高考复习资料4.函数的基本性质1
- 格式:docx
- 大小:84.91 KB
- 文档页数:1
函 数 的 基 本 性 质 和 特 征一.函数的基本性质1. 函数的单调性:1212),,f x D x x D x x ∈<函数(的定义域为,任给,且 1212)(0f x f x x x ->-()若1212()(()())0x x f x f x ⇔-->,则函数)f x (是单调递增函数;12121212)(0()(()())0f x f x x x f x f x x x -<⇔--<-()若,则函数)f x (是单调递减函数; 2. 函数的奇偶性:函数)f x (的定义域为D ,D 关于原点为对称,()),(),,(=(),()f x f x f x x a a x D f x a f a x f x -=---∈---若(则为奇函数。
或)则为奇函数。
()),(),,(=(),()f x f x f x x a a x D f x a f a x f x -=--∈--若(则为奇偶函数。
或)则为偶函数。
3. 函数的周期性:(=()()f x T f x f x T +若),则函数是以为周期的周期函数。
(=()()f kx T f x f x T +若),则函数是以为周期的周期函数。
(=()()f x T f x f x T +-若),则函数是以2为周期的周期函数。
1(=()()f x T f x T f x +若),则函数是以2为周期的周期函数。
1(=()()f x T f x T f x +-若),则函数是以2为周期的周期函数。
(=()()m f x T m f x T f x +-≠若),(0),则函数是以2为周期的周期函数。
()()T f x T f x ϖϖ若的周期是,则的周期为。
1(()()21(f x f x T f x T f x -+=+),则是以为周期的周期函数。
) 1(()()1(f x f x T f x T f x -+=-+),则是以4为周期的周期函数。
高三函数基本知识点总结函数是高中数学中的重要概念,也是数学建模和解决实际问题的基础。
在高三阶段,学生需要掌握函数的基本知识点,并能够灵活运用于各种数学问题中。
本文将对高三函数的基本知识点进行总结。
一、函数的定义与表示方法函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
函数的常见表示方法有显式表达式、隐式表达式、参数方程等。
二、函数的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数在定义域内的所有可能取值。
2. 奇偶性:函数的奇偶性与函数的对称性有关,可以通过奇、偶或无奇偶性来确定函数在坐标系中的对称性。
3. 单调性:函数的单调性描述了函数在定义域上的增减关系,包括增函数、减函数、严格增函数、严格减函数等。
4. 周期性:周期函数是指函数在一定范围内满足 f(x + T) = f(x) 的函数,其中 T 为正常数。
三、函数的图象与变换1. 函数图象:函数的图象是函数在坐标系中的表现形式,可以通过绘制函数的图象来研究函数的性质。
2. 基本变换:函数的基本变换包括平移、伸缩和翻转等,这些变换会改变函数的图象在坐标系中的位置和形状。
四、函数的运算1. 函数的加法与减法:两个函数的加法与减法是指将两个函数在相同自变量下对应的函数值相加或相减。
2. 函数的乘法与除法:两个函数的乘法与除法是指将两个函数在相同自变量下对应的函数值相乘或相除。
五、函数的解析式、图象与实际问题将函数与实际问题相结合,可以通过函数的解析式和图象来解决与函数相关的实际问题,如求最值、求方程的解、求参数的取值范围等。
六、常见函数类型1. 一次函数:一次函数是指函数的最高次数为 1 的函数,其形式为 f(x) = kx + b,其中 k 和 b 为常数。
2. 二次函数:二次函数是指函数的最高次数为 2 的函数,其形式为 f(x) = ax^2 + bx + c,其中 a、b 和 c 为常数。
3. 幂函数:幂函数是指函数的自变量是以常数为底的幂函数。
《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。
⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xy x x x f x f ; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔xy x x x f x f ; ⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。
函数的基本性质(基础)【考纲要求】1. 会求一些简单函数的定义域和值域;2. 理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义.3. 会运用函数图象理解和研究函数的性质. 【知识网络】【考点梳理】 1.单调性(1)一般地,设函数()f x 的定义域为I 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,若都有12()()f x f x <,那么就说函数在区间D 上单调递增,若都有12()()f x f x >,那么就说函数在区间D 上单调递减。
(2)如果函数()y f x =在区间D 上是增函数或减函数,那么就说函数()y f x =在这一区间具有严格的单调性,区间D 叫做()y f x =的单调区间。
(3)判断证明函数单调性的一般方法:单调四法,导数定义复合图像 定义法用定义法证明函数的单调性的一般步骤是①设D x x ∈21,,且12x x <;②作差)()(21x f x f -;③变形(合并同类项、通分、分解因式、配方等)④判断)()(21x f x f -的正负符号;⑤根据定义下结论。
复合函数分析法设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。
如下表:函数的基本性质 奇 偶 性单 调 性周 期 性()u g x =()y f u =[()]y f g x =增 增 增 增 减 减 减 增 减 减减增导数证明法设()f x 在某个区间(,)a b 内有导数'()f x ,若()f x 在区间(,)a b 内,总有'()0('()0)f x f x ><,则()f x 在区间(,)a b 上为增函数(减函数);反之,若()f x 在区间(,)a b 内为增函数(减函数),则'()0('()0)f x f x ≥≤。
高考数学复习典型题型与知识点专题讲解4 函数的基本性质一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x =+>的单调性知识点2 二次函数区间求最值知识点3 已知一半求另一半(奇偶性) 知识点4单调奇偶联袂 二、题型归类练专练一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x=+>的单调性例1.(2021·宁夏·平罗中学高一期中)已知4()f x x x=+. (1)判断()f x 的奇偶性;(2)判断函数()f x 在(2,)+∞的单调性并用定义证明. 【答案】(1)函数()f x 为奇函数;(2)()f x 在区间()2,+∞上是增函数;证明见详解. (1)解:由题可知,4()f x x x=+,则函数()f x 的定义域为{}|0x x ≠ ,关于原点对称,又44()()()f x x x f x x x-=--=-+=-, 所以函数()f x 为奇函数.(2)解:()f x 在区间()2,+∞上是增函数, 证明:12,(2,)x x ∀∈+∞且12x x <, 有12121244()()()()f x f x x x x x -=+-+ 121244()()x x x x =-+-121212(4)x x x x x x -=-, 122x x <<,1212124,40,0x x x x x x >->-<∴,121212(4)0x x x x x x -∴-<,即12()()f x f x <, ∴函数()f x 在区间()2,+∞上是增函数.名师点评:对于函数()(0)af x x a x =+>主要性质如下:①定义域(,0)(0,)-∞+∞; ②奇偶性:奇函数;③单调性:当0x >时;()(0)af x x a x =+>在上单调递减;在)+∞的单调增;④值域与最值:当0x >时;()(0)af x x a x =+>值域为)+∞,当x =小值特别提醒同学们函数()(0)af x x a x =+>我们称为对钩函数(耐克函数),注意需要0a >这个大前提,当0a ≤时都不再是对钩函数,此时不具有对钩函数的性质。
《函数的基本性质》知识总结大全函数的基本性质是数学中非常重要的一部分内容,对于理解和应用函数有着重要的作用。
以下是《函数的基本性质》的知识总结大全:1. 定义域和值域:函数的定义域是指函数可以取值的所有实数的范围,值域是指函数实际取值的范围。
函数的定义域和值域可以用图像来表示。
2. 奇偶性:如果对于函数中的任意实数x,有f(-x) = f(x),则称函数f(x)为偶函数;如果对于函数中的任意实数x,有f(-x) = -f(x),则称函数f(x)为奇函数。
3. 函数的图像:函数的图像是指函数在坐标平面上的显示,可以通过画图来表示函数的特点。
可以通过图像来判断函数的增减性、极值、特殊点等。
4. 单调性:如果函数f(x)在定义域上是递增的,则称函数f(x)为增函数;如果函数f(x)在定义域上是递减的,则称函数f(x)为减函数。
5. 极值:如果函数在某一点上的函数值比它邻近的点上的函数值都大(或小),则称这个点为函数的极大值点(或极小值点)。
极大值和极小值统称为极值。
6. 零点:函数的零点是指函数在定义域上满足f(x) = 0的实数x的值。
7. 对称轴:如果函数的图像关于某一直线对称,则这条直线称为函数的对称轴。
8. 周期性:如果函数f(x)在一个定义域上的每一个x都有f(x+T) = f(x)成立,其中T>0,则称函数f(x)为周期函数,T称为函数的周期。
9. 常用函数:常用函数包括线性函数、二次函数、指数函数、对数函数、三角函数等,这些函数有着特殊的性质和应用。
10. 复合函数:复合函数是指由两个函数构成的新函数,其中一个函数的输出是另一个函数的输入。
复合函数的求值需要按照函数的定义进行计算。
高三函数知识点函数是数学中的重要概念之一,在高中数学学习中占据着重要地位。
掌握函数的相关知识点对于高三学生来说至关重要。
本文将介绍函数的定义、性质、图像以及函数的类型等知识点。
一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的元素(称为自变量)映射到另一个集合中的元素(称为因变量)。
函数通常表示为y = f(x),其中x为自变量,y为因变量。
函数具有以下基本性质:1. 定义域和值域:函数的定义域是自变量可能取值的集合,值域是函数映射到的因变量的集合;2. 单调性:函数可以是递增的或递减的;3. 奇偶性:函数可以是奇函数(满足f(-x) = -f(x))或偶函数(满足f(-x) = f(x));4. 周期性:函数可以是周期函数,即存在正数T,使得对于任意x,有f(x+T) = f(x)。
二、函数的图像函数的图像是函数在平面直角坐标系上的几何表示。
通过观察函数的图像,可以获得关于函数性质的直观认识。
函数图像的特征包括:1. 增减性和极值:函数的图像在增减区间上表现为上升或下降的趋势,并在极值点上取得最大值或最小值;2. 过零点:函数的零点是函数图像与x轴的交点,对应于函数的解;3. 对称性:函数的图像可能具有对称性,如关于y轴的对称、关于原点的对称等;4. 渐进线:函数图像可能存在水平渐近线和垂直渐近线;5. 断点和间断点:函数图像上的断点表示函数在该点不连续,而间断点表示函数在该点不存在。
三、常见函数类型高中数学教学中常见的函数类型包括:1. 一次函数:y = kx + b,其中k和b为常数,表示直线函数;2. 二次函数:y = ax^2 + bx + c,其中a、b、c为常数,表示抛物线函数;3. 指数函数:y = a^x,其中a为底数大于0且不等于1,表示幂函数;4. 对数函数:y = loga(x),其中a为底数大于0且不等于1,表示逆幂函数;5. 三角函数:包括正弦函数、余弦函数、正切函数等;6. 绝对值函数:y = |x|,表示以原点为顶点的V型函数;7. 反比例函数:y = k/x,其中k为常数,表示反比例关系。
函数的基本性质知识梳理1) 函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f [ g(x)]为增;若y f(u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u)为增,u g(x)为减,则y f[g(x)]为减;若 y f (u )为减, u g (x )为增,则 y f [ g (x )]为减.f (x ) (2)打“√”函数 ax (a 0)x的图象与性质yf(x) 分别在( , a]、[ a,)上为增函数,分别在[ a,0) 、(0, a]上为减函数.(3)最大(小)值定义ox①一般地,设函数 yf (x )的定义域为 I ,如果存在实数M满足:(1 )对于任意的 x I ,都有 f(x )M;(2)存在 x 0 I ,使得 f(x0) M.那么,我们称M 是函数f (x )的最大值,记作 f max(x ) M②一般地,设函数 y f (x )的定义域为 I ,如果存在实数 m 满足:(1)对于任意的 x I ,都有 f(x ) m(2)存在 x 0 I ,使得 f (x 0)m .那么,我们称 m是函数f(x )的最小值,记作fmax (x ) m.2)函数的奇偶性①定义及判定方法②若函数 f (x )为奇函数,且在x 0处有定义,则f (0) 0.③奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④ 在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数) ,两个偶函数(或奇函数) 的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.3) 函数的周期性定义】若T为非零常数,对于定义域内的任一x,使 f (x T) f ( x)恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。
函数的基本性质1
1. 已知函数224,0()4,0
x x x f x x x x ⎧+≥=⎨-<⎩若2(2)(),f a f a ->则实数a 的取值范围是 。
2. 若函数()f x =212
log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若()f a >()f a -,则实数a 的取值范围是 。
3. 函数2x +2x-3,x 0x)=-2+ln x,x>0
f ⎧≤⎨⎩(的零点个数为 。
4. 函数
(x 0)的反函数是 。
5. 已知函数()f x 满足:1(1)4f =,4()()()f x f y f x y =+ (),f x y +-(,)x y R ∈,则(2010)f =_______。
6. 设f (x )是定义在R 上的奇函数,若当x ≥0时,f (x )=lo g 3(1+x ),则f (-2)=____ _。
7.已知函数582++=ax x y 在),1[+∞上递增,那么a 的取值范围是________。
8. 函数)(x f 是定义在R 上的以3为周期的奇函数,若1)1(>f ,143)2(+-=
a a f ,则a 的取值范围是 。
9.求下列函数的值域:
(1)232y x x =-+; (2)y =; (3)312
x y x +=-; (4)y x =+ (5) 22221
x x y x x -+=++ (6)|1||4|y x x =-++。
10.()f x 在其定义域R +上为增函数,(2)f =1, ()f xy = ()f x )+()f y .解不等式()f x +(2)f x - ≤3。
11. 求函数20.7log (32)y x x =-+的单调区间。
.
12. 讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
13.判断函数(1)()f x =log 2(x+12+x ),(2)
; (3)的奇偶性。
14. 设0a >,()x x e a f x a e
=+是R 上的偶函数。
(1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数。
15.奇函数)(x f 在定义域)1,1(-上为减函数,且满足0)1()1(2<-+-a f a f ,求实数a 的取值范围。
≤11)(22-+-=x x x f ⎩⎨⎧>+<-=0)1(0)
1()(x x x x x x x f。