解释人从明亮的地方走向黑暗的地方,眼睛的变化:瞳孔在亮光处缩小,在暗光处放大,人从明亮的地方走向黑暗的地方,瞳孔放大,瞳孔括约肌舒张,原因是在光线强的地方瞳孔缩小以免过多光线进入眼睛伤害视网膜,到了暗的地方瞳孔放大以便使更多的光线射向视网膜从而看清楚东西。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像处理期末总结引言数字图像处理是一门研究利用计算机对图像进行处理和分析的学科,依靠数字图像技术可以对图像进行多种处理和改进,如增强图像质量、去除噪声、进行模式识别等。
本学期我们学习了数字图像处理的基本理论知识和常用算法,并实践了相关实验,以下是我对本学期数字图像处理课程的总结。
一、课程概述数字图像处理课程的目标是让学生了解数字图像的基本概念和处理技术,掌握数字图像处理的常用算法和工具,培养学生分析和解决实际图像处理问题的能力。
本课程分为理论学习和实验实践两部分,理论学习主要包括数字图像的表示和处理原理,常用图像处理方法的原理和算法,实验实践则通过使用Python和相关图像处理库进行实际图像处理。
二、理论学习在理论学习部分,我们首先学习了数字图像的表示方法,了解了数字图像的像素结构和灰度级等基本概念。
接着学习了图像的增强和恢复,常用的图像增强技术包括直方图均衡化、对比度拉伸和空域滤波等。
我们通过实验学习了这些方法的原理和实现,同时也学习了如何评价图像增强的效果。
在图像恢复方面,我们学习了图像去噪和图像复原的方法。
图像去噪包括空域滤波和频域滤波两种方法,我们学习了均值滤波、中值滤波和高斯滤波等常用的滤波器,并实践了相关实验。
图像复原主要涉及退化模型和修复方法的学习,我们学习了线性和非线性滤波方法、逆滤波和最小二乘滤波等图像复原算法。
接着我们学习了图像压缩和编码的原理和方法,了解了JPEG和JPEG2000等常用的图像压缩标准。
我们学习了离散余弦变换(DCT)和小波变换等常用的压缩方法,同时也学习了如何评价图像压缩的质量和效果,例如信噪比和均方差等指标。
最后,我们还学习了图像分割和图像识别的基本理论和方法。
图像分割是将图像分割成若干块区域的过程,常用的分割方法包括阈值分割、区域生长和边缘检测等。
图像识别则是将分割后的图像中的特定对象或模式与预定义的模型进行匹配和识别,我们学习了基于模板匹配和特征提取的图像识别方法,并实践了相关实验。
(完整版)数字图像处理复习整理《数字图像处理》复习第⼀章绪论数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表⽰与描述)、彩⾊图像处理和多光谱及⾼光谱图像处理、形态学图像处理第⼆章数字图像处理基础2-1 电磁波谱与可见光1.电磁波射波的成像⽅法及其应⽤领域:⽆线电波(1m-10km)可以产⽣磁共振成像,在医学诊断中可以产⽣病⼈⾝体的横截⾯图像☆微波(1mm-1m)⽤于雷达成像,在军事和电⼦侦察领域⼗分重要红外线(700nm-1mm)具有全天候的特点,不受天⽓和⽩天晚上的影响,在遥感、军事情报侦察和精确制导中⼴泛应⽤可见光(400nm-700nm)最便于⼈理解和应⽤最⼴泛的成像⽅式,卫星遥感、航空摄影、天⽓观测和预报等国民经济领域☆紫外线(10nm-400nm)具有显微镜⽅法成像等多种成像⽅式,在印刷技术、⼯业检测、激光、⽣物学图像及天⽂观测X射线(1nm-10nm)应⽤于获取病⼈胸部图像和⾎管造影照⽚等医学诊断、电路板缺陷检测等⼯业应⽤和天⽂学星系成像等伽马射线(0.001nm-1nm)主要应⽤于天⽂观测2-2 ⼈眼的亮度视觉特征2.亮度分辨⼒——韦伯⽐△I/I(I—光强△I—光照增量),韦伯⽐⼩意味着亮度值发⽣较⼩变化就能被⼈眼分辨出来,也就是说较⼩的韦伯⽐代表了较好的亮度分辨⼒2-3 图像的表⽰3.⿊⽩图像:是指图像的每个像素只能是⿊或⽩,没有中间的过渡,⼀般⼜称为⼆值图像(⿊⽩图像⼀定是⼆值图像,⼆值图像不⼀定是⿊⽩图像)灰度图像:是指图像中每个像素的信息是⼀个量化了的灰度级的值,没有彩⾊信息。
彩⾊图像:彩⾊图像⼀般是指每个像素的信息由R、G、B三原⾊构成的图像,其中的R、B、G是由不同的灰度级来描述的。
4.灰度级L、位深度k L=2^k5.储存⼀幅M×N的数字图像所需的⽐特 b=M×N×k例如,对于⼀幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit)2-4 空间分辨率和灰度级分辨率6.空间分辨率是图像中可分辨的最⼩细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。
《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。
哈工大数字图像处理知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(哈工大数字图像处理知识点总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为哈工大数字图像处理知识点总结的全部内容。
1。
引言1.1图像的概念图像:是对客观存在的物体的一种相似性的、生动性的模仿或描述,是一种不完全的、不精确的,但在某种意义上是适当的表示。
也是对客观存在的物体的某种属性的描述。
(非所见即所得,对事物不能完全描述)1.2数字图像的起源与应用1.3 数字图像处理的概念●图像的类型:从图像生成角度:物理图像(可见图像(光学图像)、不可见图像(红外)、数学图像等)从照明角度:多光谱图像(特指不可见光谱)和单光谱图像(激光);从人眼视觉特点上:可见图像、不可见图像。
从波段多少分为:单波段(每点只有一亮度值)、多波段(每点不只一特性如红绿蓝光谱图像)和超波段图像。
从图像空间坐标和明暗程度的连续性:模拟图像、数字图像(空间坐标和灰度均不连续,用离散的数字表示).●图像的表现形式●图像的属性:构成数字图像的要素,灰度坐标图像的属性:1。
对比度:灰度差别 0~255(256个灰度级)2. 灰度分辨力:适于人眼3.空间分辨力:越高越好4.放大率对比度与灰度的关系:量化?灰度量化最高、最暗差值尽可能大。
减少灰度级一般会提高图像的对比度。
构成数字图像的要素:地址(坐标)和灰度值●数字图像的处理概念及三种分类:处理\分析\理解操作对象:狭义数字图像处理:图像—-图像图像分析:图像——数据(特征值)图像理解:数据——概念狭义图像处理强调图像之间进行变换,指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析是对图像中感兴趣的目标进行检测的测量,从而建立对图像的描述,是从图像到数值或符号的过程。
经分割和特征提取,把原来以像素构成的图像转变成比较简洁的非图像形式的描述。
图像理解研究图像中各目标的性质和它们之前的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,人而指导和规划行动●数字图像的运算形式:全局、局部、点,串行、并行全局:快速傅立叶变换局部:点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式.并行:对图像内的各同时进行相同形式运算的一种处理形式。
●图像工程中的层次及与相关学科的关系计算机图形学研究是如何利用计算机技术来产生图形、图表、绘图,以来表达数据信息.与图像分析相比,处理对象和输出结果正好相反。
计算机图形学试图从非图像形式的数据描述来生成图像;模式识别把图像抽象成用符号描述的类别。
模式识别与图像分析有相同的输入,而不同的输出结果之间可以较方便的进行转换;计算机视觉用计算机去实现人的视觉功能.●数字图像的获取扫描,采样(空间分辨力),量化(灰度分辨力)采样:将空间上连续的图像变换成点的操作。
采样间隔分为均匀采样量化及非均匀采样量化;采样孔径的形状和大小与采样方式有关。
量化:将像素灰度转换成的整数值的过程,最亮最暗差值尽可能大采样量化的原则:1.细节丰富的图像(观众):高的采样分辨力细采样,粗量化2. 细节少,缓变的图像(人脸):高的灰度分辨力细量化,粗采样2.数字图像处理的基本概念2。
1 BMP文件结构及文件操作程序2。
2 人眼形成的图像●物体的色,减色效应与加色效应消色物体:加色效应黑白灰对照明光线有非选择性吸收的特性,即光线照射到消色物体上时,被吸收的各种波长的入射光是等量的;被反射或透射的光线,其光谱成分也与入射光的光谱成分相同。
有色物体:减色效应。
对照明光线具有选择性吸收的特性,光线照射到有色物体上,入射光中各种波长的色光是不等量被吸收。
白光照射到有色物体上,反射或透射光线不仅亮度有所减弱,光谱成分也改变,呈现各种颜色。
绿物反射绿光,减去绿光,如在暗场对其用蓝光照射,吸收蓝光,黑色当有色光照射到消色物体,物体反射光与入射光颜色相同.两种以上有色光同时照射消色物体,物体颜色呈加色法效应.当有色光照射到有色物体上,物体的颜色呈减色法效应。
如黄色物体在品红光照射下呈红色,在青色光照射下呈绿色,在蓝色光照射下呈现灰色或黑色。
加色效应减色效应●马赫效应与错觉从每一竖条内反射出来的光强是均匀的,相信竖条之间强度差是常数,而看起来每一竖条内右边要比右边稍亮一点。
亮度过冲是眼睛对不同空间频率产生不同视觉响应的结果。
视觉系统对空间高频和空间低频的敏感性较差,对空间中频有较高的敏感性,这冲过问对人眼所见的景物有其轮廓的作用.●连续图像的描述灰度=照度*反射系数用f(x,y)表示静止图像,因为光是能量的一种形式,故0(,)<<∞f x y人眼看到的图像都是由物体反射的光组成。
f(x,y)可被看成是两个分量组成:一分量是所见场景的入射光量,另一分量是场景中被物体反射的光量.i(x,y)表示照射分量,性质由光源确定;r(x,y)表示反射分量,由景物中物体的特性而定。
有(,)(,)(,)=式中f x y i x y r x yr x y<<∞,0(,)1<<,反射分量在全吸收和全反射之间。
i x y0(,)2.3图像数字化●图像的数字化过程:扫描、采样、量化●数字化与图像质量的关系采样间隔越大,所得图像像素数越少,图像空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,图像空间分辨率高,质量好,但数据量大。
量化等级越多,所得图像层次越丰富,灰度分辨率越高,质量越好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,质量变差,会出现假轮廓现象,但数据量小。
极少情况下图像大小固定时,减少灰度级能改善质量,由于会提高图像对比度,如对细节比较丰富的复杂图像。
采样量化的原则:1。
细节丰富的图像(观众):高的采样分辨力细采样,粗量化2. 细节少,缓变的图像(人脸):高的灰度分辨力细量化,粗采样●数字化采样量化方法统一的采样和量化:随着采样分辨率和灰度级提高,主观质量也提高。
对有大量细节的图像,质量对灰度级需求相应降低。
(一般采用均匀采样和均匀量化)非统一的图像采样和量化:在灰度级变化尖锐的区域,用细采样(细量化),在灰度级比较平滑的区域,用粗采样(粗量化)。
避免或减少由于量化的太粗糙,在灰度级变化比较平滑的区域出现假轮廓。
●图像的表示:灰度表面、矩阵●图像的显示2。
4 数字化设备●数字化过程:采样,量化●数字化器的主要参数像素大小:采样孔的大小和相邻两像素的距离是两个重要的性能参数;图像大小:图像的大小由像素数决定.物理参数:数字化器采集和量化的物理参数;线性度:对光强进行数字化时,应当知道灰度正比于图像亮度的实际精确程度。
噪声:系统中固有噪声会使图像的灰度发生变化。
●光传感器1) CCD CID CMOS特点2)CCD相机参数:感光元件大小、放大倍率、解析度、像素数、F数、景深;2.5 光源的种类及照明形式光源的种类:卤素灯;高周波荧光灯;LED灯源;金属灯泡或氖灯;激光光源;氙素灯。
照明形式:前照式(正向光源)(表面反射光);背照式(背向光源)(工件遮光处不透光),侧照式(侧向光源)(轮廓边缘光反射最大)。
2.6 灰度直方图(定义、性质、作用)定义:是灰度级的函数,描述的是具有该灰度级的像素个数(或出现的频次)图像各灰度级在图像中出现的频次(统计角度)性质:1灰度直方图只与像素灰度有关,与位置无关(没有位置信息)2 灰度直方图与图对应关系: 一对多的关系3.灰度图像具有相加性(两区域灰度直方图之和等于图像灰度直方图)作用:1. 判断图像量化是否可理2. 利用阈值实现图像分割(用于确定图像二值化阈值)3。
计算图像对像(目标)大小(当物体部分的灰度值比其他部分灰度值大时,可统计图像中物体的面积)4。
计算图像的熵12logLi ii oH P P-==-∑熵:图像信息量的反映,反映了图像信息丰富的程度。
2.7 图像处理算法形式基本功能形式:按图像处理输出形式1.单幅图像—单幅图像2.多幅图像—单幅图像3.单(或多)幅图像—数字或符号等(图像—统计量或特征量的测量、编码表示特征提取图像—描述图像)基本运算形式:点运算(点处理):输出值仅与输入像素灰度有关的处理,如图像对比度增强、图像二值化.(点对点)局部运算:计算某一输出像素值由输入图像像素小领域中的像素值确定,如移动平均平滑法,空间域锐化.全局运算:输出像素的值取决于输入图像较大范围或整幅图像像素的值。
如傅立叶变换2.8 图像的数据结构(组合式、比特面、分层、树)1.组合方式:最常用的方式,一个像素的灰度按固定的字长表示,数据排列按像素位置排列。
2.比特面方式:图像像素(M*N)灰度以固定字长(nbit),建立n个bit面,每个面有M*N 个位,对于同一个像素,其n位数据分别占据n个比特面该像素的位置。
优点:节省存储空间。
缺点:使数据处理复杂化.位面:最高位信息最重要,为图像轮廓,低位图包含信息细节。
3.分层方式:由原始图像依次构成像素数越来越少的系列图像,就能使图像数据表示具有分层性,其代表就是锥形(金字塔)结构。
4。
树结构:对一幅二值图像的行、列都接连不断二等分,如果被分割部分的图像中全体都变成具有相同的特征时,这一部分不再分割。
可用在特征提取和信息压缩方面。
(多分辨分析,由粗到精)题目:1。
选用1/2英寸的CCD,若以光学放大倍率为1倍时,其真实视野范围是多少?(垂直水平)CCD实际视场=光学放大倍率2. 7mm*7mm的CCD芯片,有1024*1024个像元,将0。
5m 远的物体成像其上,摄像机的物体解析度?(配置35mm焦距镜头)主要放大倍率: 35/500摄像机解析度:512/7 线对/每单位长度物体解析度:主要放大倍率*摄像机解析度 35/500 * 512/7= 512 ep/mm3。
有一幅在灰度背景下的黑白足球图像,直方图数据如下:【0 520 920 490 30 40 5910 24040 6050 80 20 80 440 960 420 0】足球直径为230mm,像素间距代表多少mm?2388035.142303.2735.14*2A r r d mmπ==≈==3。