武平县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 格式:doc
- 大小:468.50 KB
- 文档页数:15
精选高中模拟试卷第 1 页,共 15 页武平县第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 方程(x2﹣4)2+(y2﹣4)2=0表示的图形是( )
A.两个点B.四个点C.两条直线D.四条直线
2. P是双曲线=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2
的内切圆圆心的横坐标为( )A.aB.bC.cD.a+b﹣c3. 如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面
A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小
值是( )
A.5B.4C.4D.2
4. 以的焦点为顶点,顶点为焦点的椭圆方程为( )
A.B.
C.D.
5. 为了得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象上所有的点( )
A.向左平移个单位长度B.向右平移个单位长度
C.向左平移1个单位长度D.向右平移1个单位长度
6. 曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为( )
A. e2B.2e2C.e2D. e2精选高中模拟试卷第 2 页,共 15 页7. 下列命题中的假命题是( )
A.∀x∈R,2x﹣1>0B.∃x∈R,lgx<1C.∀x∈N+,(x﹣1)2
>0D.∃x∈R,tanx=2
8. 从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有
( )A.120个B.480个C.720个D.840个
9. 下列说法中正确的是( )
A.三点确定一个平面
B.两条直线确定一个平面
C.两两相交的三条直线一定在同一平面内
D.过同一点的三条直线不一定在同一平面内
10.的展开式中,常数项是( )62)21(xx
武清区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是()A.b<a<c B.a<c<b C.a<b<c D.b<c<a2.已知等比数列{a n}的前n项和为S n,若=4,则=()A.3 B.4 C.D.13的六条棱所在的直线中,异面直线共有()111]3.如图所示,在三棱锥P ABCA.2对B.3对C.4对D.6对4.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°5.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°6.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.7. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.8. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A .0B .0或C.或D .0或9. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( ) A .0B.C.D.10.已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是( )A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数11.抛物线y 2=2x 的焦点到直线x﹣y=0的距离是( ) A.B.C.D.12.对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( ) A .(﹣∞,﹣2) B . D .上是减函数,那么b+c ( )A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣二、填空题13.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .15.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.16.已知a=(cosx﹣sinx)dx,则二项式(x2﹣)6展开式中的常数项是.17.已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是.18.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.三、解答题19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD 的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.20.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程; (Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.21.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.22.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明) (注:,其中为数据的平均数)23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是243x ty t=-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.24.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=(1)求证{b n}为等比数列.(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.武清区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵a=0.52=0.25,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c.故选:A.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.2.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D.【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.3.【答案】B【解析】中,则PA与BC、PC与AB、PB与AC都是异面直线,所以共有三对,故选试题分析:三棱锥P ABCB.考点:异面直线的判定.4.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.5.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.6.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.7.【答案】A.【解析】8.【答案】D【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),又f(x+2)=f(x),∴f(x)是周期为2的函数,又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.9.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.10.【答案】D【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),∴f(3)=0,故A正确;对于B:∵函数y=f(x)是以6为周期的偶函数,∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),∴f(﹣6+x)=f(﹣6﹣x),∴y=f(x)图象关于x=﹣6对称,即B正确;对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;对于D:∵当x1,x2∈[0,3]且x1≠x2时,有,∴y=f(x)在区间[0,3]上为增函数,又函数y=f(x)是偶函数,∴y=f(x)在区间[﹣3,0]上为减函数,又函数y=f(x)是以6为周期的函数,∴y=f(x)在区间[﹣9,﹣6]上为减函数,故D错误.综上所述,命题中正确的有A、B、C.故选:D.【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.11.【答案】C【解析】解:抛物线y2=2x的焦点F(,0),由点到直线的距离公式可知:F到直线x﹣y=0的距离d==,故答案选:C.12.【答案】B【解析】解:由f(x)在上是减函数,知f′(x)=3x2+2bx+c≤0,x∈,则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.二、填空题13.【答案】【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4), ∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.14.【答案】 甲 .【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= [(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是= [(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些; 乙的5个数据分布在78~99之间,分布相对分散些,方差大些; 所以甲的成绩相对稳定些. 故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.15.【答案】 ≤a <1或a ≥2 .【解析】解:①当a=1时,f (x )=,当x <1时,f (x )=2x﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x+2)=4(x ﹣)2﹣1,当1<x <时,函数单调递减,当x >时,函数单调递增,故当x=时,f (x )min =f ()=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.16.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.17.【答案】(0,1).【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1).【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.18.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③三、解答题19.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF ∥平面PCD . (2)连接BD .因为AB=AD ,∠BAD=60°.所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD . 因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD=AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面EBF ,所以平面BEF ⊥平面PAD .【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.20.【答案】【解析】 【解析】(Ⅰ)曲线1C 的直角坐标方程是222=+y x ,曲线2C 的普通方程是)21221(1+≤≤+=t y t x …………5分 (Ⅱ)对于曲线1:C 222=+y x ,令1x =,则有1y =±.故当且仅当001112-122t t t t >>⎧⎧⎪⎪⎨⎨+>+<⎪⎪⎩⎩或时,1C ,2C 没有公共点, 解得12t >.……10分21.【答案】【解析】证明:(Ⅰ)在△BCE 中,BC ⊥CF ,BC=AD=,BE=3,∴EC=,∵在△FCE 中,CF 2=EF 2+CE 2,∴EF ⊥CE 由已知条件知,DC ⊥平面EFCB ,∴DC ⊥EF ,又DC 与EC 相交于C ,∴EF ⊥平面DCE 解:(Ⅱ)方法一:过点B 作BH ⊥EF 交FE 的延长线于H ,连接AH . 由平面ABCD ⊥平面BEFC ,平面ABCD ∩平面BEFC=BC , AB ⊥BC ,得AB ⊥平面BEFC ,从而AH ⊥EF . 所以∠AHB 为二面角A ﹣EF ﹣C 的平面角.在Rt△CEF中,因为EF=2,CF=4.EC=∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,∴由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,所以当时,二面角A﹣EF﹣C的大小为60°方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz.设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,设平面AEF的法向量为,由得,,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得.所以当时,二面角A﹣EF﹣C的大小为60°.【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题.22.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人.(Ⅱ)设 “至少有1人体育成绩在”为事件, 记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,. 而事件的结果有7种,它们是:,,,,,,,因此事件的概率. (Ⅲ)a ,b ,c 的值分别是为,,.23.【答案】(1)参数方程为1cos sin x y θθ=+⎧⎨=⎩,3460x y -+=;(2)145.【解析】试题分析:(1)先将曲线C 的极坐标方程转化为直角坐标系下的方程,可得22(1)1x y -+=,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:(1)曲线C 的普通方程为22cos ρρθ=,∴2220x y x +-=,∴22(1)1x y -+=,所以参数方程为1cos sin x y θθ=+⎧⎨=⎩,直线的普通方程为3460x y -+=.(2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为33cos 4sin 65sin()914555d θθθϕ+-+++==≤,所以曲线C 上任意一点到直线的距离的最大值为145.考点:1.极坐标方程;2.参数方程.24.【答案】【解析】(1)证明:设{a n }中首项为a 1,公差为d .∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,∴a22=a1a4.即(a1+d)2=a1(a1+3d),∴d=0或d=a1.当d=0时,a n=a1,b n==,∴=1,∴{b n}为等比数列;当d=a1时,a n=na1,b n==,∴=,∴{b n}为等比数列.综上可知{b n}为等比数列.(2)解:当d=0时,S3==,所以a1=;当d=a1时,S3==,故a1=3=d.【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.。
城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________ 一、选择题1.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.2.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题3.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.0 C.﹣2或0 D.﹣2或24.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=05.有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为()A.15,10,25 B.20,15,15 C.10,10,30 D.10,20,206.求值:=()A.tan 38°B.C.D.﹣7.已知,y满足不等式430,35250,1,x yx yx-+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y=+的最大值为()A.3 B.132C.12 D.158.函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A.2 B.3 C.7 D.99.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0 B.f(x0)<0C .f (x 0)>0D .f (x 0)的符号不确定10.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A .(11,12)B .(12,13)C .(13,14)D .(13,12)11.定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 1112.已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)8二、填空题13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.14.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)15.已知函数f (x )=sinx ﹣cosx,则= .16.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .17.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是.三、解答题19.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.20.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.21.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)22.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;(2)求f (x )在[﹣2,﹣]的最值.23.已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.24.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,已知k sin B=sin A+sin C(k为正常数),a=4c.(1)当k=5时,求cos B;4(2)若△ABC面积为3,B=60°,求k的值.城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.2.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.3.【答案】D【解析】解:由题意:函数f(x)=2sin(ωx+φ),∵f(+x)=f(﹣x),可知函数的对称轴为x==,根据三角函数的性质可知,当x=时,函数取得最大值或者最小值.∴f()=2或﹣2故选D.4.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.5.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.6.【答案】C【解析】解:=tan(49°+11°)=tan60°=,故选:C.【点评】本题主要考查两角和的正切公式的应用,属于基础题.7.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.8.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.9.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.10.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C12.【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得33x =(负舍),即有121113,4223x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.二、填空题13.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和.14.【答案】 真命题【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.15.【答案】.【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.16.【答案】.【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.17.【答案】63【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,所以a1=1,a3=4.设等比数列{a n}的公比为q,则,所以q=2.则.故答案为63.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.18.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题三、解答题19.【答案】【解析】解:(1)如图(2)它可以看成一个长方体截去一个小三棱锥,设长方体体积为V1,小三棱锥的体积为V2,则根据图中所给条件得:V1=6×4×4=96cm3,V2=••2•2•2=cm3,∴V=v1﹣v2=cm3(3)证明:如图,在长方体ABCD﹣A′B′C′D′中,连接AD′,则AD′∥BC′因为E,G分别为AA′,A′D′中点,所以AD′∥EG,从而EG∥BC′,又EG⊂平面EFG,所以BC′∥平面EFG;2016年4月26日20.【答案】【解析】解;(1)由题意可设椭圆的标准方程为,c为半焦距.∵右顶点为D(2,0),左焦点为,∴a=2,,.∴该椭圆的标准方程为.(2)设点P(x0,y0),线段PA的中点M(x,y).由中点坐标公式可得,解得.(*)∵点P是椭圆上的动点,∴.把(*)代入上式可得,可化为.即线段PA的中点M的轨迹方程为一焦点在x轴上的椭圆.(3)①当直线BC的斜率不存在时,可得B(0,﹣1),C(0,1).∴|BC|=2,点A到y轴的距离为1,∴=1;②当直线BC的斜率存在时,设直线BC的方程为y=kx,B(x1,y1),C(﹣x1,﹣y1)(x1<0).联立,化为(1+4k2)x2=4.解得,∴.∴|BC|==2=.又点A到直线BC的距离d=.∴==,∴==,令f(k)=,则.令f′(k)=0,解得.列表如下:又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.而当x→+∞时,f(x)→0,→1.综上可得:当k=时,△ABC的面积取得最大值,即.【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.21.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦=令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤. 综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个22.【答案】【解析】解:(1)∵f (x )=x 3+3ax 2+bx , ∴f'(x )=3x 2+6ax+b ,又∵f (x )在x=﹣1时有极值0, ∴f'(﹣1)=0且f (﹣1)=0, 即3﹣6a+b=0且﹣1+3a ﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x )=3x 2+4x+1,令f'(x )=0得x=﹣或x=﹣1,又∵f (﹣2)=﹣2,f (﹣)=﹣,f (﹣1)=0,f (﹣)=﹣,∴f (x )max =0,f (x )min =﹣2.23.【答案】已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9 (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2,且{b n }为递增数列,若c n =,求证:c 1+c 2+c 3+…+c n <1.【考点】数列的求和;等比数列的通项公式.【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.【分析】(Ⅰ)设数列{a n }的公比为q ,从而可得3(1++)=9,从而解得;(Ⅱ)讨论可知a 2n+3=3•(﹣)2n =3•()2n,从而可得b n =log 2=2n ,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n }的公比为q ,则3(1++)=9,解得,q=1或q=﹣;故a n =3,或a n =3•(﹣)n ﹣3;(Ⅱ)证明:若a n =3,则b n =0,与题意不符;故a 2n+3=3•(﹣)2n =3•()2n,故b n =log 2=2n ,故c n ==﹣,故c 1+c 2+c 3+…+c n =1﹣+﹣+…+﹣=1﹣<1.【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.24.【答案】【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得54b =a +c ,又a =4c ,∴54b =5c ,即b =4c ,由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =18.(2)∵S △ABC =3,B =60°.∴12ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×12=13.∴b =13,∵k sin B =sin A +sin C ,由正弦定理得k =a +c b =513=51313,即k 的值为51313.。
武邑县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1D .﹣12. 如图框内的输出结果是( )A .2401B .2500C .2601D .27043. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .24. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 5. 若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( ) A .¬p 为假命题 B .¬q 为假命题 C .p ∨q 为假命题 D .p ∧q 真命题6. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>7. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111]8. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .29. 在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .510.不等式的解集为( )A .或B .C .或D .11.若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直12.(理)已知tan α=2,则=( )A .B .C .D .二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.阅读右侧程序框图,输出的结果i 的值为 .15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .18.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .三、解答题19.(选做题)已知f (x )=|x+1|+|x ﹣1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a+b|<|4+ab|.20.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数). (1)求函数f (x )的最小值;(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.21.设函数f(x)=|x﹣a|﹣2|x﹣1|.(Ⅰ)当a=3时,解不等式f(x)≥1;(Ⅱ)若f(x)﹣|2x﹣5|≤0对任意的x∈[1,2]恒成立,求实数a的取值范围.22.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.23.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.24.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.武邑县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:由zi=1+i,得,∴z的虚部为﹣1.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B.【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.3.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.4.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.5.【答案】A【解析】解:时,sinx 0=1;∴∃x 0∈R ,sinx 0=1; ∴命题p 是真命题;由x 2+1<0得x 2<﹣1,显然不成立;∴命题q 是假命题;∴¬p 为假命题,¬q 为真命题,p ∨q 为真命题,p ∧q 为假命题; ∴A 正确. 故选A .【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R 满足x 2≥0,命题¬p ,p ∨q ,p ∧q 的真假和命题p ,q 真假的关系.6. 【答案】 C【解析】22212'()x f x x x x-=-+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-2217()24x x -+=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e e e =+->,2222()20g e e e=+-<,所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x xh x x x x==+,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()f x k x<,()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草图可看出(0,2)的时候递减的更快,所以124x x+>7.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.8.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.9.【答案】B【解析】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.10.【答案】A【解析】令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A11.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l ⊥α. 故选:B .12.【答案】D【解析】解:∵tan α=2,∴ ===.故选D .二、填空题13.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2(1)0a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.14.【答案】 7 .【解析】解:模拟执行程序框图,可得 S=1,i=3不满足条件S ≥100,S=8,i=5 不满足条件S ≥100,S=256,i=7满足条件S ≥100,退出循环,输出i 的值为7. 故答案为:7.【点评】本题主要考查了程序框图和算法,正确得到每次循环S ,i 的值是解题的关键,属于基础题.15.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.16.【答案】【解析】解:∵点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.17.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.18.【答案】.【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.三、解答题19.【答案】【解析】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.20.【答案】【解析】解:(1)∵f(x)=e x﹣ax﹣1(a>0),∴f'(x)=e x﹣a,由f'(x)=e x﹣a=0得x=lna,由f'(x)>0得,x>lna,此时函数单调递增,由f'(x)<0得,x<lna,此时函数单调递减,即f(x)在x=lna处取得极小值且为最小值,最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1.(2)若f(x)≥0对任意的x∈R恒成立,等价为f(x)min≥0,由(1)知,f(x)min=a﹣alna﹣1,设g(a)=a﹣alna﹣1,则g'(a)=1﹣lna﹣1=﹣lna,由g'(a)=0得a=1,由g'(x)>0得,0<x<1,此时函数单调递增,由g'(x)<0得,x>1,此时函数单调递减,∴g(a)在a=1处取得最大值,即g(1)=0,因此g(a)≥0的解为a=1,∴a=1.21.【答案】【解析】解:(Ⅰ)f(x)≥1,即|x﹣3|﹣|2x﹣2|≥1x时,3﹣x+2x﹣2≥1,∴x≥0,∴0≤x≤1;1<x<3时,3﹣x﹣2x+2≥1,∴x≤,∴1<x≤;x≥3时,x﹣3﹣2x+2≥1,∴x≤﹣2∴1<x≤,无解,…所以f(x)≥1解集为[0,].…(Ⅱ)当x∈[1,2]时,f(x)﹣|2x﹣5|≤0可化为|x﹣a|≤3,∴a﹣3≤x≤a+3,…∴,…∴﹣1≤a≤4.…22.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.23.【答案】【解析】解:依题意,由M=得|M|=1,故M﹣1=从而由=得═=故A(2,﹣3)为所求.【点评】此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考查学生的计算能力,比较基础.24.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…。
福建省龙岩市武平县第三中学2018-2019学年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若,且恒成立,则的最小值是()A B C D参考答案:B略2. 直线l经过点A(1,2),在y轴上的截距的取值范围是(﹣2,3),则其斜率的取值范围是()A.(﹣1,)B.(﹣1,)∪(1,+∞)C.(﹣∞,﹣1)∪(4,+∞)D.(﹣1,4)参考答案:D【考点】直线的斜率.【分析】设直线方程为y﹣2=k(x﹣1),求出直线在y轴上的截距,利用直线l在y轴上的截距的取值范围是(﹣2,3),即可求出斜率的取值范围.【解答】解:设直线方程为y﹣2=k(x﹣1),令x=0,可得y=2﹣k∵直线l在y轴上的截距的取值范围是(﹣2,3),∴﹣2<2﹣k<3,∴﹣1<k<4.故选:D.3. 椭圆的左右焦点分别为F1,F2,点P在椭圆上,则△PF1F2的周长为()A、20B、18C、16D、14参考答案:B4. 如图,平面中两条直线和相交于点O,对于平面上任意一点M,若、分别是M 到直线和的距离,则称有序非负实数对是点M的“距离坐标”.对于给定的常数,给出下列命题:①若,则“距离坐标”为的点有且仅有1个;②若,且,则“距离坐标”为的点有且仅有2个;③若,则“距离坐标”为的点有且仅有4个.上述命题中,正确命题的个数是A.0B.1C.2D.3参考答案:D略5. 函数的定义域为R的奇函数,当时,恒成立,若,,,则()A. B.C. D.参考答案:D【分析】先构造函数g(x)=xf(x),依题意得g(x)是偶函数,且>0恒成立,结合偶函数的对称性得出g(x)在(0,+∞)上递减,即可比较a,b,c的大小.【详解】设g(x)=xf(x),依题意得g(x)是偶函数,当x∈(﹣∞,0)时,>0,即>0恒成立,故g(x)在x∈(﹣∞,0)单调递增,则g(x)在(0,+∞)上递减,又a=3f(3)=g(3),b=-f(-1)=g(-1)=g(1),c=2f(2)=g(2),故a<c<b.故选:D.【点睛】本题主要考查函数单调性的应用、函数奇偶性的应用、利用导数研究函数的单调性等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.6. 已知集合, 集合, 则()A、B、C、D、参考答案:D略7. 已知,则以下成立的是()A. B. C.D.参考答案:B证明:由柯西不等式,得当且仅当时,上式取等号,于是。
武清区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2a>),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总~100,X N a(0,则此次数学考试成绩在100分到110分之间的人数约为()人数的110(A)400 (B )500 (C)600 (D)8002.函数f(x)=tan(2x+),则()A.函数最小正周期为π,且在(﹣,)是增函数B.函数最小正周期为,且在(﹣,)是减函数C.函数最小正周期为π,且在(,)是减函数D.函数最小正周期为,且在(,)是增函数3.函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是()A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)4.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日5.已知f(x)=x3﹣3x+m,在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是()A.m>2 B.m>4 C.m>6 D.m>86.已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是()A.2 B.C.D.7. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .8. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+ 9. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q10.已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B(x 2,x 22),记圆(x+1)2+y 2=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )A .[0,2]B .[0,3]C .[0,)D .[0,)11.定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .13 12.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )A .1B .2C .3D .4二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .15.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.16.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .17.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .18.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .三、解答题19.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。
武陵区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q2.已知2,0()2,0ax x xf xx x⎧+>=⎨-≤⎩,若不等式(2)()f x f x-≥对一切x R∈恒成立,则a的最大值为()A.716-B.916-C.12-D.14-3.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有()A.34种B.35种C.120种D.140种4.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.5.函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f()的值为()A.B.0 C.D.6. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣17. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.8. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13B .15C .12D .119. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q10.若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 11.函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .12.“1<m <3”是“方程+=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.14.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 . 15.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .16.已知函数f (x )=sinx ﹣cosx,则= .17.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .18由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.三、解答题19.已知f (x )=x 2﹣3ax+2a 2.(1)若实数a=1时,求不等式f (x )≤0的解集; (2)求不等式f (x )<0的解集.20.求下列各式的值(不使用计算器): (1);(2)lg2+lg5﹣log21+log39.21.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.22.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?23.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.24.已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)﹣f(x2).(1)求f(1)的值;(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;(3)在(2)的条件下,若f(5)=﹣1,求f(x)在[3,25]上的最小值.武陵区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l , 显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.2. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 3. 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题4. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个, 所以共有4×6=24个,而在8个点中选3个点的有C 83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.5. 【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f (x )=sin (2x ﹣),故f ()=sin (﹣)=sin=,故选:C .【点评】本题主要考查由函数y=Asin (ωx+θ)的部分图象求函数的解析式,属于中档题.6. 【答案】A【解析】解:y'=2ax ,于是切线的斜率k=y'|x=1=2a ,∵切线与直线2x ﹣y ﹣6=0平行∴有2a=2∴a=1 故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.7. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.8. 【答案】A【解析】解:设点P 到双曲线的右焦点的距离是x ,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.9.【答案】D【解析】解:p:根据指数函数的性质可知,对任意x∈R,总有3x>0成立,即p为真命题,q:“x>2”是“x>4”的必要不充分条件,即q为假命题,则p∧¬q为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础10.【答案】B【解析】考点:圆的方程.1111]11.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D12.【答案】B【解析】解:若方程+=1表示椭圆,则满足,即, 即1<m <3且m ≠2,此时1<m <3成立,即必要性成立,当m=2时,满足1<m <3,但此时方程+=1等价为为圆,不是椭圆,不满足条件.即充分性不成立故“1<m <3”是“方程+=1表示椭圆”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据椭圆的定义和方程是解决本题的关键.二、填空题13.【答案】34-【解析】由题意知3sin 05α-=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4α=-. 14.【答案】 2016 .【解析】解:∵f (x )=f (2﹣x ),∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ). ∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ), 即函数f (x )是周期为2的周期函数,∵方程f (x )=0在[0,1]内只有一个根x=,∴由对称性得,f ()=f ()=0,∴函数f (x )在一个周期[0,2]上有2个零点, 即函数f (x )在每两个整数之间都有一个零点, ∴f (x )=0在区间[0,2016]内根的个数为2016, 故答案为:2016.15.【解析】7sinsin sin cos cos sin12434343πππππππ⎛⎫=+=+⎪⎝⎭26+=,()1762sin cos1773326sin12ααπ--∴=⨯=+, 故答案为17(62)3-.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.16.【答案】.【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.17.【答案】98【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好.18.【答案】 .【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6,代入回归方程,可得a=﹣,所以=x ﹣,当x=8时,y=,估计他的年推销金额为万元.故答案为:.【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.三、解答题19.【答案】【解析】解:(1)当a=1时,依题意得x 2﹣3x+2≤0因式分解为:(x ﹣2)(x ﹣1)≤0, 解得:x ≥1或x ≤2. ∴1≤x ≤2.不等式的解集为{x|1≤x ≤2}.(2)依题意得x 2﹣3ax+2a 2<0∴(x ﹣a )(x ﹣2a )<0… 对应方程(x ﹣a )(x ﹣2a )=0 得x 1=a ,x 2=2a 当a=0时,x ∈∅.当a >0时,a <2a ,∴a <x <2a ; 当a <0时,a >2a ,∴2a <x <a ;综上所述,当a=0时,原不等式的解集为∅; 当a >0时,原不等式的解集为{x|a <x <2a}; 当a <0时,原不等式的解集为{x|2a <x <a};20.【答案】【解析】解:(1)=4+1﹣﹣=1;(2)lg2+lg5﹣log21+log39=1﹣0+2=3.【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.21.【答案】【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.22.【答案】【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,∴0<x≤8时,y=0.15x;x>8时,y=1.2+log5(2x﹣15)∴奖金y关于销售利润x的关系式y=(2)由题意知1.2+log5(2x﹣15)=3.2,解得x=20.所以,小江的销售利润是20万元.【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.23.【答案】【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.24.【答案】【解析】解:(1)令x1=x2>0,代入得f(1)=f(x1)﹣f(x1)=0,故f(1)=0.…(4分)(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,所以f()<0,即f(x1)﹣f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是单调递减函数.…(8分)(3)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[3,25]上的最小值为f(25).由f()=f(x1)﹣f(x2)得,f(5)=f()=f(25)﹣f(5),而f(5)=﹣1,所以f(25)=﹣2.即f(x)在[3,25]上的最小值为﹣2.…(12分)【点评】本题主要考查抽象函数的应用,利用赋值法以及函数单调性的定义是解决本题的关键.。
武江区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=02.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是()A.B.C.D.3.已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A. B.C.2015 D.4.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的个数为()A.1 B.2 C.3 D.45.以的焦点为顶点,顶点为焦点的椭圆方程为()A.B.C.D.6.两个随机变量x,y的取值表为若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()A.x与y是正相关B.当y的估计值为8.3时,x=6C.随机误差e的均值为0D.样本点(3,4.8)的残差为0.657.“x>0”是“>0”成立的()A.充分非必要条件B.必要非充分条件C.非充分非必要条件D.充要条件8. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x xf e e = C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.9. 函数y=的图象大致为( )A .B .C .D .10.已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦11.在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +12.已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .13二、填空题13.已知x ,y 满足条件,则函数z=﹣2x+y 的最大值是 .14.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 15.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.16.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .17.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 18.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.三、解答题19.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α20.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x .(1)求当x >0时f (x )的解析式; (2)画出函数f (x )在R 上的图象; (3)写出它的单调区间.21.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .22.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.23.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.24.(理)设函数f (x )=(x+1)ln (x+1). (1)求f (x )的单调区间;(2)若对所有的x ≥0,均有f (x )≥ax 成立,求实数a 的取值范围.武江区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.2.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.3.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S=…+=,n==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.4.【答案】B【解析】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题5.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.6.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.7.【答案】A【解析】解:当x>0时,x2>0,则>0∴“x>0”是“>0”成立的充分条件;但>0,x2>0,时x>0不一定成立∴“x>0”不是“>0”成立的必要条件;故“x>0”是“>0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p 为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8.【答案】D.【解析】9.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.10.【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .11.【答案】D【解析】解析:本题考查复数的点的表示与复数的乘法运算,21zi i=-+,(1)(2)3z i i i =+-=+,选D . 12.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos <,>=3×1×=,即有|﹣4|===.故选:C .【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.二、填空题13.【答案】 4 .【解析】解:由约束条件作出可行域如图,化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时,直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4. 故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 15.【答案】【解析】【知识点】空间几何体的三视图与直观图 【试题解析】正方体中,BC 中点为E ,CD 中点为F ,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:16.【答案】 0或1 .【解析】解:由A ∪B=A 知B ⊆A ,∴t 2﹣t+1=﹣3①t 2﹣t+4=0,①无解或t 2﹣t+1=0②,②无解或t 2﹣t+1=1,t 2﹣t=0,解得 t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.17.【答案】π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:,π.18.【答案】 ①③④【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p∨q 为真”的充分不必要条件正确,故①正确; ②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P ﹣ABC,顶点P 在底面的射影为O ,则O 为△ABC 的中心,∠PCO 为侧棱与底面所成角 ∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC 中,tan ∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④三、解答题19.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.20.【答案】【解析】解:(1)若x>0,则﹣x<0…(1分)∵当x<0时,f(x)=()x.∴f(﹣x)=()﹣x.∵f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴f(x)=﹣()﹣x=﹣2x.…(4分)(2)∵(x)是定义在R上的奇函数,∴当x=0时,f(x)=0,∴f(x)=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.21.【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)推导出BC AC ⊥,1CC AC ⊥,从而⊥AC 平面11B BCC ,连接11,NA CA ,则N A B ,,1三点共线,推导出MN CN BA CN ⊥⊥,1,由线面垂直的判定定理得⊥CN 平面BNM ;(2)连接1AC 交1CA 于点H ,推导出1BA AH ⊥,1BA HQ ⊥,则AQH ∠是二面角C BA A --1的平面角.由此能求出二面角1B BN C --的余弦值.试题解析:(1)如图,取CE 的中点G ,连接BG FG ,. ∵F 为CD 的中点,∴DE GF //且DE GF 21=. ∵⊥AB 平面ACD ,⊥DE 平面ACD , ∴DE AB //, ∴AB GF //.又DE AB 21=,∴AB GF =. ∴四边形GFAB 为平行四边形,则BG AF //. (4分) ∵⊄AF 平面BCE ,⊂BG 平面BCE , ∴//AF 平面BCE (6分)考点:直线与平面平行和垂直的判定. 22.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d 有最大值时,|z|有最大值,即z 有最值;结合图象可知,当直线2x+y ﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x 2﹣100zx+25z 2﹣400=0,故△=10000z 2﹣4×116×(25z 2﹣400)=0, 故z 2=116,故z=2x+y 的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.23.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 24.【答案】【解析】解:(1)由f'(x)=ln(x+1)+1≥0得,∴f(x)的增区间为,减区间为.(2)令g(x)=(x+1)ln(x+1)﹣ax.“不等式f(x)≥ax在x≥0时恒成立”⇔“g(x)≥g(0)在x≥0时恒成立.”g'(x)=ln(x+1)+1﹣a=0⇒x=e a﹣1﹣1.当x∈(﹣1,e a﹣1﹣1)时,g'(x)<0,g(x)为减函数.当x∈(e a﹣1﹣1,+∞)时,g'(x)>0,g(x)为增函数.“g(x)≥0在x≥0时恒成立”⇔“e a﹣1﹣1≤0”,即e a﹣1≤e0,即a﹣1≤0,即a≤1.故a的取值范围是(﹣∞,1].。
武川县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)2. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-3. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .24. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(5. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣26. 如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A .B .C .D .7. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .218. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>9. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)10.直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .11.设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=212.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a二、填空题13.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .14.某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为升.15.设函数则______;若,,则的大小关系是______.16.在中,角、、所对应的边分别为、、,若,则_________ 17.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是.18.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .三、解答题19.已知x2﹣y2+2xyi=2i,求实数x、y的值.20.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.21.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.22.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.23.设数列的前项和为,且满足,数列满足,且(1)求数列和的通项公式 (2)设,数列的前项和为,求证:(3)设数列满足(),若数列是递增数列,求实数的取值范围。
武隆区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .42. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )3. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-4. 直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ 5. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.6. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .47. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的1,则此次数学考试成绩在100分到110分之间的人数约为()10(A)400 (B )500 (C)600 (D)8008.已知三棱锥A﹣BCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA 上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()A.B.或36+C.36﹣D.或36﹣9.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.已知||=3,||=1,与的夹角为,那么|﹣4|等于()A.2 B.C.D.1311.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}12.已知双曲线的方程为﹣=1,则双曲线的离心率为( ) A. B.C.或D.或二、填空题13.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.16.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .17.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .18.若x ,y满足线性约束条件,则z=2x+4y 的最大值为 .三、解答题19.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.20.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.(Ⅰ)求线段AD的长;(Ⅱ)比较∠ADC和∠ABC的大小.21.已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值.求函数f(x)的解析式.22.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.武隆区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.2. 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成, ∴对应的集合表示为A ∩∁U B . 故选:A .3. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 4. 【答案】D 【解析】考点:球的表面积和体积. 5. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.6.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.7.【答案】A【解析】P(X≤90)=P(X≥110)=110,P(90≤X≤110)=1-15=45,P(100≤X≤110)=25,1000×25=400. 故选A.8.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D9.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D10.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.11.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.12.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.二、填空题13.【答案】.【解析】解:在△ABC 中,∵6a=4b=3c∴b=,c=2a ,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a 表示b ,c 是解决问题的关键,属于基础题.14.【答案】【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.答案:415.【答案】42⎡⎢⎣⎦, 【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.16.【答案】﹣.【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.17.【答案】20【解析】考点:棱台的表面积的求解.18.【答案】38.【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A (3,8),此时z=2×3+4×8=6+32=32, 故答案为:38三、解答题19.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)20.【答案】【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE与∠EBC的大小.在△ADE中,由正弦定理可得,∴sin∠ADE=<=sin30°,∴∠ADE<30°∴∠ADC<∠ABC.【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.21.【答案】【解析】解:(1)f'(x)=3ax2+2bx﹣3,依题意,f'(1)=f'(﹣1)=0,即,解得a=1,b=0.∴f(x)=x3﹣3x.【点评】本题考查了导数和函数极值的问题,属于基础题.22.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.…23.【答案】【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,所以,BB1⊥BC.又因为AB⊥BC且AB∩BB1=B,所以,BC⊥平面A1ABB1.因为BC⊂平面BCE,所以,平面BCE⊥平面A1ABB1.(II)证明:取BC的中点D,连接C1D,FD.因为E,F分别是A1C1,AB的中点,所以,FD∥AC且.因为AC∥A1C1且AC=A1C1,所以,FD∥EC1且FD=EC1.所以,四边形FDC1E是平行四边形.所以,EF∥C1D.又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,所以,EF∥平面B1BCC1.(III)解:因为,AB⊥BC所以,.过点B作BG⊥AC于点G,则.因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1所以,平面A1ACC1⊥底面ABC.所以,BG⊥平面A1ACC1.所以,四棱锥B﹣A1ACC1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.24.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.。
精选高中模拟试卷 第 1 页,共 15 页 武平县第三中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________ 一、选择题 1. 已知集合M={1,4,7},M∪N=M,则集合N不可能是( ) A.∅ B.{1,4} C.M D.{2,7}
2. 函数y=(x2﹣5x+6)的单调减区间为( )
A.(,+∞) B.(3,+∞) C.(﹣∞,) D.(﹣∞,2) 3. 关于函数2()lnfxxx,下列说法错误的是( ) (A)2x是()fx的极小值点 ( B ) 函数()yfxx有且只有1个零点 (C)存在正实数k,使得()fxkx恒成立 (D)对任意两个正实数12,xx,且21xx
,若12()()fxfx,则
12
4xx
4. 若函数y=x2+bx+3在[0,+∞)上是单调函数,则有( ) A.b≥0 B.b≤0 C.b>0 D.b<0
5. 已知正△ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( ) A. B. C. D. 6. 已知直线y=ax+1经过抛物线y2=4x的焦点,则该直线的倾斜角为( ) A.0 B. C. D. 7. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A∪B=( ) A.{5,8} B.{4,5,6,7,8} C.{3,4,5,6,7,8} D.{4,5,6,7,8} 8. 圆心为(1,1)且过原点的圆的方程是( ) A.2=1 B.2=1 C.2=2 D.2=2
9. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )
A.①② B.① C.③④ D.①②③④ 10.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )
A.33% B.49% C.62% D.88% 精选高中模拟试卷 第 2 页,共 15 页 11.已知等比数列{an}的公比为正数,且a4•a8=2a52,a2=1,则a1=( ) A. B.2 C. D.
12.若关于的不等式2043xaxx
的解集为31x或2x,则的取值为( )
A. B.12 C.12 D.2 二、填空题 13.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值
为 .
14.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被
抽到的概率都为,则总体的个数为 .
15.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是 . 16.给出下列命题: (1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题 (2)命题“若x2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件 (4)若命题p:∀x∈R,x2
+4x+5≠0,则¬p:.
其中叙述正确的是 .(填上所有正确命题的序号)
17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数2,0,{,0xxxfxxlnxxa在其定义域上恰有两
个零点,则正实数a的值为______. 18.某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表: x 6 8 10 12 y 2 3 5 6
根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修
费用约为 万元.
三、解答题 19.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为
了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. 精选高中模拟试卷 第 3 页,共 15 页 (1)求n的值; (2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率. (3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
20.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成
一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域. 精选高中模拟试卷
第 4 页,共 15 页 21.已知函数f(x)=cosx(sinx+cosx)﹣. (1)若0<α<,且sinα=,求f(α)的值; (2)求函数f(x)的最小正周期及单调递增区间.
22.如图,点A是单位圆与x轴正半轴的交点,B(﹣,). (I)若∠AOB=α,求cosα+sinα的值; (II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值. 精选高中模拟试卷
第 5 页,共 15 页 23.(本小题满分12分)已知函数f(x)=12x2+x+a,g(x)=ex. (1)记曲线y=g(x)关于直线y=x对称的曲线为y=h(x),且曲线y=h(x)的一条切线方程为mx-y-1=0,求m的值; (2)讨论函数φ(x)=f(x)-g(x)的零点个数,若零点在区间(0,1)上,求a的取值范围.
24.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0. (1)求常数 a,b的值;
(2)求f(x)在[﹣2,﹣]的最值. 精选高中模拟试卷
第 6 页,共 15 页 武平县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题 1. 【答案】D 【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
2. 【答案】B 【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得 x<2,或 x>3, 故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞). 本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间. 结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为 (3,+∞), 故选B.
3. 【答案】 C
【解析】 22212'()xfxxxx,'(2)0f,且当02x时,'()0fx,函数递减,当2x时,'()0fx,
函数递增,因此2x是()fx的极小值点,A正确;()()gxfxx,2
21'()1gxxx
2
2
17()24xx
,
所以当0x时,'()0gx恒成立,即()gx单调递减,又11()210geee,2222()20geee,
所以()gx有零点且只有一个零点,B正确;设2
()2ln()fxxhxxxx,易知当2x时,
222ln21112()xhxxxxxxxx,对任意的正实数k,显然当2xk时,2kx,即()fxkx,
()fxkx,所以()fxkx不成立,C错误;作为选择题这时可得结论,选C,下面对D研究,画出函数草精选高中模拟试卷
第 7 页,共 15 页 图 可看出(0,2)的时候递减的更快,所以124xx
4. 【答案】A
【解析】解:抛物线f(x)=x2
+bx+3开口向上,
以直线x=﹣为对称轴, 若函数y=x2
+bx+3在[0,+∞)上单调递增函数,
则﹣≤0,解得:b≥0, 故选:A. 【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.
5. 【答案】D 【解析】解:∵正△ABC的边长为a,∴正△ABC的高为, 画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度, ∴△A′B′C′的高为=, ∴△A′B′C′的面积S==. 故选D. 【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
6. 【答案】D 【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2
=4x的焦点,可得0=a+1,解得a=﹣1,