概率论期末复习
- 格式:doc
- 大小:194.00 KB
- 文档页数:11
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C +C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB I =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P A B P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B =I B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -=U B .()A B B A -⊃UC .()A B B A -⊂UD .()A B B A -=U8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=,P (B )=,P (C )=,则P A B C -=U ()( ).A .B .C .D .17掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
复习试题第一章 概率的计算1、袋中有4个白球,7个黑球,从中任意取一个球.则取出白球的概率为114. 2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,求()AB P = .3 假设()0.4,P A =()0.7P A B = ,若A 与B 互斥,则()________P B =; 4.已知0403().,().,P A P B ==06().P B A ⋃=。
则()P A B -= 0.3 .5、甲、乙两人相约8—12点在预定地点会面。
先到的人等候另一人30分钟后离去,则甲、乙两人能会面的概率为______15646.有两批同类型的产品各有12件和10件,在每一批产品中有一件次品,无意之中将第一批产品中(12件)的一件产品混入了第二批产品中,现在从第二批产品中随机抽取一件,问取出的产品为次品的概率是多少?7.在第一台机器上生产一级品零件的概率是0.4,二在第二台机器上生产一级品零件的概率是0.9.试求在第一台机器上生产两个零件,在第二台机器生产三个零件,所有零件全是一级品的概率?8、商店销售一批空调共10 台,其中有3台次品,但是已经售出两台。
试求从剩下的空调中,任取一台是正品的概率?9、有两批产品:第一批20件,其中有5件特级品:第二批12件,其中有2件特级品,现从第一批中任取2件混入第二批中,再从混合后的第二批中抽取2件.试求所抽2件都是特级品的概率。
第二章 随机变量及其概率分布1、设离散型随机变量X 的分布律为{},(1,2,,)(1)aP X k k N k k ===+ ,则a =__________1N N+ 2. 设随机变量X 的分布率为{}4a P X k ==,(1, 2, 3, 4k =),则常数a =__________.3.随机变量2(,)X N μσ ,随σ增大,概率{}P X μσ-<的值将会 不变 . 5已知离散型随机变量X 的分布律为:(0)0.2,(1)0.3,P X P X ====(2)0.3P X ==,(3)0.1,P X a ==+则a = 0.1 .6、设随机变量X 的分布率为求||1W X =-的分布律和分布函数.第三章 两个随机变量及其联合分布1. 设随机变量X 和Y 相互独立,且都服从(0,1)N ,则{}P X Y ≤=______________________.2已知随机变量X 与Y 相互独立且都服从正态分布1(,)2N μ,如果1{1}2P X Y +≤=,则μ=12.已知01{}P XY ==,求(1)max(,)Z X Y =的分布律.(2)求1X 和2X 的联合分布律;(3)问1X 和2X 是否独立?并说明理由。
《概率论与数理统计》课程综合复习资料一、单选题1.设某人进行射击,每次击中的概率为1/3,今独立重复射击10次,则恰好击中3次的概率为()。
a∙ Φ3Φ7B. ⅛φ3×(∣)7C∙ c ioψ7×(∣)3d∙ ⅛3答案:B2.设X∣, X2, . X〃为来自总体X的一个样本,区为样本均值,EX未知,则总体方差OX的无偏估计量为()。
A.--∑(X∕-X)2“Ti=I1n _ o8. 1 X(X z-X)2 n i=∖1 «0C∙ -∑(X,•一EX)1 〃oD∙ --∑(X i-EX)2〃-答案:A3.设X” X2,…,X〃为来自总体N(〃,/)的一个样本,区为样本均值,已知,记S12=-∑(X z-X)2, 5^=1 X(X z-X)2,则服从自由度为〃-1的f分布统计量是()。
〃一IT n i=∖MT=Sl/3S2 / 4nS) ∕√n答案:D4.设总体X〜/HO),O为未知参数,X1, X2,. -, X“为*的一个样本,0(X1, X2,--,.X n), 0(X1, X2,∙∙∙, X ZJ)为两个统计量,包力为。
的置信度为的置信区间, 则应有()。
A.P{Θ <Θ} = aB.P{Θ<Θ} = ∖-aC.P[Θ<Θ<Θ] = aD.P[Θ<Θ<Θ} = ∖-a答案:D5.某人射击中靶的概率为3/5,如果射击直到中靶为止,则射击次数为3的概率()。
A. ⅛36,设X和Y均服从正态分布X〜N(μ工),Y ~ N(μ32),记P] = P{X <μ-2], p2=P{Y≥μ + 3}f则OoA.对任何实数〃都有p∣ >〃2B.对任何实数〃都有p∣ <〃2C.仅对〃的个别值有Pl =p2D.对任何实数〃都有p∣二〃2答案:D7.设A和B为任意两个事件,且Au3, P(B)>0,则必有()。
A.P(A)<P(A∖B)B.P(A)NP(AIB)C.P(A)>P(A∖B)D.P(A)≤P(A∖B)答案:D8.已知事件48相互独立,P(B) >0,则下列说法不正确的是()。
第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=,P (B )=,则P (B A )=.4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立'5.设P (A )=,P (A B )=,则P (B|A )=.6.设A ,B 为随机事件,且P(A)=,P(B)=,P(B|A)=,则P(A|B)=____ .7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ . &8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; % (2)该件次品是由甲车间生产的概率. 3518(第二章1.设随机变量X~N (2,22),则P {X ≤0}=.(附:Φ(1)=) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=2.设连续型随机变量X 的分布函数为⎩⎨⎧≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe33-_____.。
概率论与数理统计练习题A一、填空题1、已知事件A 与B 相互独立,并且3.0)(,4.0)(==B P A P ,则=)(B A P .2.在书架上任意放上20本不同的书,其中指定的两本书放在首未的概率是 .3.设随机变量X ~),2(2σN ,且{}3.042=<<X P ,则{}=<0X P .4.若二维随机变量(X , Y )的区域{}222|),(R y x y x ≤+上服从均匀分布,则(X ,Y )的密度函数为 。
5.设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则)(2X E = 。
6.设1X ,2X ,…,n X 为总体),0(~2σN X 的一个样本,则2σ 极大似然估计量为 .二、单选题1.已知====)(,8.0)|(,6.0)(,5.0)(B A P A B P B P A P ( ).A 0.5;B 0.6;C 0.7;D 0.8. 2.对于任意两事件A 和B ,)(B A P -=( ).A .)()(B P A P - ; B .)()()(AB P B P A P +-;C .)()(AB P A P -;D .)()()(B A P A P A P -+.3.设有4张卡片分别标以数字1,2,3,4,今任取一张,设事件A 为取到1或2,事件B 为取到1或3,则事件A 与B 是( ).A 互不相容;B 互为对立;C 相互独立;D 互相包含.4.设X 的为随机变量,则=-)32(X E ( ).A )(2X E ;B 3)(4-X E ;C 3)(2+X E ;D 3)(2-XE . 5.设X ,Y 是两个随机变量,则下列命题正确的是( ).A .X ,Y 不相关⇒X ,Y 不相互独立;B . X ,Y 相关⇒X ,Y 相互独立;C .X ,Y 不相关⇒X ,Y 相互独立;D .X ,Y 相互独立⇒X ,Y 不相关6.设1X ,2X ,…,n X 是总体),(2σμN 的样本,2S 是样本方差,则( ).A .)1(~)1(222--n S n χσ; B .)(~)1(222n S n χσ-; C .)1(~)1(22--n t S n σ ;D .)(~)1(22n t S n σ-.三、计算题1.已知40件产品中有3件次品,现从中随机地取出2件,求其中只有1件次品的概率和至少有1件次品的概率.2.在4重伯努力试验中,已知事件A 至少出现一次的概率为0.5,求在一次试验中事件A 出的概率.3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数。
《概率论与数理统计》期末复习材料——教材经典习题(20例)回查训练第一页(共一页)1. 将3只小球随机放入4个杯子中去,求杯子中球的最大个数分别为1、2、3的概率。
2. 一学生连接参加同一课程的两次考试,第一次及格的概率为P ,若第一次及格,则第二次及格的概率也为P :若第一次不及格,则第二次及格的概率为P/2。
(1) 若至少一次及格,则他能通取得某种资格,求他取得该资格的概率。
(2)若已知他第二次已及格求他第一次及格的概率。
3. 有两箱同类零件,第一箱有50个,其中10个一等品有两箱同类零件,第一箱有50个,其中10个一等品,第二箱有30个,其中18个一等品。
现任取一箱,从中任取零件两次,每次取一个,取后不放回。
求: (1)第二次取到的零件是一等品的概率;(2)在第一次取到一等品的条件下,第二次取到一等品的条件概率; (3) 两次取到的都不是一等品的概率。
4.设随机变量X 具有概率密度 fx (x)={8/x ,0<x<4 0, 其他 求随机变量Y=2X+8的概率密度。
5. 设随机变量X 的分布函数为F X(x)={0,x<1;lnx,1<=x<e;1,x>=e; (1)求P{X<2},P{0<X<=3},P{2<X<2.5}; (2)求概率密度fX(x)6. 设二维随机变量(X ,Y)的概率密度为:f(x ,y)=4.8y(2-x)[0≤x ≤1,0≤y ≤x],0[其他],求边缘概率密度。
7. 设二维随机变量(X,Y)的概率密度为f(x,y)={e^(-y), 0<x<y ;0,其他 求边缘概率密度。
8. 设二维随机变量(X,Y )的概率密度为:f(x,y)={cx 2y ,x 2<y<1 ; 0 , 其他 求(1)试确定常数C (2)求边缘概率密度。
9. 设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa+Y=0,试求a 有实根的概率.10. 设系统L 由两个相互独立的子系统L 1与L 2连接而 成,连接的方式分并联,串联(分别如图),设L 1和L 2的寿命(即正常工作的时间)分别为X 和Y ,其概率密度分别为和这里α>0,β>0为已知常数,试分别求出系统L 的寿命Z 的概 率密度f Z (z).11. 设随机变量XY 的概率密度为f(x,y)=be^[-(x+y)],0<x<1,0<y<正无穷,确定常数b ,边缘概率密度fx(x),fy(y) ,求U=max(x,y)12. 将二信息分别编码为A 和B 传送出去,接收站接收时,A 被误收作B 在概率为0.02,而B 被误收作A 在概率为0.01,信息A 与信息B 传送在频繁程度为2:1,若接收站收到在信息是A ,问原发信息是A 在概率是多少?13. 病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8.若浇水则树死去的概率为0.15.有0.9的概率知邻居记得浇水。
《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。
概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。
概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。
概率论和数理统计期末考试复习题库数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21? ,?的两个无偏估计量,若)?()?(21θθD D <,则称1?θ比2?θ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
韩山师范学院数学系概率论精品课程教案 教案编写人:李承耕 1 复习巩固 目的与要求:复习巩固整理基本概念与内容 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 事件的集合表示 原理与要点:注意集合符号的逻辑含义. 代表或者; 代表而且 A 代表不与否定 例:(1)A与B发生,C不发生CAB (2)A,B,C至少两个发生ACBCAB (3)A,B,C恰有两个发生CBABCACAB (4)A,B,C同时发生ABC (5)A,B,C不全发生ABC或者CBA 古典概率 原理与要点:)()()(nAnAP,即特殊样本数量与整体样本数量的比为古典概率 例:掷三颗骰子,求以下事件的概率 最大点数小于等于5 最大点数等于5
解:设},max{32,1XXXY即是三次的最大点数,则
(1)5187.065)5(33YP (2)2804.06465)4()5()5(3333YPYPYP 离散的随即变量分布的计算
原理与方法:分布函数的定义:)()(xXPxF 先计算点概率质量,再计算区间的概率质量。 例: X 0 1 2 3
P 0.2 0.3 0.3 0.2
求 F(1.5)P(1.5韩山师范学院数学系概率论精品课程教案
教案编写人:李承耕 2 解:5.0)5.1()5.1(XPF 5.03.02.0)55.1(XP
切比雪夫不等式的应用:主要是用于计算某些特殊事件的概率的估计值。
22)(1))(()())((XVarXEXPXVarXEXP
例:若2)(,5)(XVarXE求 )2,8(XXP的范围
解:
92)()3)(()3535()28(2XVarXEXP
XXPXXP或或
常见的期望与方差的计算: (1)二项分布(即贝努力分布)),(~pnbX, ,3,2,1,0,)(kqPCkXPknkknn npqXVarnpXE)(,)( (2)泊松分布 )(~PX ,3,2,1,0,!)(kekkXPkn )(,)(XVarXE (3)均匀分布 ),(~baUX 其它01)(bXaabxP 12)()(,2)(2abXVarabXE (4)指数分布,)(~ExpX 韩山师范学院数学系概率论精品课程教案
教案编写人:李承耕 3 其它00)(xe
xPx
21)(,1)(XVarXE
(5)正态分布,),(~2NX xexPx,21)(222)(
2)(,)(XVarXE
例1:若)2.0,6(~bX,)5(~PY 求)523(YXE, )32(YXVar
解;由条件得: 96.08.02.06)(,2.12.06)(npqXVarnpXE
5)(,5)(XVarYE
例2:若其它0)1,0(2)(xxxP求 )53(),62(XVarXE
解:322)()(1010xdxxdxxxpXE 212)()(1021022xdxxdxxpxXE
1813221))(()()(222XEXEXVar
31763226)(2)62(XEXE
211819)(9)3()53(XVarXVarXVar
计算应该注意的要点:一般先算单个因子的期望与方差,再算函数的期望与方差 韩山师范学院数学系概率论精品课程教案 教案编写人:李承耕 4 全概率公式与贝叶斯公式: 原理与方法:全概率公式实际上是一个复杂事件安某种特殊标准进行分类,分成若干特殊子事件,其典型模型为:流水线模型。贝叶斯公式实际上是条件概率按全概率公式的展开形式。 全概率公式: )()()()()()()()()(22111nnniiiBAPBPBAPBPBAPBPBAPBPAP 贝叶斯公式: nkkKiiiiBAPBPBAPBPAPABPABP1)()()()()()()( 例:某工厂有四条流水线生产同一种产品,该四条流水线的产量分别为:15%,20%,30%,35%,又四条流水线的次品率分别为0.05,0.04,0.03,0.02.现在任意抽一件产品,问恰好是次品的概率为多少。 解: 令 A={任意抽取一件为次品} }i{条流水线生产任意抽取一件产品为第iB 则由全概率公式有:
0315.002.035.003.030.004.020.005.015.0)()()()()()()()()(44332211BAPBPBAPBPBAPBPBAPBPAP
问题2: 若抽取一件产品是次品,问是第四条流水线生产的概率是多大 920315.002.035.0)()()()()()()(414444kkKBAPBPBAPBPAPABPABP
一维密度与分布的计算。 计算应该注意的要点:密度函数为点概率质量对应的量,而分布函数刻画的是区间概率质量,点质量累加积分得到区间质量。
例: 若随机变量X的密度函数为:其它0)2,0()(2xAxxP 求(1)A (2))31(xP (3)分布函数)(xF 韩山师范学院数学系概率论精品课程教案
教案编写人:李承耕 5 解:(1)由1)(dxxp得 831383203202AAxAdxAx 则密度函数为其它0)2,0(83)(2xxxP (2) 87383083)()31(2133221231xdxdxxdxxpxP (3)xdttpxXPxF)()()( 当0x时,0)()(xXPxF 当20x时
302081830)()()(xdttdtdttpxXPxFxx
当2x时 183)()()()(20220dttdttpdttpxXPxFx 韩山师范学院数学系概率论精品课程教案
教案编写人:李承耕 6 故分布函数为
21208100)(3xxxxxF当当当
随机变量的独立性与相关性的判断与计算 原理与要点:
(1)若YX,独立,则)()(),(jYPiXPjYiXP 即:
线质线质量点质量
(2)对于协方差
)()()())]())(([(),(YEXEXYEYEYXEXEYXCov
当0),(YXCov时,YX,正相关 当0),(YXCov时,YX,负相关
当0),(YXCov时,YX,不相关 即当相关系数
0),()()(),(),(YXYXCovYVarXVarYXCovYXCorr
YX,不相关。
独立性与相关性的关系:
若YX,独立,则YX,不相关。反之不成立。 这是因为:当YX,独立时,有)()()(YEXEXYE 此时:
故YX,不相关 此时相关系数
0),()()(),(),(YXYXCovYVarXVarYXCovYXCorr
0)()()())]())(([(),(YEXEXYEYEYXEXEYXCov韩山师范学院数学系概率论精品课程教案
教案编写人:李承耕 7 例:若离散的随机变量YX,的二维分布如下: Y
X 1 2
-1 0.2 0.3 1 0.3 0.2
判断YX,是否独立和相关 解:由于5.05.011~X 5.05.021~Y 这里 2.0)2,1(,25.05.05.0)2()1(YXPYPXP而故
)2,1()2()1(YXPYPXP
所以YX,不独立。
(2)2.03.03.02.02121~XY 则03.023.01)3.02(2.01)(XYE
05.015.01)(XE 5.15.025.01)(YE
故0)()()(),(YEXEXYEYXCov 0),()()(),(),(YXYXCovYVarXVarYXCovYXCorr
即YX,不相关 利用标准正态分布表的数据完成相关的概率计算。