2020年高考数学考点最后冲刺测试7
- 格式:doc
- 大小:85.50 KB
- 文档页数:6
目录2020年高考数学(理)终极押题卷(试卷) (2)2020年高考数学(文)终极押题卷(试卷) (8)2020年高考数学(理)终极押题卷(全解全析) (14)2020年高考数学(文)终极押题卷(全解全析) (24)2020年高考数学(理)终极押题卷(试卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =A .2B CD .12.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B =|(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为 A .4B .3C .2D .13.已知命题2000:,10p x x x ∃∈-+≥R ;命题:q 若a b <,则11a b>,则下列为真命题的是 A .p q ∧ B .p q ∧⌝ C .p q ⌝∧D .p q ⌝∧⌝4.下图给出的是2000年至2016年我国实际利用外资情况,以下结论正确的是A .2010年以来我国实际利用外资规模逐年增大B .2000年以来我国实际利用外资规模与年份呈负相关C .2010年我国实际利用外资同比增速最大D .2008年我国实际利用外资同比增速最大5.等差数列{}n a 的首项为1,公差不为0,若2a ,3a ,6a 成等比数列,则数列{}n a 的前6项的和6S 为 A .24-B .3-C .3D .86.已知向量(3,2)a =-v,(,1)b x y =-v 且a v ∥b v ,若,x y 均为正数,则32x y+的最小值是A .24B .8C .83D .537.(x +y )(2x −y )5的展开式中x 3y 3的系数为 A .-80 B .-40C .40D .808.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215πB .320π C .2115π-D .3120π-9.已知函数()f x 的图象如图所示,则函数()f x 的解析式可能是A .()()=44xxf x x -+ B .()()244log x x f x x -=-C .()2()44log||x xf x x -=+D .()12()44log x xf x x -=+ 10.已知函数sin()()xx f x a ωϕπ+=(0,0,)a ωϕπ><<∈R ,在[]3,3-的大致图象如图所示,则aω可取A .2πB .πC .2πD .4π11.如图,平面四边形ABCD 中,1AB AD CD ===,BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为A .3πB.2C .4πD.412.若函数22(31)3,0()ln ,0x m x x f x mx x x x ⎧-++≤=⎨+>⎩恰有三个极值点,则m 的取值范围是 A .11,23⎛⎫-- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .11,3⎛⎫-- ⎪⎝⎭D .11,2⎛⎫--⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
2020高考仿真模拟卷(七)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·湖北荆门四校六月考前模拟)已知集合M ={x |x 2<1|,N ={y |y =log 2x ,x >2},则下列结论正确的是( )A .M ∩N =NB .M ∩(∁R N )=∅C .M ∩N =UD .M ⊆(∁R N )答案 D解析 由题意得M ={x |-1<x <1},N ={y |y >1},因为M ∩N =∅≠N ,所以A 错误;因为∁R N ={y |y ≤1},M ∩(∁R N )={x |-1<x <1}≠∅,所以B 错误;因为M ∩N =∅≠U ,所以C 错误;因为M ={x |-1<x <1},∁R N ={y |y ≤1},M ⊆(∁R N ),所以D 正确.故选D.2.已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( )A .8-6iB .8+6iC .-8+6iD .-8-6i答案 B解析 z 1z 2=6-8i -i=(6-8i)i =8+6i.3.(2019·四川宜宾第三次诊断)设a ,b 是空间两条直线,则“a ,b 不平行”是“a ,b 是异面直线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 由a ,b 是异面直线⇒a ,b 不平行.反之,若直线a ,b 不平行,也可能相交,所以“a ,b 不平行”是“a ,b 是异面直线”的必要不充分条件.故选B.4.设x ,y 满足约束条件⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则下列不等式恒成立的是( )A .x ≥1B .y ≤1C .x -y +2≥0D .x -3y -6≤0答案 C解析 作出约束条件所表示的平面区域,如图中阴影部分所示,易知A (3,-1),B (0,2),C (0,-3).这样易判断x ≥1,y ≤1都不恒成立,可排除A ,B ;又直线x -3y -6=0过点(0,-2),这样x -3y -6≤0不恒成立,可排除D.故选C.5.在△ABC 中,CA ⊥CB ,CA =CB =1,D 为AB 的中点,将向量CD →绕点C 按逆时针方向旋转90°得向量CM→,则向量CM →在向量CA →方向上的投影为( )A .-1B .1C .-12 D .12答案 C解析 如图,以CA ,CB 为x ,y 轴建立平面直角坐标系,则CA→=(1,0),CD →=⎝ ⎛⎭⎪⎫12,12,且CM →=⎝ ⎛⎭⎪⎫-12,12,所以向量CM →在向量CA →方向上的投影为CA →·CM →|CA →|=-12+01=-12.6.(2019·湖南长郡中学考前冲刺)从某企业生产的某种产品中随机抽取10件,测量这些产品的一项质量指标值,其频率分布表如下:A .140B .142C .143D .144答案 D解析 x -=20×0.1+40×0.6+60×0.3=44,所以方差为110×[(20-44)2×1+(40-44)2×6+(60-44)2×3]=144.7.已知(2x -1)4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,则a 2=( ) A .32 B .24 C .12 D .6答案 B解析 因为(2x -1)4=[1+2(x -1)]4=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4,所以a 2=C 24·22=24. 8.意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,数列的通项以及求和由如图所示的框图给出,则最后输出的结果等于( )A .a N +1B .a N +2C .a N +1-1D .a N +2-1答案 D解析 第一次循环:i =1,a 3=2,s =s 3=4;第二次循环:i =2,a 4=3,s =s 4=7;第三次循环:i =3,a 5=5,s =s 5=12;第四次循环:i =4,a 6=8,s =s 6=20;第五次循环:i =5,a 7=13,s =s 7=33;…;第N -1次循环:此时i +2=N +1>N ,退出循环,故输出s =s N ,归纳可得s N =a N +2-1.故选D.9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的图象如图所示,则下列说法正确的是( )A .函数f (x )的周期为πB .函数y =f (x -π)为奇函数C .函数f (x )在⎣⎢⎡⎦⎥⎤-2π3,π6上单调递增D .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫3π4,0对称答案 C解析 观察图象可得,函数的最小值为-2,所以A =2, 又由图象可知函数过点(0,3),⎝ ⎛⎭⎪⎫5π4,-2,即⎩⎨⎧3=2sin φ,-2=2sin ⎝ ⎛⎭⎪⎫ω×5π4+φ,结合12×2πω<5π4<34×2πω和0<φ<π.可得ω=1415,φ=π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫1415x +π3,显然A 错误;对于B ,f (x -π)=2sin ⎣⎢⎡⎦⎥⎤1415(x -π)+π3=2sin ⎝ ⎛⎭⎪⎫1415x -3π5,不是奇函数;对于D ,f ⎝ ⎛⎭⎪⎫3π4=2sin ⎝ ⎛⎭⎪⎫1415×3π4+π3=2sin ⎝ ⎛⎭⎪⎫7π10+π3≠0,故D 错误,由此可知选C.10.已知一个几何体的三视图如图所示,则该几何体的体积为( )A .2B .53C .4D .83答案 D解析 如图,该几何体可由棱长为2的正方体截得,其直观图如图所示,则该几何体的体积V =V ABE -DCF -V F -ADC =12×2×2×2-13×12×2×2×2=83.11. 如图,已知直线l :y =k (x +1)(k >0)与抛物线C :y 2=4x 相交于A ,B 两点,且A ,B 两点在抛物线准线上的投影分别是M ,N ,若|AM |=2|BN |,则k 的值是( )A .13B .23C .223D .2 2答案 C解析 设抛物线C :y 2=4x 的准线为l 1:x =-1. 直线y =k (x +1)(k >0)恒过点P (-1,0), 过点A ,B 分别作AM ⊥l 1于点M ,BN ⊥l 1于点N , 由|AM |=2|BN |,所以点B 为|AP |的中点.连接OB ,则|OB |=12|AF |,所以|OB |=|BF |, 点B 的横坐标为12,所以点B 的坐标为⎝ ⎛⎭⎪⎫12,2.把⎝ ⎛⎭⎪⎫12,2代入直线l :y =k (x +1)(k >0), 解得k =223.12.已知函数f (x )=-8cos π⎝ ⎛⎭⎪⎫12-x ,则函数f (x )在x ∈(0,+∞)上的所有零点之和为( )A .6B .7C .9D .12答案 A解析 设函数h (x )=,则h (x )==的图象关于x =32对称,设函数g (x )=8cosπ⎝ ⎛⎭⎪⎫12-x ,由π⎝ ⎛⎭⎪⎫12-x =k π,k ∈Z ,可得x =12-k ,k ∈Z ,令k =-1 可得x=32,所以函数g (x )=8cosπ⎝ ⎛⎭⎪⎫12-x ,也关于x =32对称,由图可知函数h (x )==的图象与函数g (x )=8cosπ⎝ ⎛⎭⎪⎫12-x 的图象有4个交点,所以函数f (x )=-8cosπ⎝ ⎛⎭⎪⎫12-x 在x ∈(0,+∞)上的所有零点个数为4,所以函数f (x )=-8cosπ⎝ ⎛⎭⎪⎫12-x 在x ∈(0,+∞)上的所有零点之和为4×32=6.二、填空题:本题共4小题,每小题5分,共20分.13.在△ABC 中,若4cos 2A 2-cos2(B +C )=72,则角A =________. 答案 π3解析 ∵A +B +C =π,即B +C =π-A , ∴4cos 2A2-cos2(B +C )=2(1+cos A )-cos2A =-2cos 2A +2cos A +3=72, ∴2cos 2A -2cos A +12=0,∴cos A =12, 又0<A <π,∴A =π3.14.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为b =⎠⎛0π2sin x d x cm 的圆面,中间有边长为a =4π⎠⎛011-x 2d x cm 的正方形孔,油滴是直径0.2 cm 的球,随机向铜钱上滴一滴油,则油滴整体正好落入孔中的概率是________.答案 425π解析 因为直径为b =⎠⎛0π2sin x d x =(-2cos x )| π0=4 cm 的圆中有边长为a =4π⎠⎛011-x 2d x =4π×π4=1 cm 的正方形,由几何概型的概率公式,得“正好落入孔中”的概率为P =S 正方形S 圆=(1-0.2)2π×22=425π. 15.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF ,O 为坐标原点,若S △OMF =16,则双曲线C 的离心率为________.答案 52解析 因为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为16,所以2a =16,a =8, 设F (-c,0),双曲线C 的一条渐近线方程为y =ba x , 可得|MF |=bc a 2+b2=b ,即有|OM |=c 2-b 2=a ,由S △OMF =16,可得12ab =16,所以b =4. 又c =a 2+b 2=64+16=45,所以a =8,b =4,c =45, 所以双曲线C 的离心率为c a =52.16.(2019·贵州凯里一中模拟)已知函数f (x )=e x 在点P (x 1,f (x 1))处的切线为l 1,g (x )=ln x 在点Q (x 2,g (x 2))处的切线为l 2,且l 1与l 2的斜率之积为1,则|PQ |的最小值为________.答案2解析 对f (x ),g (x )分别求导,得到f ′(x )=e x,g ′(x )=1x ,所以kl 1=e x 1,kl 2=1x 2,则e x 1 ·1x2=1,即e x 1 =x 2,x 1=ln x 2,又因为P (x 1,e x 1 ),Q (x 2,ln x 2),所以由两点间距离公式可得|PQ |2=(x 1-x 2)2+(e x 1 -ln x 2)2=2(x 2-ln x 2)2,设h (x )=x -ln x (x >0),则h ′(x )=1-1x ,当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增.所以x =1时,h (x )取极小值,也是最小值,最小值为h (1)=1, 所以|PQ |2的最小值为2,即|PQ |的最小值为 2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知等比数列{a n }的前n 项和为S n .若3S 3=2S 2+S 4,且a 5=32. (1)求数列{a n }的通项公式a n ; (2)设b n =1log 2a n ·log 2a n +2,求数列{b n }的前n 项和T n .解 (1)由3S 3=2S 2+S 4,可得2S 3-2S 2=S 4-S 3. 所以公比q =2,又a 5=32,故a n =2n .4分(2)因为b n =1log 2a n ·log 2a n +2=12⎝⎛⎭⎪⎫1n -1n +2,6分 所以T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n-1n +29分 =12⎝⎛⎭⎪⎫32-1n +1-1n +2=34-12n +2-12n +4.12分18.(2019·安徽马鞍山一模)(本小题满分12分)已知三棱柱ABC -A 1B 1C 1中,∠ACB =90°,A 1B ⊥AC 1,AC =AA 1=4,BC =2.(1)求证:平面A 1ACC 1⊥平面ABC ;(2)若∠A 1AC =60°,在线段AC 上是否存在一点P ,使二面角B -A 1P -C 的平面角的余弦值为34?若存在,确定点P 的位置;若不存在,说明理由.解 (1)证明:∵AC =AA 1,∴四边形AA 1C 1C 为菱形,连接A 1C ,则A 1C ⊥AC 1,又A 1B ⊥AC 1,且A 1C ∩A 1B =A 1,∴AC 1⊥平面A 1CB ,2分则AC 1⊥BC ,又∠ACB =90°,即BC ⊥AC , ∴BC ⊥平面A 1ACC 1,而BC ⊂平面ABC , ∴平面A 1ACC 1⊥平面ABC .4分(2)以C 为坐标原点,分别以CA ,CB 所在直线为x ,y 轴建立如图所示的空间直角坐标系,∵AC =AA 1=4,BC =2,∠A 1AC =60°,∴C (0,0,0),B (0,2,0),A (4,0,0),A 1(2,0,23).设线段AC 上存在一点P ,满足AP →=λAC →(0≤λ≤1),使得二面角B -A 1P -C 的平面角的余弦值为34,则AP →=(-4λ,0,0),BP →=BA →+AP →=(4,-2,0)+(-4λ,0,0)=(4-4λ,-2,0),A 1P →=A 1A →+AP →=(2,0,-23)+(-4λ,0,0)=(2-4λ,0,-23),CA 1→=(2,0,23),6分 设平面BA 1P 的法向量为m =(x 1,y 1,z 1), 由⎩⎨⎧m ·BP →=(4-4λ)x 1-2y 1=0,m ·A 1P →=(2-4λ)x 1-23z 1=0,取x 1=1,得m =⎝⎛⎭⎪⎫1,2-2λ,1-2λ3,8分 又平面A 1PC 的一个法向量为n =(0,1,0), 由|cos 〈m ,n 〉|=|m ·n ||m ||n | =|2-2λ|1+(2-2λ)2+(1-2λ)23×1=34, 解得λ=43或λ=34,因为0≤λ≤1,所以λ=34. 故在线段AC 上存在一点P ,满足AP→=34AC →,使二面角B -A 1P -C 的平面角的余弦值为34.12分19.(2019·山东威海二模)(本小题满分12分)某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),已知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如下表:甲市场n 吨该蔬菜,在甲、乙两市场同时销售,以X (单位:吨)表示下个销售周期两市场的需求量,T (单位:元)表示下个销售周期两市场的销售总利润.(1)当n =19时,求T 与X 的函数解析式,并估计销售利润不少于8900元的概率; (2)以销售利润的期望为决策依据,判断n =17与n =18应选用哪—个. 解 (1)由题意可知,当X ≥19时,T =500×19=9500; 当X <19时,T =500×X -(19-X )×100=600X -1900, 所以T 与X 的函数解析式为T =⎩⎪⎨⎪⎧9500,X ≥19,600X -1900,X <19.3分由题意可知,一个销售周期内甲市场的需求量为8,9,10的概率分别为0.3,0.4,0.3;乙市场的需求量为8,9,10的概率分别为0.2,0.5,0.3.设销售的利润不少于8900元的事件记为A , 当X ≥19时,T =500×19=9500>8900, 当X <19时,600X -1900≥8900, 解得X ≥18,所以P (A )=P (X ≥18). 由题意可知,P (X =16)=0.3×0.2=0.06; P (X =17)=0.3×0.5+0.4×0.2=0.23; 所以P (A )=P (X ≥18)=1-0.06-0.23=0.71. 所以销售利润不少于8900元的概率为0.71.6分 (2)由题意得P (X =16)=0.06, P (X =17)=0.23,P (X =18)=0.4×0.5+0.3×0.3+0.3×0.2=0.35, P (X =19)=0.4×0.3+0.3×0.5=0.27, P (X =20)=0.3×0.3=0.09.8分①当n =17时,E (T )=(500×16-1×100)×0.06+500×17×0.94=8464;10分 ②当n =18时,E (T )=(500×16-2×100)×0.06+(500×17-1×100)×0.23+18×500×0.71=8790.因为8464<8790,所以应选n =18.12分20.(2019·山东聊城二模)(本小题满分12分)已知以椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆E 的方程;(2)直线l :y =kx +m (km ≠0)与椭圆E 交于异于椭圆顶点的A ,B 两点,O 为坐标原点,直线AO 与椭圆E 的另一个交点为C 点,直线l 和直线AO 的斜率之积为1,直线BC 与x 轴交于点M .若直线BC ,AM 的斜率分别为k 1,k 2,试判断k 1+2k 2是否为定值?若是,求出该定值;若不是,说明理由.解(1)由题意得⎩⎪⎨⎪⎧b =c ,a 2=4,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=2.所以椭圆E 的方程为x 24+y 22=1.4分(2)设A (x 1,y 1)(x 1y 1≠0),B (x 2,y 2)(x 2y 2≠0), 则C (-x 1,-y 1),k AO =y 1x 1,因为k AO ·k =1,所以k =x 1y 1,联立⎩⎨⎧x 24+y 22=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2m 2-4=0,所以x 1+x 2=-4km1+2k 2, y 1+y 2=k (x 1+x 2)+2m =2m 1+2k2,6分所以k 1=y 1+y 2x 1+x 2=-12k =-y 12x 1,因为直线BC 的方程为y +y 1=-y 12x 1(x +x 1),令y =0,由y 1≠0,得x =-3x 1,9分 所以M (-3x 1,0),k 2=y 1x 1+3x 1=y 14x 1,所以k 1+2k 2=-y 12x 1+2×y 14x 1=0.所以k 1+2k 2为定值0.12分21.(2019·辽宁沈阳一模)(本小题满分12分)已知函数f (x )=(x -1)2+m ln x ,m ∈R . (1)当m =2时,求函数f (x )的图象在点(1,0)处的切线方程; (2)若函数f (x )有两个极值点x 1,x 2,且x 1<x 2,求f (x 2)x 1的取值范围.解 (1)当m =2时,f (x )=(x -1)2+2ln x , 其导数f ′(x )=2(x -1)+2x ,所以f ′(1)=2,即切线斜率为2,又切点为(1,0), 所以切线的方程为2x -y -2=0.4分 (2)函数f (x )的定义域为(0,+∞),f ′(x )=2(x -1)+m x =2x 2-2x +mx,因为x 1,x 2为函数f (x )的两个极值点,所以x 1,x 2是方程2x 2-2x +m =0的两个不等实根,由根与系数的关系知x 1+x 2=1,x 1x 2=m2,(*)又已知x 1<x 2,所以0<x 1<12<x 2<1,f (x 2)x 1=(x 2-1)2+m ln x 2x 1,将(*)式代入得f (x 2)x 1=(x 2-1)2+2x 2(1-x 2)ln x 21-x 2=1-x 2+2x 2ln x 2,8分令g (t )=1-t +2t ln t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g ′(t )=2ln t +1,令g ′(t )=0,解得t =1e, 当x ∈⎝ ⎛⎭⎪⎫12,1e 时,g ′(t )<0,g (t )在⎝ ⎛⎭⎪⎫12,1e 上单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,1时,g ′(t )>0,g (t )在⎝ ⎛⎭⎪⎫1e ,1上单调递增;所以g (t )min =g ⎝ ⎛⎭⎪⎫1e =1-2e=1-2e e ,因为g (t )<max ⎩⎨⎧⎭⎬⎫g ⎝ ⎛⎭⎪⎫12,g (1),g ⎝ ⎛⎭⎪⎫12=12-ln 2<0=g (1),所以g (t )<0. 所以f (x 2)x 1的取值范围是⎣⎢⎡⎭⎪⎫1-2e e ,0.12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程为ρ=4cos θsin 2θ,直线l 的参数方程为⎩⎨⎧x =t cos α,y =1+t sin α(t 为参数,0≤α<π).(1)求曲线C 的直角坐标方程,并说明曲线C 的形状; (2)若直线l 经过点M (1,0)且与曲线C 交于A ,B 两点,求|AB |. 解 (1)对于曲线C :ρ=4cos θsin 2θ,可化为ρsin θ=4ρcos θρsin θ.把互化公式代入,得y =4xy ,即y 2=4x ,为抛物线.(可验证原点也在曲线上)5分(2)根据已知条件可知直线l 经过两定点(1,0)和(0,1),所以其方程为x +y =1.由⎩⎪⎨⎪⎧y 2=4x ,x +y =1,消去x 并整理得y 2+4y -4=0,7分 令A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=-4,y 1y 2=-4. 所以|AB |=1+1k 2·(y 1+y 2)2-4y 1y 2 =1+1×(-4)2-4×(-4)=8.10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|2x -1|.(1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. 解 (1)由f (x )-f (x +1)≤1可得 |2x -1|-|2x +1|≤1.所以⎩⎨⎧ x ≥12,2x -1-2x -1≤1或⎩⎨⎧-12<x <12,1-2x -2x -1≤1或⎩⎨⎧x ≤-12,1-2x +2x +1≤1,2分于是x ≥12或-14≤x <12,即x ≥-14.4分 所以原不等式的解集为⎣⎢⎡⎭⎪⎫-14,+∞.5分(2)由条件知,不等式|2x -1|+|2x +1|<m 有解,则m >(|2x -1|+|2x +1|)min 即可. 由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +2x +1|=2,8分 当且仅当(1-2x )(2x +1)≥0, 即x ∈⎣⎢⎡⎦⎥⎤-12,12时等号成立,故m >2.所以m的取值范围是(2,+∞).10分。
2020年高三【名校、地市联考】精选仿真模拟卷07数学(理)(本试卷满分150分,考试用时120分钟)第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2020·贵州高三月考(理))已知集合{}23A x x =>,{}2,1,0,1,2,3B =--,则A B =I ( )A .{}1,0,1-B .{}2,2,3-C .{}2,3D .{}32.(2020·山西高三月考(理))已知复数z 满足:(2+i )z =1-i ,其中i 是虚数单位,则z 的共轭复数为( )A .15-35i B .15+35i C .13i -D .13i +3.(2020·福建高三月考(理))若)233131log ,,a b e c e -⎛⎫=== ⎪⎝⎭,则( )A .a b c >>B .c a b >>C .a c b >>D .c b a >>4.(2020·河南高三(理))国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A .12个月的PMI 值不低于50%的频率为13B .12个月的PMI 值的平均值低于50%C .12个月的PMI 值的众数为49.4%D .12个月的PMI 值的中位数为50.3%5.(2020·广东高三月考(理))函数2()3xef x x =-的大致图象是( )A .B .C .D .6.(2020·黑龙江实验中学高三开学考试(理))算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:如果把5根算筹以适当的方式全部放入 下面的表格中,那么可以表示的三位数的个数为( )A . 46B .44C .42D .407.(2020·安徽六安一中高三月考(理))执行如图所示程序框图输出的S 值为( )A .2021B .1921C .215231D .3575068.(2020·四川省泸县第一中学高三月考(理))已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u rA .12AB AD -+u u ur u u u rB .12AB AD -u u ur u u u rC .12AB AD +u u u r u u u rD .12AB AD -u u u r u u u r9.(2020·河南高三月考(理))记等差数列{}n a 的公差为d ,前n 项和为n S .若1040S =,65a =,则( )A .3d =B .1012a =C .20280S =D .14a =-10.(2020·河南高三月考(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .3411.(2020·山西高三开学考试(理))将函数()22sin cos f x x x x =-的图象向左或向右平移()0a a >个单位长度,得到函数()y g x =的图象,若()6g x g x π⎛⎫-= ⎪⎝⎭对任意实数x 成立,则实数a 的最小值为( )A .524π B .4π C .13πD .6π 12.(2020·福建高三(理))已知双曲线22221x y a b-=的右支与抛物线22x py =相交于,A B 两点,记点A 到抛物线焦点的距离为1d ,抛物线的准线到抛物线焦点的距离为2d ,点B 到抛物线焦点的距离为3d ,且123,,d d d 构成等差数列,则双曲线的渐近线方程为( )A .y x =B .y =C .y =D .y x =第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
__________ 姓名:__________ 班级:__________一、选择题1.把函数sin ()y x x R =∈ 的图象上所有点向左平移6π个单位长度,再把所得图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象所表示的函数是 ( )AC2.己知关于x 的不等式22ln 2(1)2x m x mx +-+≤在(0,+∞)上恒成立,则整数m 的最小值为( )A.1B.2C.3D.4第Ⅱ卷3.(2019·大庆三模)若复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=1+i ,则z 1z 2=( )A .iB .-iC .1D .-1 4.已知两随机变量6X Y +=,若()8,0.5X B ,则()E X 和()D Y 分别为( )A. 6和4B. 4和2C. 6和2.4D. 2和45.以下命题:①根据斜二测画法,三角形的直观图是三角形;②有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;③两相邻侧面所成角相等的棱锥是正棱锥;④若两个二面角的半平面互相垂直,则这两个二面角的大小相等或互补.其中正确命题的个数为( ) A. 1 B. 2C. 3D. 46.在ABC ∆中,角A ,B ,C 所对的边a ,b ,c 成等比数列,则角B 的取值范围是( )A. 0,6π⎛⎤ ⎥⎝⎦B. ,62ππ⎡⎫⎪⎢⎣⎭C. 0,3π⎛⎤ ⎥⎝⎦D.,32ππ⎡⎫⎪⎢⎣⎭评卷人 得分二、填空题7.如图所示,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2OM MA =,N 为BC 中点,若=MN xa yb zc ++,则x y z ++=_____________8.若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O为坐标原点),则r =_____. 评卷人 得分三、解答题9.已知函数()2123f x x x =+--,()1g x x x a =++-. (l )求()1f x ≥的解集;(2)若对任意的R t ∈,R s ∈,都有()()g s f t ≥.求a 的取值范围.10.如图所示的几何体中,111ABC A B C -为三棱柱,且1AA ⊥平面ABC ,四边形ABCD 为平行四边形,2AD CD =,60ADC ∠=︒.(1)若1AA AC =,求证:1AC ⊥平面11A B CD ;(2)若2CD =,1AA AC λ=,二面角11C A D C --211C A CD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.无 2.无 3.B 解析:{} B解析 ∵z 1,z 2在复平面内的对应点关于虚轴对称,且z 1=1+i ,∴z 2=-1+i ,∴z 1z 2=1+i-1+i =(1+i )(-1-i )(-1+i )(-1-i )=-2i 2=-i.故选B. 4.B解析:B 【解析】 【分析】利用二项分布的数学期望和方差的计算公式求得()E X 和()D X ;根据方差的性质可得到()()()6D Y D X D X =-=.【详解】由()8,0.5XB 可得:()80.54E X =⨯=,()()80.510.52D X =⨯⨯-=又6X Y +=,则6Y X =-()()()()()2612D Y D X D X D X ∴=-=-==本题正确选项:B【点睛】本题考查二项分布的数学期望和方差的求解、方差性质的应用,属于基础题.5.A解析:A 【解析】 【分析】由斜二测画法规则直接判断①正确;举出反例即可说明命题②、③、④错误; 【详解】对于①,由斜二测画法规则知:三角形的直观图是三角形;故①正确; 对于②,如图符合条件但却不是棱柱;故②错误;对于③,两相邻侧面所成角相等的棱锥不一定是正棱锥,例如把如图所示的正方形折叠成三棱锥不是正棱锥.故③错误;对于④,一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个角的平面角相等或互补错误,如教室中的前墙面和左墙面构成一个直二面角,底板面垂直于左墙面,垂直于前墙面且与底板面相交的面与底板面构成的二面角不一定是直角.故④错误;∴只有命题①正确. 故选A .【点睛】本题考查了命题的真假判断与应用,考查了空间几何体的结构特征,考查了学生的空间想象能力和思维能力,是中档题.6.C解析:C 【解析】 【分析】设公比为q ,得到三角形三边为ba q=,c bq =,利用余弦定理和基本不等式,求得1cos 2B ≥,即可求解,得到答案. 【详解】由题意,在ABC ∆中,角A ,B ,C 所对的边a ,b ,c 成等比数列, 设公比为q ,则0q >,所以ba q=,c bq =, 由余弦定理得22222cos 2b b q b qB b bq q+-=⨯⨯221112q q ⎛⎫=+- ⎪⎝⎭221112122q q ⎛⎫⨯⨯= ⎪ ⎪⎝⎭, 当且仅当1q =时等号成立,又因为B 是ABC ∆的内角,所以03B π<<,所以角B 的取位范围是0,3π⎛⎤⎥⎝⎦,故选:C .【点睛】本题主要考查了余弦定理的应用,以及基本不等式的应用,其中解答中根据题设条件,利用余弦定理和基本不等式,求得1cos 2B ≥是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题7.【解析】 【分析】用表示 ,从而求出,即可求出,从而得出答案 【详解】点在上,且,为的中点 故 故答案为【点睛】本题主要考查了平面向量的线性运算,运用向量的加法法则来求解,属解析:13【解析】 【分析】用,,a b c 表示,ON OM ,从而求出MN ,即可求出,,x y z ,从而得出答案 【详解】,,,OA a OB b OC c ===点M 在OA 上,且2OM MA =,N 为BC 的中点22=33OM OA a ∴=()111222ON OB OC b c =+=+ 112=223MN ON OM b c a ∴-=+-211,,322x y z ∴=-==故21113223x y z ++=-++=故答案为13【点睛】本题主要考查了平面向量的线性运算,运用向量的加法法则来求解,属于基础题8.【解析】试题分析:若直线3x-4y+5=0与圆交于A 、B 两点,O 为坐标原点, 且∠AOB=120°,则圆心(0,0)到直线3x-4y+5=0的距离, 即,解得r=2,考点:直线与圆相交的性质解析:【解析】试题分析:若直线3x-4y+5=0与圆()2220x y rr +=>交于A 、B 两点,O 为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x-4y+5=0的距离1201cos 22d r r ==,12r =,解得r=2, 考点:直线与圆相交的性质三、解答题9.(1)34x x ⎧⎫≥⎨⎬⎩⎭;(2){3x a ≥或}5a ≤-. 【解析】试题分析:(1)首先利用零点讨论法求出在不同范围内的不等式组,进一步解不等式组求出结论,直接根据函数的恒成立问题进一步建立,对任意的t R ∈,s R ∈,都有()()g s f t ≥,可得()()min max g x f x ≥,进一步求出参数的取值范围.试题解析:(1)∵函数()2123f x x x =+--,故()1f x ≥,等价于21231x x +--≥,令210x +=,解得12x =-,令230x -=,解得32x =,则不等式等价于:()1 221321x x x ⎧<-⎪⎨⎪----≥⎩①,或132221(32)1x x x ⎧-≤≤⎪⎨⎪+--≥⎩②,或3 221(23)1x x x ⎧>⎪⎨⎪+--≥⎩③,解①求得x ∈∅,解②求得33 24x ≥≥,解③求得32x >,综上可得,不等式的解集为3{|}4x x ≥.(2)若对任意的t R ∈,s R ∈,都有()()g s f t ≥,可得()()min max g x f x ≥,∵函数()212321234f x x x x x =+--≤+-+=,∴()4max f x =,∵()111g x x x a x x a a =++-≥+-+=+,故()1min g x a =+,∴14a +≥,∴14a +≥或14a +≤-,求得3a ≥或5a ≤-,故所求的a 的范围为{|3a a ≥或5}a ≤-.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 10.(1)见解析(2)4 【解析】 【分析】(1)若AA 1=AC ,根据线面垂直的判定定理即可证明AC 1⊥平面A 1B 1CD ; (2)建立坐标系,根据二面角C ﹣A 1D ﹣C 1的余弦值为24,求出λ的值,根据三棱锥的体积公式进行计算即可.【详解】解:(1)证明:连接1A C 交1AC 于E ,因为1AA AC =,又1AA ⊥平面ABCD ,所以1AA AC ⊥,所以四边形11A ACC 为正方形,所以11A C AC ⊥,在ACD ∆中,2,60AD CD ADC =∠=, 由余弦定理得2222cos60AC AD CD AD CD =+-⋅,所以3AC CD =,所以222AD AC CD =+,所以CD AC ⊥,又1AA CD ⊥, 所以CD ⊥平面11A ACC ,所以1CD AC ⊥,又因为1,CD A C C ⋂= AC 1⊥平面A 1B 1CD ; (2)如图建立直角坐标系,则()()()()112,0,0,0,23,0,0,0,23,0,23,23D A C A λλ()()112,0,23,2,23,23DC DA λλ∴=-=-,设平面11AC D 的法向量为()1111,,n x y z =,由111100n DC n DA ⎧⋅=⎪⎨⋅=⎪⎩即11111202230x z x z ⎧-+=⎪⎨-++=⎪⎩,解得()1111,03,0,1x z y n λ==∴=设平面1A CD 的法向量为()2222,,n x y z =由22100n CD n CA ⎧⋅=⎪⎨⋅=⎪⎩得22220230x z λ=⎧⎪⎨+=⎪⎩解得()22220,,0,,1x y z n λλ==-∴=- 由1212cos 4||3n n n n θλ⋅===⋅得1λ=,所以1,AA AC = 此时12,,CD AA AC === 所以1111112432C A CD D A CC V V --⎛==⨯⨯⨯= ⎝ 【点睛】本题主要考查线面垂直的判断以及三棱锥体积的计算,根据二面角的关系建立坐标系求出λ的值是解决本题的关键.。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知椭圆2222915:x yCa a+=,点P为椭圆C上位于第一象限一点,O为坐标原点,过椭圆左顶点A作直线//l OP,交椭圆于另一点B,若12AB OP=,则直线l的斜率为()A B C D2.如图是为了求出满足321000->n n的最小偶数n,那么在和两个空白框中,可以分别填入()A .1000>A 和1=+n nB .1000>A 和2=+n nC .1000≤A 和1=+n nD .1000≤A 和2=+n n3.甲、乙、丙三明同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是() A .甲B .乙C .丙D .不确定4.甲乙两人各自在300米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是多少().A .13B .1136C .1536 D .165.设i 是虚数单位,x 是实数,若复数1xi+的虚部是2,则x =() A .4B .2C .2-D .4-6.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是()A B .最长棱的棱长为3C .侧面四个三角形都是直角三角形D .侧面四个三角形中有且仅有一个是正三角形7.(2015秋•河池期末)函数f (x )=x 3+x ﹣3的一个零点所在的区间为() A .(0,)B .(,1)C .(1,)D .(,2)8.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =() A .138B .135C .95D .239.已知△ABC 的内角A ,B ,C 满足sin2A +sin(A -B +C)=sin(C -A -B)+12,面积S 满足1≤S≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .6≤abc≤12B .12≤abc≤24C .bc(b +c)>8D .ab(a +b)>1610.设()11f x x =--,关于x 的方程()()210f x k f x +⋅+=⎡⎤⎣⎦,给出下列四个命题,其中假命题的个数是()①存在实数k ,使得方程恰有3个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有6个不同的实根. A .0B .1C .2D .311.已知点G 是ABC ∆的重心,(,)AG AB AC R λμλμ=+∈,若120A ∠=,2AB AC ⋅=-,则AG 的最小值是()A B .2C .23 D .3412.若集合(){},,,|04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,|04,04,,,t u v w t u v w t u v w 且=≤<≤≤<≤∈N ,用()card X 表示集合X 中的元素个数,则()()card card F E +=() A .50B .100C .150D .200二、填空题(本题共4小题,每小题5分,共20分。
最后冲刺【高考预测】 1.数学归纳法 2.数列的极限 3.函数的极限 4.函数的连续性5.数学归纳法在数列中的应用6.数列的极限7.函数的极限8.函数的连续性 易错点 1 数学归纳法1.(2020精选模拟)已知a>0,数列{a n }满足a 1=a,a n+1=a+n a 1,n=1,2,….(Ⅰ)已知数列{a n }极限存在且大于零,求A=nn a ∞→lim (将A 用a 表示);(Ⅱ)设b n =a n -A,n=1,2…,证明:bn+1=-;)(A b A b n n+(Ⅲ)若|bn|≤n21, 对n=1,2…都成立,求a 的取值范围。
【错误解答】 (Ⅰ)由nn a ∞→lim ,存在,且A=nn a ∞→lim (A>0),对a a+1=a+n a 1两边取极限得,A=a+A 1. 解得A=.242+±a a 又A>0, ∴A=.242++a a(Ⅱ)由a n +b n +A,a n+1=a+n a 1得b n+1+A=a+A b n +1. ∴.)(1111A b A b A b A A b A a b n nn n n +-=++-=++-=+即)(1A b A b b n nn +-=+对n=1,2…都成立。
(Ⅲ)∵对n=1,2,…|bn|≤n21,则取n=1时,21||1≤b ,得.21|4(21|2≤++-a a a∴14.21|)4(21|22≤-+∴≤-+a a a a ,解得23≥a 。
【错解分析】第Ⅲ问中以特值代替一般,而且不知{b n }数列的增减性,更不能以b 1取代b n .【正确解答】 (Ⅰ) (Ⅱ)同上。
(Ⅲ)令|b 1|≤21,得.21|)4(21|2≤++-a a a ∴.21|421|2≤-+a a ∴.23,142≥≤-+a a a 解得现证明当23≥a 时,nn b 21||≤对n=1,2,…都成立。
(i)当n=1时结论成立(已验证)。
2020年高考最后压轴卷高三6月最后高考冲刺模拟数学(理)试题一、单选题1.已知集合A={|36},{|27}x x B x x -<<=<<,则()R A B I ð=( ) A .(2,6) B .(2,7)C .(-3,2]D .(-3,2)【答案】C【解析】由题得C B ⋃={x|x ≤2或x ≥7},再求()A C B ⋃⋂得解. 【详解】由题得C B ⋃={x|x ≤2或x ≥7},所以()A C B ⋃⋂= (]3,2-.故选:C 【点睛】本题主要考查集合的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力. 2.已知复数1z 对应复平面上的点(1,1)-,复数2z 满足122z z =-,则22i z +=( ) AB .2C .10D【答案】D【解析】先由题意得到11z i =-+,再由122z z =-求出2z ,根据复数模的计算公式,即可求出结果. 【详解】因为复数1z 对应复平面上的点(1,1)-,所以11z i =-+, 又复数2z 满足122z z =-, 所以212222(1)111(1)(1)i z i z i i i i --+=====+-+--+,因此22i 13z i +=+=故选D 【点睛】本题主要考查复数的模的计算,熟记复数的运算法则以及复数的几何意义即可,属于基础题型.3.已知正项等比数列{}n a 满足31a =, 5a 与432a 的等差中项为12,则1a 的值为( ) A .4 B .2 C .12 D .14【答案】A【解析】设公比为q , Q 31a =, 5a 与432a 的等差中项为12, 211431141{ {1312222a a q q a q a q ==∴⇒=+=⨯,即1a 的值为4,故选A. 4.如图,在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为( )A .e3B .43e- C .33e- D .13e - 【答案】B【解析】根据定积分的应用,得到阴影部分的面积为1=x S e dx ⎰阴影,再由题意得到矩形OABC 的面积,最后由与面积有关的几何概型的概率公式,即可求出结果.【详解】由题意,阴影部分的面积为11=10x xS e dx ee ==-⎰阴影,又矩形OABC 的面积为=3OABC S 矩形,所以在矩形OABC 内随机撒一颗黄豆,则它落在空白部分的概率为4=3OABC OABCS S eP S --=阴影矩形矩形. 故选B 【点睛】本题主要考查与面积有关的几何概型,以及定积分的应用,熟记微积分基本定理以及几何概型的概率计算公式即可,属于常考题型.5.已知命题:,2x p x R x e ∃∈->,命题:q a R +∀∈,且21,log (1)0a a a ≠+>,则( )A .命题p q ∧⌝是真命题B .命题p q ∨⌝是假命题C .命题p q ∨是假命题D .命题p q ∧是真命题【答案】A【解析】先分别判断命题p 与命题q 的真假,进而可得出结果. 【详解】令()x f x e x =+,则易知()x f x e x =+在R 上单调递增, 所以当0x <时,()12x f x e x =+<<,即2x e x <-; 因此命题:,2x p x R x e ∃∈->为真命题; 由0a >得211a +>;所以,当1a >时,2log (1)0a a +>;当01a <<时,2log (1)0a a +<; 因此,命题:q a R +∀∈,且21,log (1)0a a a ≠+>为假命题;所以命题p q ∧⌝是真命题. 故选A 【点睛】本题主要考查简单的逻辑连接词,复合命题真假的判定,熟记判定方法即可,属于常考题型.6.7人乘坐2辆汽车,每辆汽车最多坐4人,则不同的乘车方法有( ) A .35种 B .50种C .60种D .70种【答案】D【解析】根据题意,分2步分析,①先将7人分成2组,1组4人,另1组3人;②将分好的2组全排列,对应2辆汽车,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步分析,①,先将7人分成2组,1组4人,另1组3人,有C 74=35种分组方法, ②,将分好的2组全排列,对应2辆汽车,有A 22=2种情况, 则有35×2=70种不同的乘车方法; 故选:D . 【点睛】排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.7.将函数的图象向右平移个单位长度得到图像,则下列判断错误的是( ) A .函数在区间上单调递增 B .图像关于直线对称C .函数在区间上单调递减D .图像关于点对称【答案】C【解析】由三角函数的图象变换,得到的解析式,再根据三角函数的图象与性质,逐一判定,即可得到答案。
2020年全国高考冲刺压轴卷(样卷)数学(理科)注意事项:1.本卷满分150分,考试时间120分钟。
答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|2x>6},B={x|2x<32},则A∩B=A.(3,4)B.(4,5)C.(3,+∞)D.(3,5)2.复数2iii--(i为虚数单位)在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.“2a>8”是“a2>9”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知某几何体的三视图如图所示,若该几何体的体积为3π+6,则x等于A.4B.5C.6D.75.若函数f(x)=sin(2x +φ)(-2π<φ<2π)的图象关于点(3π,0)对称,则f(6π)的值是 A.-12 B.32 C.-32 D.126.已知a =10,a ·b =510,且(b -a)·(b +a)=15,则向量a 在b 方向上的投影为 A.12B.2C.5D.10 7.执行如图所示的程序框图,则输出的结果为A.2B.3C.4D.58.从0,1,2,3,4,5这6个数字中,任取3个组成一个无重复数字的三位数,则这样的三位数中偶数个数与奇数个数的比值为A.1B.32C.1312D.27239.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =l ,c 3,且2sin(B +C)cosC =1-2cosAsinC ,则△ABC 的面积是A.3B.12C.3或3D.14或1210.设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别是F 1,F 2,过F 1的直线交双曲线C 的左支于M ,N 两点,若MF 2=F 1F 2,且2MF 1=NF 1,则双曲线C 的离心率是A.53B.32C.2D.5411.已知以正方体所有面的中心为顶点的多面体的各个顶点都在球O 的球面上,且球O 的表面积为20π,则该正方体的棱长为A.5B.25C.26D.612.设函数f(x)的定义域为R ,f'(x)是其导函数,若3f(x)+f'(x)>0,f(0)=1,则不等式f(x)>e -3x 的解集是 A.(0,+∞) B.(1,+∞) C.(-∞,0) D.(0,1)二、填空题:本题共4小题,每小题5分,共20分。
数学I注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{1,2,3}A =-,{|23}B x x =-<<,则A B =I __________.【答案】{}12-,【解析】因为集合{}1,2,3A =-,{}23B x x =-<<,所以由交集的定义可得{}12A B ⋂=-,, 故答案为{}12-,2.已知复数z 满足13iz i =+(i 为虚数单位),则复数z =__________. 【答案】3i + 【解析】22133331i i i i z i i i ++-+====--3z i ∴=+.故答案为:3i +3.下图是一个算法流程图,则输出S 的值是_______.【答案】25 【解析】S 的初值为0,n 的初值为1,满足进行循环的条件,经过第一次循环得到的结果为S =1,n =3,满足进行循环的条件, 经过第二次循环得到的结果为S =4,n =5,满足进行循环的条件, 经过第三次循环得到的结果为S =9,n =7,满足进行循环的条件, 经过第四次循环得到的结果为S =16,n =9,满足进行循环的条件, 经过第五次循环得到的结果为S =25,n =11,不满足进行循环的条件, 退出循环,故输出的S 值为25 故答案为:25 4.函数()()ln 12f x x x=+-的定义域为_________________________ 【答案】(-1,2) . 【解析】由1020x x +⎧⎨-⎩>>,解得﹣1<x <2.∴函数f (x )2x-+ln (x+1)的定义域为(﹣1,2).故答案为:(﹣1,2).5.已知一组数据7、9、8、11、10、9,那么这组数据的平均数为__________. 【答案】9 【解析】由题意可知,数据7、9、8、11、10、9的平均数为7981110996+++++=.故答案为:9.6.从2名男同学和1名女同学中任选2名同学参加社区服务,则选中的2人恰好是1名男同学和1名女同学的概率是__________. 【答案】23【解析】将2名男同学分别记为,x y ,1名女同学分别记为a .所有可能情况有:{},x y ,{},x a ,{},y a ,共3种.合题意的有{},x a ,{},y a ,2种.所以23p =. 故答案为:237.已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .【答案】223144x y -=【解析】 由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为223144x y -=.8.记n S 为等差数列{}n a 的前n 项和,若11a =,73673S S -=,则5a =__________. 【答案】13 【解析】设2n S an bn =+,则nS an b n=+,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,设其公差是d ,其中111,1a S == 由73673S S -=知,346,2d d == 所以()33111222n n n n S =+-⨯=-553157,35522S S =⨯-==,4431114,224222S S =⨯-== 554352213a S S =-=-= 故答案为:139.已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且2AB BC ==,2AC =,若该三棱锥体积的最大值为43,则这个球的表面积为__________. 【答案】28916π【解析】设ABC V 的外接圆的半径为r , 因为2AB BC ==,2AC =,所以222AB BC AC +=,AB BC ⊥.112ABC S AB BC =⨯⨯=V .设D 到平面ABC 的距离为h , 因为三棱锥体积的最大值为43,即max max 14133V h =⨯⨯= 所以max 4h =.设球体的半径为R ,则222(4)1R R -+=,解得178R =. 221728944()816S R πππ==⨯=.故答案为:28916π10.若函数f (x )=﹣x ﹣cos2x+m (sinx ﹣cosx )在(﹣∞,+∞)上单调递减,则m 的取值范围是____________. 【答案】[,]【解析】函数f (x )=﹣x ﹣cos2x +m (sin x ﹣cos x ),则f ′(x )=﹣+sin2x +m (sin x +cos x ),令sin x +cos x =t ,()则sin2x =t 2﹣1那么y =+ m t -1,因为f (x )在(﹣∞,+∞)上单调递减,则h (t )=+ m t -1≤0在t ∈[,]恒成立.可得,即解得:,故答案为:[,].11.若函数()21x f x e mx =-+的图象为曲线C ,若曲线C 存在与直线1ey x =平行的切线,则实数m 的取值范围为__________. 【答案】1,e ⎛⎫-+∞⎪⎝⎭【解析】()2x f x e m '=-,若曲线C 存在与直线1y x e=平行的切线, 即12xe m e -=有解,所以12xm e e =-,因为0x e >,所以1,m e ⎛⎫∈-+∞ ⎪⎝⎭. 故答案为:1,e⎛⎫-+∞ ⎪⎝⎭.12.已知1AB AC ==u u u r u u u r ,AB u u u r 与AC u u u r 所成角为60︒,点P 满足1AP AC -≤u u u r u u u r ,若AP xAB y AC =+u u u r u u u r u u u r ,则x y+的最大值为______. 【答案】231+ 【解析】由题,如图建系,()0,0A ,()10B ,,13,22C ⎛⎫ ⎪ ⎪⎝⎭,则()1,0AB =u u ur ,13,22AC ⎛⎫= ⎪ ⎪⎝⎭u u u r ,因为1AP AC CP -=≤u u u r u u u r u u u r,则点P 在以点C 为圆心,半径为1的圆内(包括边界),则设1cos sin 2P θθ⎛⎫++ ⎪⎪⎝⎭, 因为AP xAB y AC =+u u u r u u u r u u u r ,所以11cos 22sin x y y θθ⎧+=+⎪⎪=,所以()cos 1133x y θθθϕ+=++=++, 因为R θ∈,所以()max sin 1θϕ+=, 所以x y +的最大值为1+, 故答案为:1+13.若(,)612ππθ∈-,且212sin 25θθ+=-,则tan(2)12πθ+=__________.【答案】17【解析】212sin 1cos212sin 2?65πθθθθθ⎛⎫+=-=+-=- ⎪⎝⎭,3sin 2?65πθ⎛⎫∴-=- ⎪⎝⎭.又θ2θ061262ππππ-∴--,,,,òò4cos 2θ65π∴-=,3tan 2θ64π-=-, tan 2tan 2θ1264πππθ⎛⎫⎡⎤∴+=-+ ⎪⎢⎥⎝⎭⎣⎦=314314+---()()=17,故答案为17.14.函数()f x 是定义在R 上的奇函数,且满足(1)(1)f x f x +=-+.当01x <≤时,2020()log f x x =-,则1()(2019)(2020)2020f f f ++=__________. 【答案】1 【解析】因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,且(0)0f =.又因为(1)(1)f x f x +=-+,所以(2)()f x f x +=-,所以(2)()f x f x +=-, 可得(4)()f x f x +=,所以奇函数()f x 的周期为4, 所以202011()(2019)(2020)log (1)(0)20202020f f f f f ++=-+-+ 20201(1)(0)1log 101f f =-+=++=.故答案为:1.二、解答题(本大题共6小题,计90分.解析应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内)15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知2sin sin 3b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若2a =,3c =,求()sin A C -的值. 【答案】(1)3π (2)53【解析】(1)2sin sin 3b A a B π⎛⎫=-⎪⎝⎭Q ,∴由正弦定理得:2sin sin sin sin 3A B A B π⎛⎫=- ⎪⎝⎭, ()0,A π∈Q ,sin 0A ∴≠,2sin sin 3B B π⎛⎫∴=- ⎪⎝⎭, 31sin sin 2B B B ∴=+,即31cos sin 22B B =,tan 3B ∴=, ()0,B π∈Q ,3B π∴=.(2)由余弦定理得:2222cos 4912cos73b ac ac B π=+-=+-=,7b ∴=,由正弦定理得:sin 21sin a B A b ==a c<Q ,A ∴为锐角,7cos 7A ∴=,43sin 22sin cos 7A A A ∴==,21cos 22cos 17A A =-=.A B C π++=Q ,233C A A πππ∴=--=-, ()222sin sin 2sin 2cos cos 2sin 333A C A A A πππ⎛⎫∴-=-=- ⎪⎝⎭431135327⎛⎫=⨯--⨯=- ⎪⎝⎭. 16.在三棱柱111ABC A B C -中,CA CB =,1AB BB =,且160ABB ∠=︒,D 为AC 的中点.(1)求证:1//B C 平面1A BD ; (2)求证:1AB B C ⊥.【答案】(1)证明见解析(2)证明见解析 【解析】(1)连接1AB ,交1AB 于点E ,连接DE .在三棱柱111ABC A B C -中,四边形11ABB A 是平行四边形, 因为11AB A B E =I ,所以E 是1AB 的中点,所以1//DE B C . 又DE ⊂面1A BD ,面1B C ⊄面1A BD . 所以1//B C 平面1A BD .(2)取AB 的中点Q ,连接QC 、1QB .囚为1AB BB =,160ABB ∠=︒.所以1ABB △是正三角形,11BB B A =. 因为Q 是AB 的中点,所以1AB B Q ⊥.因为CA CB =,Q 是AB 的中点,所以AB CQ ⊥. 又1B Q CQ Q =I ,1B Q ,CQ ⊂面1CQB , 所以AB ⊥面1CQB . 因为1B C ⊂面1CQB , 所以1AB B C ⊥.17.如图,曲线C 由左半椭圆()2222:10,0,0x y M a b x a b+=>>≤和圆()22:25N x y -+=在y 轴右侧的部分连接而成,A ,B 是M 与N 的公共点,点P ,Q (均异于点A ,B )分别是M ,N 上的动点. (Ⅰ)若PQ 的最大值为45+,求半椭圆M 的方程;(Ⅱ)若直线PQ 过点A ,且0AQ AP +=u u u v u u u v v ,BP BQ ⊥u u u v u u u v,求半椭圆M 的离心率.【答案】(Ⅰ)()22104x y x +=≤;(Ⅱ)104. 【解析】(Ⅰ)由已知得:当P 为半椭圆与x 轴的左交点,Q 为圆与x 轴的右交点时,PQ 会取得最大值,即5245a +=+解得2a =,由图像可得()0,1A ,即1b =,故半椭圆M 的方程为()22104x y x +=≤. (Ⅱ)设直线PQ 方程为1y kx =+,(),P P P x y ,(),Q Q Q x y ,联立()22125y kx x y =+⎧⎪⎨-+=⎪⎩得()()221240k x k x ++-=,故2421A Q k x x k -+=+,2421Q k x k -∴=+,22411Q k k y k -++=+,又0AQ AP u u u v u u u v v +=, 且(),1Q Q AQ x y =-u u u v ,(),1P P AP x y =-u u u v ,故02Q P QP x x y y +=⎧⎨+=⎩,2241P k x k -∴=+,223411P k k y k -+=+, 又BP BQ ⊥u u u v u u u v,且(),1Q Q BQ x y =+u u u v ,(),1P P BP x y u u u v =+,()()()()()()()()()222222224134124112111612011P Q P Q k k k k k x x y y kk kk-++-+--+++=+++=+-=++,解得34k =,故81,55P ⎛⎫-- ⎪⎝⎭,代入2221x y a +=解得283a =,故22101b e a =-=. 18.为建设美丽新农村,某村对本村布局重新进行了规划,其平面规划图如图所示,其中平行四边形ABCD 区域为生活区,AC 为横穿村庄的一条道路,ADE V 区域为休闲公园,200BC m =,60ACB AED ∠=∠=︒,ABC V 的外接圆直径为20057m .(1)求道路AC 的长;(2)该村准备沿休闲公园的边界修建栅栏,以防村中的家畜破坏公园中的绿化,试求栅栏总长的最大值. 【答案】(1)500m ;(2)600m . 【解析】(1)解:设三角形的外接圆半径为R ,由正弦定理可知,2sin ABR ACB=∠,即20057sin 60100193m AB ⨯︒==,由余弦定理知,2222cos AB CA CB CA CB ACB =+-⋅⋅∠,则22001500000AC AC --=,解得,500AC m =.(2)解:由题意知,200AD BC m ==,在AED V 中,设周长为l ,其外接圆半径为R ', 则20040032sin sin 60AD R E '===︒,则40032sin ED R EAD EAD '=∠=∠ ,2sin EA R EDA EDA '=∠=∠,则l EA ED AD =++()()sin sin 200sin sin 12020033EAD EDA EAD EAD =∠+∠+=∠+︒-∠+⎡⎤⎣⎦()3sin 200400sin 302002EAD EAD EAD ⎫=∠+∠+=∠+︒+⎪⎝⎭, 则当30EAD =∠°时,周长最大,为600m . 19.已知函数()ln f x x x =.(1)若函数2()'()(2)(0)g x f x ax a x a =+-+>,试研究函数()g x 的极值情况;(2)记函数()()x x F x f x e =-在区间(1,2)内的零点为0x ,记()min (),x x m x f x e ⎧⎫=⎨⎬⎩⎭,若()()m x n n R =∈在区间(1,)+∞内有两个不等实根1212,()x x x x <,证明:1202x x x +>. 【答案】(1)见解析;(2)见解析. 【解析】(1)由题意,得()'ln 1f x x =+, 故()()22ln 1g x ax a x x =-+++,故()()()()2111'22x ax g x ax a x x--=-++=, 0,0x a >>.令()'0g x =,得1211,2x x a == ①当02a <<时,112a >,()1'002g x x >⇐<<或1x a>;()11'02g x x a<⇐<<,所以()g x 在12x =处取极大值1ln224a g ⎛⎫=-- ⎪⎝⎭,在1x a =处取极小值11ln g a a a ⎛⎫=-- ⎪⎝⎭.②当2a =时,112a =,()'0g x ≥恒成立,所以不存在极值; ③当2a >时,112a <,()1'00g x x a >⇐<<或12x >;()11'02g x x a <⇐<<,所以()g x 在1x a =处取极大值11ln g a a a ⎛⎫=-- ⎪⎝⎭,在12x =处取极小值1ln224a g ⎛⎫=-- ⎪⎝⎭.综上,当02a <<时,()g x 在12x =处取极大值ln24a --,在1x a =处取极小值1ln a a --;当2a =时,不存在极值;2a >时,()g x 在1x a =处取极大值1ln a a --,在12x =处取极小值ln24a--.(2)()ln x xF x x x e =-,定义域为()0,x ∈+∞,()1'1ln x x F x x e-=++,而()1,2x ∈,故()'0F x >,即()F x 在区间()1,2内单调递增 又()110F e =-<,()2222ln20F e=->, 且()F x 在区间()1,2内的图象连续不断,故根据零点存在性定理,有()F x 在区间()1,2内有且仅有唯一零点. 所以存在()01,2x ∈,使得()()0000x x F x f x e=-=, 且当01x x <<时,()x x f x e<; 当0x x >时,()x x f x e>, 所以()00,1,xxlnx x x m x xx x e <≤⎧⎪=⎨>⎪⎩ 当01x x <<时,()ln m x x x =,由()'1ln 0m x x =+>得()m x 单调递增; 当当0x x >时,()x x m x e=, 由()1'0x xm x e-=<得()m x 单调递减; 若()m x n =在区间()1,+∞内有两个不等实根12,x x (12x x <) 则()()10201,,,x x x x ∈∈+∞.要证1202x x x +>,即证2012x x x >-又0102x x x ->,而()m x 在区间()0,x +∞内单调递减, 故可证()()2012m x m x x <-, 又由()()12m x m x =, 即证()()1012m x m x x <-,即01011122ln x x x x x x e --<记()00022ln ,1x x x xh x x x x x e --=-<<,其中()00h x =记()t t t e φ=,则()1't tt eφ-=,当()0,1t ∈时,()'0t φ>; 当()1,t ∈+∞时,()'0t φ<, 故()max 1t eφ=而()0t φ>,故()10t eφ<<, 而021x x ->,所以002210x x x x e e---<-<, 因此()00022211'1ln 10x x x x x x h x x e e e---=++->->,即()h x 单调递增,故当01x x <<时,()()00h x h x <=, 即01011122ln x x x x x x e --<,故1202x x x +>,得证.20.已知由n (n ∈N *)个正整数构成的集合A ={a 1,a 2,…,a n }(a 1<a 2<…<a n ,n ≥3),记S A =a 1+a 2+…+a n ,对于任意不大于S A 的正整数m ,均存在集合A 的一个子集,使得该子集的所有元素之和等于m . (1)求a 1,a 2的值;(2)求证:“a 1,a 2,…,a n 成等差数列”的充要条件是“()12A n n S +=”;(3)若S A =2020,求n 的最小值,并指出n 取最小值时a n 的最大值.【答案】(1)a 1=1,a 2=2;(2)证明见解析;(3)n 最小值为11,a n 的最大值1010 【解析】(1)由条件知1≤S A ,必有1∈A ,又a 1<a 2<…<a n 均为整数,a 1=1, 2≤S A ,由S A 的定义及a 1<a 2<…<a n 均为整数,必有2∈A ,a 2=2; (2)证明:必要性:由“a 1,a 2,…,a n 成等差数列”及a 1=1,a 2=2, 得a i =i (i =1,2,…,n )此时A ={1,2,3,…,n }满足题目要求, 从而()112312A S n n n =++++=+L ; 充分性:由条件知a 1<a 2<…<a n ,且均为正整数,可得a i ≥i (i =1,2,3,…,n ), 故()112312A S n n n ≥++++=+L ,当且仅当a i =i (i =1,2,3,…,n )时,上式等号成立. 于是当()112A S n n =+时,a i =i (i =1,2,3,…,n ),从而a 1,a 2,…,a n 成等差数列. 所以“a 1,a 2,…,a n 成等差数列”的充要条件是“()112A S n n =+”;(Ⅲ)由于含有n 个元素的非空子集个数有2n -1,故当n =10时,210﹣1=1023, 此时A 的非空子集的元素之和最多表示1023个不同的整数m ,不符合要求.而用11个元素的集合A ={1,2,4,8,16,32,64,128,256,512,1024}的非空子集的元素之和 可以表示1,2,3,…,2046,2047共2047个正整数. 因此当S A =2020时,n 的最小值为11.记S 10=a 1+a 2+…+a 10,则S 10+a 11=2020并且S 10+1≥a 11.事实上若S 10+1<a 11,2020=S 10+a 11<2a 11,则a 11>1010,S 10<a 11<1010, 所以m =1010时无法用集合A 的非空子集的元素之和表示,与题意不符. 于是2020=S 10+a 11≥2a 11﹣1,得1120212a ≤,*11a N ∈,所以a 11≤1010. 当a 11=1010时,A ={1,2,4,8,16,32,64,128,256,499,1010}满足题意,所以当S A =2020时,n 的最小值为11,此时a n 的最大值1010.数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内........作答.解析应写出文字说明、证明过程或演算步骤. A. [选修4-2:矩阵与变换] 已知矩阵⎥⎦⎤⎢⎣⎡=121a A 的一个特征值3=λ所对应的一个特征向量⎥⎦⎤⎢⎣⎡=11e ,求矩阵A 的逆矩阵1-A . 【答案】12332133⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦.【解析】由题意:11Ae e λ=u v u v ,∴113211a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,1213,221a a A ⎡⎤⇒+=⇒=⇒=⎢⎥⎣⎦, ∴30A =-≠,∴11212333321213333A --⎡⎤⎡⎤-⎢⎥⎢⎥--==⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦B. [选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心极坐标为(2,)4π,且圆C 经过极点,求圆C 的极坐标方程.【答案】4cos()4πρθ=- 【解析】因为2,4C π⎛⎫⎪⎝⎭的直角坐标为,半径2r =,所以圆C的直角坐标方程为22((4x y -+=,即220x y +--=,故圆C 的极坐标方程为24cos()04πρρθ--=,即4cos()4πρθ=-. C. [选修4-5:不等式选讲]解关于x 的不等式:(1)2123x x -+-≤.(2)242x k <+. 【答案】(1){}02x x ≤≤.(2)答案见解析 【解析】(1)解:由2123x x -+-≤,可得12333x x ⎧<⎪⎨⎪-≤⎩,或12213x x ⎧≤<⎪⎨⎪+≤⎩,或2333x x ≥⎧⎨-≤⎩, 解求得102x ≤<,解求得122x ≤<,解求得2x =,综上可得,不等式的解集为{}02x x ≤≤.(2)当420k +>,即12k >-时,原不等式化为:()42242k x k -+<<+, 解得:2121k x k --<<+, 当420k +≤,即12k ≤-时,原不等式无解, 综上所述,当12k >-当时,原不等式的解集为{}2121x k x k --<<+,当12k ≤-时,原不等式的解集为∅. 【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出 文字说明、证明过程或演算步骤. 22.已知2018220180122018(1).x a a x a x a x -=++++L(1)求122018a a a +++L 的值;(2)求20181k ka =∑的值. 【答案】(1)1-;(2)20191010【解析】 (1)由2018220180122018(1).x a a x a x a x -=++++L令0x =,得01a =,令1x =,得01220180a a a a ++++=L , 所以1220181a a a +++=-L .(2)由二项式定理可得()20181,0,1,2,2018,kkk a C k =-=L所以()()201820182018020120080181111k k k k k k kk C C a ===--==∑∑∑ ()2018123201820182018201820182018111111C C C C C =-+-++-L ,因为()()()2018!2018!!2018!20182120192018!20202019!k k k k k C --⨯+==⨯()()()120192019!2019!1!2018!201911120202019!2019!2k k k k k k n n C C +-+-⎡⎤⎛⎫+=⨯+=⨯+ ⎪⎢⎥+⎝⎭⎣⎦, 所以20181k k a =∑()2018011220182019201920192019201920192019111201920201111C C C C C C ⎛⎫⎛⎫⎛⎫+-+++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎡⎤=⨯⎢⎥⎣⎦L 0201920192019210191201910102020C C ⎛⎫+= ⎝⎭=⨯⎪ 23.在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为12,市民之间选择意愿相互独立.(1)从问卷市民中随机抽取4人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)(i )若从问卷市民中随机抽取(N )m m +∈人,记总分恰为m 分的概率为m A ,求数列{}m A 的前10项和;(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,N n +∈),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.【答案】(1)分布列见解析,6;(2)(i )10231024;(ⅱ)1112n n B B -=-+,211()332n n B =+-. 【解析】(1)ξ的可能取值为4,5,6,7,8,04411(4)C (),216P ξ=== 1134111(5)C (),24(2)P ξ=== 2224113(6)C ,2()()28P ξ===,3314111(7)C ,2()()24P ξ===4404111(8)C 2()()216P ξ=== 所有ξ的分布列为所以数学期望1()4567861648416E ξ=⨯+⨯+⨯+⨯+⨯=. (2)(i )总分恰为m 分的概率为1()2mm A =,所以数列{}m A 是首项为12,公比为12的等比数列,前10项和101011(1)1023221102412S -==-. (ii )已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为1111,22n B B -=. 因为1112n n B B -+=,即1112n n B B -=-+,所以1212()323n n B B --=--,则{23}n B -是首项为12136B -=-,公比为12-的等比数列,所以1211()362n n B --=--, 所以211()332nn B =+-.。
反证法突破
与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。
法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。
具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。
在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。
反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。
再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。
所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为“否定→推理→否定”。
即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。
应用反证法证
明的主要三步是:否定结论→推导出矛盾→结论成立。
实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。
用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。
一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。
具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。
例1. 如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。
求证:AC 与平面SOB 不垂直。
【分析】结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,
再肯定“不垂直”。
【注】否定性的问题常用反证法。
例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。
例2. 若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2+2ax -2a =0至少有一个方程有实根。
试求实数a 的取值范围。
【分析】 三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实根。
先求出反面情况时a 的范围,再所得范围的补集就是正面情况的答案。
S
C
A O
B
所以当a≥-1或a≤-3
2时,三个方程至少有一个方程有实根。
【注】“至少”、“至多”问题经常从反面考虑,有可能使情况变得简单。
本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(△≥0)a的取值范围,再将三个范围并起来,即求集合的并集。
两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。
例3. 给定实数a,a≠0且a≠1,设函数y=
x
ax
-
-
1
1 (其中x∈R且
x≠1
a),证明:①.经过这个函数图像上任意两个不同点的直线不平
行于x轴;②.这个函数的图像关于直线y=x成轴对称图像。
【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。
即原函数y=
x
ax
-
-
1
1的反函数为y=
x
ax
-
-
1
1,图像一致。
由互为反函数的两个图像关于直线y=x对称可以得到,函数y=
x ax -
-
1
1的图像关于直线y=x成轴对称图像。
【注】对于“不平行”的否定性结论使用反证法,在假设“平行”
的情况下,容易得到一些性质,经过正确无误的推理,导出与已知a ≠1互相矛盾。
第②问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练。
【专题训练】
1.已知函数f(x)在其定义域内是减函数,则方程f(x)=0
______。
A.至多一个实根
B.至少一个实根
C.一个实根
D.无
实根
2.已知a<0,-1<b<0,那么a、ab、ab2之间的大小关系是_____。
A. a>ab> ab2
B. ab2>ab>a
C. ab>a> ab2
D. ab>
ab2>a
3.已知α∩β=l,a α,b β,若a、b为异面直线,则_____。
A. a、b都与l相交
B. a、b中至少一条与
l相交
C. a、b中至多有一条与l相交
D. a、b都与l相交
4.四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。
A. 150种
B. 147种
C. 144种
D. 141种。