反射光的偏振特性—布儒斯特角的测量实验
- 格式:doc
- 大小:1.21 MB
- 文档页数:12
浅谈布儒斯特角及其光学应用摘要:本文旨在介绍与布儒斯特角相关的实验概念,由其计算和测量介绍开始,进而展示光学实验中的广泛应用和实际价值。
关键词:布儒斯特角CCD 片堆布儒斯特窗根据我们熟悉的菲涅尔定律可知,自然光在电介质界面上反射和折射时,一般情况下反射光和折射光都是部分偏振光,而在应用中我们常需要具有特定偏振方向的光。
英国物理学家D.布儒斯特于1815年发现,当入射角为某特定角时反射光才是线偏振光,其振动方向与入射面垂直,此特定角称为布儒斯特角或起偏角,用θb表示。
此规律称为布儒斯特定律。
实验和麦克斯韦定律均验证了定律的正确性。
布儒斯特角相关概念很多,下面列出常用的相关定义。
布儒斯特角(Brewster angle):亦称作偏振角,偏化角或者起偏角。
当自然光从介质a(折射率为)射入介质b(折射率为,且>)时,若入射角为arctan(/),则反射光是线(面)偏振的,而其电矢量振动面与入射面垂直(s光),此时入射角就称为布儒斯特角。
布儒斯特角起偏器(Brewster angle polarizer):现多用多层薄膜代替玻璃来做布儒斯特角起偏器。
其中一种用BK7玻璃(折射率为1.51)作为基片,在其上涂上到高折射率二氧化钛(2.25)和低折射率(1.45)的二氧化硅多层膜,以56.5°角入射,效果很好。
因其有多层高低折射率膜,故又称为薄膜偏振器,与常见的二向色微晶制成的所谓“人造”偏振片有别。
布儒斯特定律(Brewster law):当光从介质a(折射率为)射入介质b(折射率为,且>)时,若入射角为arctan(/),则反射光是线(面)偏振的,而其偏振面与入射面平行,此时入射角就称为布儒斯特角或起偏角。
入射角是布儒斯特角时,折射入媒质b的光线与反射回媒质a的光线成90°。
此即为布儒斯特定律。
最常见的媒质a为空气,故≈1,于是起偏角为arctan。
布儒斯特角窗(Brester angle window):为了获得偏振光,在共振腔的两端安置布儒斯特角窗,使光以布儒斯特角入射到腔口窗口。
实验偏振光的观测与研究偏振光的理论意义和价值是,证明了光是横波。
同时,偏振光在很多技术领域得到了广泛的应用。
如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。
【实验目的】1.通过观察光的偏振现象,加深对光波传播规律的认识。
2.掌握偏振光的产生和检验方法。
3.观察布儒斯特角及测定玻璃折射率。
4.观测圆偏振光和椭圆偏振光。
【实验仪器】光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。
【实验原理】按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。
在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。
其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏振现象是横波的特征。
根据偏振的概念,如果电矢量的振动只限于某一确定方向的光,称为平面偏振光,亦称线偏振光;如果电矢量随时间作有规律的变化,其末端在垂直于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢量在某一确定的方向上最强,且各向的电振动无固定相位关系,则称为偏振光。
1.获得偏振光的方法(1)非金属镜面的反射,当自然光从空气照射在折射率为n的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部分偏振光。
当入射角增大到某一特定值φ0时,镜面反射光成为完全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角,也称起偏振角,由布儒斯特定律得:0tan n φ= (3-51)其中,n 为折射率。
(2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于线偏振光,其振动在入射面内。
图3-26 自然光(3)晶体双折射产生的寻常光(o 光)和非常光(e 光),均为线偏振光。
偏振光的特性研究实验报告【实验目的】1.掌握产生与检验线偏振光的方法,验证马吕斯定律;2.掌握产生和检验圆(椭圆)偏振光的方法;3.掌握测量布儒斯特角的方法。
【实验仪器】激光器,分光计光具座,偏振片(2 个),1/2 波片,1/4 波片,光功率计等。
【实验原理】1.光的偏振光按照偏振状态可分成自然光、部分偏振光、完全偏振光3 类,其中完全偏振光又称为椭圆偏振光,包括线偏振光和圆偏振光等2 种特例。
(1)自然光光是由光源中大量原子或分子的能级跃迁产生的。
在振动平面内,各个方向的振动都有,统计上是均匀分布的。
(2)完全偏振光其振动的两个分量的幅度和相位差都不随时间改变其中Ax 、A y和δ为常数。
若Ax=A y且δ = ±Π/2,则电矢量端点的轨迹是一个圆,这种光称为圆偏振光。
注意δ =Π/2和δ = Π/2是旋转方向不同的两种圆偏振光。
如果δ = kΠ,椭圆退化成线段,光会沿一个固定的方向振动,这种光称为线偏振光(或平面偏振光)。
线偏振光的电场分量可表示为这里θ为振动方向与x 轴的夹角。
(3)部分偏振光偏振性质介于自然光与完全偏振光之间的光称为部分偏振光。
2.偏振光的测量通过旋转检偏器,测量不同方向振动的光强。
设入射光的电场为检偏器的透振方向为θ。
垂直于θ方向的振动被检偏器吸收,留下与θ方向平行的振动。
因此探测器测量的光强正比于这里〈a〉表示a的周期或长时间平均值。
●对于自然光,由于E和Ey(统计上)强度相等且没有固定的相位差,因此Iθ = I = const.光强与检偏器角度无关。
●对于线偏振光,假设振动方向与x 轴平行,(E (t), Ey(t)) = ( cos ωt,0 ),有此式被称为马吕斯定律。
一般的椭圆偏振光,根据光强与θ的关系可以确定Ax,Ay和cos δ。
不能区分椭圆偏振光和部分偏振光(特殊的,圆偏振光与自然光的光强都与θ无关) 解决方法是在检偏器之前再加一块1/4 波片。
偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其 E 和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
【实验目的】1.观察光的偏振现象,加深偏振的基本概念。
2.了解偏振光的产生和检验方法。
3.观测布儒斯特角及测定玻璃折射率。
4.观测椭圆偏振光和圆偏振光。
【实验仪器】光具座、激光器、偏振片、1/4 波片、1/2 波片、光电转换装置、光点检流计、观测布儒斯特角装置图 1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量 E 和磁矢量H 相互垂直。
两者均垂直于光的传播方向。
从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E 代表光的振动方向,并将电矢量E 和光的传播方向所构成的平面称为光振动面。
在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2 (a)。
光源发射的光是由大量原子或分子辐射构成的。
由于热运动和辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率是相同的。
一般说,在10 6s 内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。
有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2 (c)所示的所谓部分偏振光。
还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图 2 光波按偏振的分类2.获得偏振光的常用方法(1)非金属镜面的反射。
偏振光的产生和检验一.实验目的1、掌握偏振光的产生原理和检验方法,观察线偏振光2. 验证马吕斯定律,测量布儒斯特角;二.实验原理1.光的偏振性光波是波长较短的电磁波,电磁波是横波,光波中的电矢量与波的传播方向垂直。
光的偏振观象清楚地显示了光的横波性。
光大体上有五种偏振态,即线偏振光、圆偏振光、椭圆偏振光、自然光和部分偏振光。
而线偏振光和圆偏振光又可看作椭圆偏振光的特例。
(1)自然光光是由光源中大量原子或分子发出的。
普通光源中各个原子发出的光的波列不仅初相彼此不相关,而且光振动方向也是彼此不相关的,呈随机分布。
在垂直于光传播方向的平面内,沿各个方向振动的光矢量都有。
平均说来,光矢量具有轴对称而且均匀的分布,各方向光振动的振幅相同,各个振动之间没有固定的相联系,这种光称为自然光或非偏振光(见下图)。
我们设想把每个波列的光矢量都沿任意取定的x轴和y轴分解,由于各波列的光矢量的相和振动方向都是无规则分布的,将所有波列光矢量的x分量和y 分量分别叠加起来,得到的总光矢量的分量E x和E y之间没有固定的相关系,因而它们之间是不相干的。
同时E x和E y的振幅是相等的,即A x=A y。
这样,我们可以把自然光分解为两束等幅的、振动方向互相垂直的、不相干的线偏振光。
这就是自然光的线偏振表示,如下图(a)所示。
分解的两束线偏振光具有相等的强度I x=I y,又因自然光强度I=I x+I y所以每束线偏振光的强度是自然光强度的1/2,即通常用图(b)的图示法表示自然光。
图中用短线和点分别表示在纸面内和垂直于纸面的光振动,点和短线交替均匀画出,表示光矢量对称而均匀的分布。
(2)线偏振光光矢量只沿一个固定的方向振动时,这种光称为线偏振光,又称为平面偏振光。
光矢量的方向和光的传播方向所构成的平面称为振动面,如图(a)所示。
线偏振光的振动面是固定不动的,图(b)所示是线偏振光的表示方法,图中短竖线表示光振动在纸面内,点表示光振动垂直于纸面。
物理实验报告实验名称:偏振光的观察与研究学院:安全与应急管理工程学院专业班级:安全1802学号:2018003964学生姓名:王朝春实验成绩实验预习题成绩:1、什么是光的偏振,按照光的偏振划分,有几种基本类型。
光的偏振态就是光波中电矢量震动的轨迹的规律,如果震动方向始终不变的,叫线偏振光,如果震动方向再每次震动后改变并且改变规律画出来是一个椭圆的,就是椭圆偏振光,如果画出来是一个圆的,就是圆偏振光,如果震动是无规律的,乱震的,那就是自然光,不是偏振光。
2、线偏振光的特点。
线偏振光的振动面固定不动,不会发生旋转。
绝大多数光源都不发射线偏振光而发射自然光,需要经过起偏器才能获得线偏振光。
3、生成线偏振光的方法(起偏)。
通过反射、多次折射、双折射和选择性吸收的方法可以获得平面偏振光。
4、圆偏振光的特点。
旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。
当传播方向相同,振动方向相互垂直且相位差恒定为φ=π的两平面偏振光叠加后可合成电矢量有规则变化的圆偏振光。
5、如何得到圆偏振光。
首先必须让自然光通过一个起偏器,变成线偏振光。
然后再将线偏振光通过一个1/4波片,必须使得起偏器的偏振化方向和波片的光轴成45度角。
这样,出射光就变成了圆偏振光。
6、椭圆偏振光与圆偏振光、线偏振光的关系。
部分偏振光是介于偏振光与自然光之间的情形,这种光中含有自然光和偏振光两种成分。
一般的,部分偏振光都可以看成是自然光和线偏振光的混合。
椭圆偏振光的光矢量E在沿着光的传播方向前进的同时,还绕着传播方向均匀转动。
其光矢量的大小不断改变,使其端点描绘出一个椭圆。
椭圆偏振光是一种完全偏振光,而部分偏振光不是。
7、1/4波片的原理和作用。
所谓合成波长即利用两束波长不同的激光,产生干涉后形成干涉信号,此信号的波长就是两个波长的合成波长,合成波长理论应用广泛,在测量领域利用合成波长信号便于探测,后续处理方便.1/4波片就是起到检偏的作用。
物理与能源学院光学实验报告专业物理学姓名学号报告成绩实验题目透明介质布儒斯特角的测定【实验目的】1、掌握布儒斯特角测量原理及实验设计思路;2、利用PASCO数字实验教学系统测量布儒斯特角;3、了解布儒斯特角在测量介质折射率中的应用;【实验仪器】(名称、规格或型号)PASCO数字系统、HE-NE激光器、转动传感器、计算机、光学导轨、度盘台、偏振器(两个),准直缝、D形棱镜【实验原理】一.PASCO数字系统简介物理量计算机采集实验过程示意图⑵Science Workshop简介Science Workshop由三部分组成:传感器—利用先进的传感技术可实时采集物理实验中各物理量的数据;计算机接口—将来自传感器的数据信号输入计算机软件—具有强大的数据显示、分析功能⑶Science Workshop接口PASCO计算机接口有500型、750型两种,如下图所示500型接口的主要性能有:①数据采集:Science Workshop接口可以直接把采集的数据输入计算机,也可以只用接口和传感器进行数据采集即在无计算机情况下,用500型接口在户外采集数据,然后再接上计算机进行数据分析。
其界面上有A、B、C三个模拟信号通道和1、2两个数字信号通道,可以同步记录模拟和数字信号,采样频率在10Hz 和2000Hz之间可调。
②50KB缓存:用于存储运行的数据和实验设置的信息。
可记录多达17000个模拟数据点或者7000个运动传感器的数据点③便携式:带有一个可装4节五号电池的电池室,Science Workshop500型接口可在实验室以外的任地进行数据采集。
750型接口的主要性能有:①数据采集:与500型接口相比,其界面上除了有A、B、C三个模拟信号通道外,数字信号通道有4个通道,采样频率最高可达250000Hz.②置式1.5W信号发生器:可得到0~50Hz、1.5W(30mA)的信号输出,输出的电流和电压可以通过750接口进行部监控。
偏振光得观测与研究 光得干涉与衍射实验证明了光得波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H 得振动方向就是垂直于光得传播方向得。光得偏振性证明了光就是横波,人们通过对光得偏振性质得研究,更深刻地认识了光得传播规律与光与物质得相互作用规律。目前偏振光得应用已遍及于工农业、医学、国防等部门。利用偏振光装置得各种精密仪器,已为科研、工程设计、生产技术得检验等,提供了极有价值得方法。
【实验目得】
1.观察光得偏振现象,加深偏振得基本概念。 2.了解偏振光得产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。
【实验仪器】
光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置
图1 实验仪器实物图
【实验原理】 1.偏振光得基本概念 按照光得电磁理论,光波就就是电磁波,它得电矢量E与磁矢量H相互垂直。两者均垂直于光得传播方向。从视觉与感光材料得特性上瞧,引起视觉与化学反应得就是光得电矢量,通常用电矢量E代表光得振动方向,并将电矢量E与光得传播方向所构成得平面称为光振动面。 在传播过程中,光得振动方向始终在某一确定方位得光称为平面偏振光或线偏振光,如图2(a)。光源发射得光就是由大量原子或分子辐射构成得。由于热运动与辐射得随机性,大量原子或分子发射得光得振动面出现在各个方向得几率就是相同得。一般说,在10-6s内各个方向电矢量得时间平均值相等,故出现如图2(b)所示得所谓自然光。有些光得振动面在某个特定方向出现得几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示得所谓部分偏振光。还有一些光,其振动面得取向与电矢量得大小随时间作有规则得变化,其电矢量末端在垂直于传播方向得平面上得移动轨迹呈椭圆(或圆形),这样得光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图2 光波按偏振得分类 2.获得偏振光得常用方法 (1)非金属镜面得反射。 通常自然光在两种媒质得界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值 时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角 称为布儒斯特角,也称为起偏角。
目录1.技术要求 (1)2.基本原理 (1)2.1菲涅耳公式 (1)2.2布儒斯特定律测量法的原理 (4)2.3 小角度测量法的原理 (4)3.建立模型描述 (5)5. 实验,调试过程及结论 (7)6.心得体会 (10)7.参考文献 (11)透明玻璃折射率的测量1.技术要求一块玻璃,只有一个面是光学平面,而与之相邻的两个面虽与之垂直,但却是磨砂面,要求不对这块玻璃进行加工处理,测量其折射率: (1)、要利用布儒斯特定律来测量并计算出折射率; (2)、要利用小角度入射时反射率的测量来计算出折射率。
(3)、(1)和(2)的结果需要相互验证。
(4)、测量入射角为60°时s 光和p 光的反射率2.基本原理2.1菲涅耳公式不管是布儒斯特定律测量法还是小角度测量法都是在菲涅耳公式的基础上完成的。
(1) s 分量的菲涅耳公式图1 单独存在s 分量的情形利用边界条件和 可以推导出 反射系数r s = =(1)tp0)(12=-⨯E E n0)(12=-⨯H H n透射系数t s = =(2)(2) p 分量的菲涅耳公式图2 单独存在p 分量的情形根据边界条件得出然后根据E ,H 之间的数值关系和E ,H 之间的正交性可以推导出反射系数r p = =(3)透射系数t p = =(4)根据菲涅耳公式考察反射光和折射光的性质考虑到本次测量是光疏介质到光密介质,所以讨论(n 1<n 2)的情况 反射系数和透射系数的变化ipE isH ik rpE rsH rk tsH tpE tk ns t s r s i H H H 000=-图3,r s,r p,t s,t p随角度变化图由图上可得出以下几点:(1)两个透射系数t s和t p都随着入射角θi增大而单调降低,即入射波越倾斜,透射波越弱,并且在正向规定下,t s和t p都大于零。
(2)r s始终小于零,其绝对值随着入射角单调增大。
根据正方向规定可知在界面上反射波电场的s分量振动方向始终与入射波s分量相反。
实验十一偏振现象的观察与分析光波是电磁波,其电矢量的振动方向垂直于传播方向,是横波.由于普通光源各原子分子发光的随机和无序性,光波电矢量的分布<方向和大小)对传播方向来说是对称的,反应不出横波特点,这种光称为自然光.如果限制了某振动方向的光而使光线的电矢量分布对其传播方向不再对称时,这种光称为偏振光.对于偏振现象的研究在光学发展史中有很重要的地位,光的偏振使人们对光的传播<反射、折射、吸收和散射)规律有了更透彻的认识,本实验将对光偏振的基本性质进行观察、分析和研究.·实验目的1.观察光的偏振现象,掌握产生和检验偏振光的原理和方法,学会确定偏振片的透振方向,验证马吕斯定律;2.用反射起偏法测量平面玻璃的布儒斯特角,求得玻璃的折射率;3.了解λ/4波片、λ/2波片的工作原理和作用<任选其中部分内容);·实验仪器光具座,He—Ne激光器,光点检流计,光电转换装置,GPS-Ⅱ型偏振光实验仪<包括偏振片×2,λ/4波片×2,λ/2波片×2,背面涂黑的玻璃片及刻度支架,小孔光阑,白屏).图1 实验仪器<重拍)偏振片及刻度旋转装置:由直径为2cm的偏振片固定在转盘上制成,转盘上指针的位置不一定是偏振片的透振方向.波片及刻度旋转装置:由直径为2cm的波片固定在转盘上制成,转盘上指针的位置不一定是波片的快轴或慢轴的位置.·实验原理从自然光获得偏振光的办法有3种,即利用二向色性的材料制作的偏振片;利用晶体的双折射性质做成的偏振棱镜;利用光学各向同性的两介质分界面上的反射和折射.本实验中所用的偏振片是利用二向色性的材料制作的.一、起偏、检偏与马吕斯定律将自然光变成偏振光的过程称为起偏,检查偏振光的装置称为检偏.按照马吕斯定律,强度为I0的线偏振光通过检偏器后,透射光的强度为:<12-1)式中I0为入射线偏光的光强,为入射光偏振方向与检偏器透振轴之间的夹角.显然,当以光线传播方向为轴转动检偏器时,透射光强度I将发生周期性变化.当=时,透射光强度最大;当=时,透射光强度最小<消光状态);当<<时,透射光强度介于最大值和最小之间.因此,根据透射光强度变化的情况,可以区别光的不同偏振状态.实验中让入射光共轴依次通过两个偏振片,旋转检偏器,读出不同角下出射光的强度,验证马吕斯定律.二、布儒斯特定律和反射光的偏振当自然光在空气中以某角度入射至折射率为n的透明介质表面时,若反射线与折射线垂直,则其反射光为完全的线偏振光,振动方向垂直于入射面;而透射光为部分偏振光.此规律称为布儒斯特定律,入射角称为布儒斯特角,如图11-2所示.<12-2)实验中可通过用振动方向垂直于入射面的线偏光入射,再用检偏器检查反射光是否消光来确定布儒斯特角,求出玻璃材料的折射率n.图11-2 布儒斯特定律示意图三、λ/4波片与λ/2波片波片是从单轴晶体中切割下来的平行平面板,其表面平行于光轴.当一束单色平行自然光正入射到波片上时,光在晶体内部便分解为o光与e光.o光电矢量垂直于光轴;e光电矢量平行于光轴.而o光和e光的传播方向不变,仍都与表面垂直.但o光在晶体内的速度为,e光的为,即相应的折射率、不同.设晶片的厚度为,则两束光通过晶体后就有位相差<12-3)<12-4)式中λ为光波在真空中的波长.的晶片,称为全波片;的称为半波片<λ/2波片);为λ/4片,上面的k都是任意整数.不论全波片,半波片或λ/4片都是对一定波长而言.在直角坐标系下,以e光振动方向为横轴,o光振动方向为纵轴,则沿任意方向振动的平行光,正入射到波片的表面后,其振动便按此坐标系分解为e分量和o分量.透过晶片,二者间产生一附加位相差σ,离开晶片时合成光波的偏振性质,决定于σ及入射光的性质.1.偏振态不变的情形:<1)自然光通过任何波片,仍为自然光;<2)若入射光为线偏振光,其电矢量E平行e轴<或o轴),则任何波长片对它都不起作用,出射光仍为原来的线偏振光.2.λ/2波片与偏振光<1)若入射光为线偏振光,且振动方向与晶片光轴成角,则经λ/2玻片出射的光仍为线偏振光,但与光轴成负角.即线偏振光经λ/2片电矢量振动方向转过了2角.<2)若入射光为椭圆偏振光,则经λ/2玻片后,既改变椭圆长<短)轴的取向,也改变椭圆的旋转方向;若入射光为圆偏振光,出射的只是改变了旋转方向的圆偏振光.3.λ/4波片与偏振光<1)若入射光为线偏振光,当角为450时,经λ/4波片后的出射光为圆偏振光,其余情况下为椭圆偏振光;<2)若入射光为圆偏振光,则出射光为线偏振光;<3)若入射光为椭圆偏振光,则出射光一般仍为椭圆偏振光,<详见利萨如图11-3).图11-3 同频率、振动方向垂直的两振动合成的利萨如图·实验内容与步骤1.定偏振片光轴:把两个偏振片插入光具座,接入光电转换装置及光点检流计,调至共轴.旋转第二个偏振片,使光屏显示消光,此即表示起偏器的透振轴与检偏器的透振轴相互垂直.再从=00开始到900每隔100读一个光电流值,用坐标纸作图验证<12-1)式马吕斯定律.2.测量玻璃板的布儒斯特角,求得玻璃的折射率:在上述1的基础上,撤掉检偏器,将装有底座的待测玻璃片插入光具座,共轴调节后,使玻璃板的法线方向与入射光线重合,记录指针的位置.旋转玻璃片所在的平面,用白板跟踪接收反射光.当入射角在某个特定角附近,仔细旋转起偏器,观察接收屏上光强变化,当光强最小时固定起偏器,再微旋玻璃片的方位,找到光强最弱位置;重复上述调整至消光,此时读出光线对玻璃片的入射角即为玻璃板的布儒斯特角;测量5次,根据<12-2)式计算玻璃的折射率.且与标称值作比较,计算标准偏差.3.考察平面偏振光通过λ/2、λ/4波片时的现象:<选做)<1)在两块偏振片之间插入λ/2波片,旋转检偏器一周,观察消光的次数并解释这现象.<2)将λ/2波片转任意角度,这时消光现象被破坏.把检偏器转动一周,观察发生的现象并作出解释.<3)仍使起偏器和检偏器处于正交<即处于消光现象时),插入λ/2波片,使消光,再将转150,破坏其消光.转动检偏器至消光位置,并记录检偏器所转动的角度.<4)继续将λ/2波片转150<即总转动角为30度),记录检偏器达到消光所转总角度.依次使λ/2波片总转角为450,600,750,900,分别记录检偏器消光时所转过的角度.<5)使起偏器和检偏器正交,中间插入λ/4波片,转动λ/4波片使消光.再将λ/4波片转动150,300,450,600,读出相应的光电流,并分析这时从λ/4波片出来光的偏振状态.·实验数据测量0°10°20°30°40°50°60°70°80°90°I次序 1 2 3 4 5 6 平均入射光方向出射光方向布儒斯特角3.平面偏振光通过λ/2波片时的现象半波片转动角度15°30°45°60°75°90°检偏器转动角度4.平面偏振光通过λ/4波片时的现象λ/4波片转动的角度检偏器转动360度观察到的现象光的偏振性质1.仔细阅读偏振光实验指导及操作说明书,操作中注意首先做“消除暗电流记录”的测试前准备;每步实验前在光具座上用小孔屏调整光路共轴;2.检测光电流时必须确认表针基本停稳后才可以读数<或指针波动大时估读中间值).偏振光最普遍的来源之一是自然光经电介质表面反射这个无所不在的物理过程.人类生活中来自玻璃、水面等所有表面的反射光和散射光,一般都是部分偏振光.这个规律是马吕斯在1808年开始研究的.巴黎科学院悬赏征求双折射的数学理论,马吕斯就着手研究这个问题.一天傍晚,他站在家中的窗户旁边研究方解石晶体.当时夕阳西照,夕阳从离他家不远的卢森堡宫的窗户上反射到他这里来.他拿起了方解石晶体,通过它观察反射来的太阳的像.使他感到意外的是当转动方解石晶体时,双像中的一个像消失了.太阳下山之后,夜里他继续观察从水面上和玻璃面上反射回来的烛光来核实他的实验.≈56°时消光效果最显著.但在用一支蜡烛和一片玻璃试一试,把玻璃放在θP近掠入射时,两个像都很明亮,无论怎样转动晶体,哪个像都不会消失.马吕斯显然很幸运,站在对着宫殿窗户的一个恰当的角度上.致使他发现了偏振光的规律.普通非晶体材料受到应力时变成各向异性,有双折射.用偏振光的干涉条纹分布的疏密和走向来确定材料的内应力大小.电光开关是指电场使某些各向透明的介质变为各向异性,使光产生双折射,称kerr effect,用电信号控制光信号.光电偏振研究在光调制器、光开关、光学计量、光信息处理、光通信、激光和光电子学器件、晶体性质研究和实验应力分析等技术中有广泛的应用.中学物理课标对偏振及相关内容的要求是:1.通过实验认识光的干涉、衍射、偏振现象以及在生活、生产中的应用;2.用偏振片观察玻璃面反射光、天空散射光的偏振现象;3.用偏振片鉴别普通玻璃和天然水晶,探究这种技术的物理原理.本实验的构思亮点:因为不加布儒斯特窗的半导体激光器发出的光其振动方向与自然光相似,细光束的传播方向集中,使实验操作极大简化,物理思路更加清晰;光具座上可供选择的内容开放,可增加学生的动手动脑兴趣.<零点测量法)操作难点:微电流读数受环境和仪器的影响因素较多,难以准确读数,偏振元件旋转角度最小分度1°,组装粗糙,影响了测量精度.1.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?2.在确定起偏角时,若找不到全消光的位置,根据实验条件分析原因.3.三块外形相同的偏振片、1/2波片、1/4波片被弄混了,能否把它们区分开来?需要借助什么元件?若能,试写出分析步骤.4. 在透振方向互相垂直的起偏和检偏两片偏振片中插入1/2波片,使光轴和起偏器的透振方向平行,那么透过检偏器的光是亮还是暗?为什么?将检偏器旋转90度,透出的光亮暗是否变化?5.波片加工精度和激光波长漂移会对1/4波片产生的光程差带来误差.试根据波片对线偏振光产生的位相差和光程差公式,对波片厚度和激光波长作一个半定量的估计一般以1/2波长为限.6.已知什么量?哪个是待测量?如何控制变量?关注检流计的量程并做适当调节.按要求处理实验数据,完成实验报告.7.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.尝试设计实验,探究圆偏振光、椭圆偏振光的产生和检验方法,并完成实验.。
偏振光的研究实验报告篇一:偏振光的观测与研究~~实验报告偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。
本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。
光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。
目前偏振光的应用已遍及于工农业、医学、国防等部门。
利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。
【实验目的】1.观察光的偏振现象,加深偏振的基本概念。
2.了解偏振光的产生和检验方法。
3.观测布儒斯特角及测定玻璃折射率。
4.观测椭圆偏振光和圆偏振光。
【实验仪器】光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置图1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直。
两者均垂直于光的传播方向。
从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。
在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。
光源发射的光是由大量原子或分子辐射构成的。
由于热运动和辐射的随机性,大量原-子或分子发射的光的振动面出现在各个方向的几率是相同的。
一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。
有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。
还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。
图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。
反射光的偏振特性—布儒斯特角的测量实验实验科目:光的反射、折射定律,折射率的测量,光的偏振、线偏振光、圆偏振光、椭圆偏振光、1/4波片、反射光的偏振态,布儒斯特角。
反射光的偏振特性与布儒斯特角实验目的:1)用最小偏向角法测量棱镜材料的折射率。
2)测量通过起偏器、1/4波片后的光的偏振特性,了解线偏振光、圆偏振光和椭圆偏振光的特点。
3)通过观察从棱镜材料表面反射回来的光的偏振特性,了解反射光的偏振特性,测量出布儒斯特角。
4)用测量值验证布儒斯特角公式的正确性。
实验原理:一、棱镜材料的折射率的测量当一束光斜入射于棱镜表面时,其光路如下图。
同理出射角γ/ 为sinγ/= sini//n (1)根据几何关系可以证明入射光与出射光之间的夹角为:δ=i+γ/-A,而且δ有一个极小值δmin ,可以证明:当光束偏转角为δmin时,有i=γ/γ= i/,此时δ=2i-A 即i=(δ+A)/2而A=γ+i/=2γγ=A/2由(1)式可得:n=sin[(A+δmin)/2]/sin(A/2)因此,只要我们测量出δmin,就可得到材料相对于该测量光的折射率n。
二、偏振光光是一种横波,它的振动方向是与传播方向相互垂直的。
偏振是指光波的振动方向在空间上的一种相对取向的现象。
当这个振动方向在垂直于传播方向的平面内可取所有可能的方向,并且没有一个方向占优势时,我们称之为自然光或非偏振光。
而如果有某一个方向上的振动占优势时,则称之为部分偏振光。
只有一个单一的振动方向的光叫线偏振光,而在一个振动周期内其振动矢量的端点的轨迹为一个圆或椭圆时,我们称之为圆偏振光或椭圆偏振光。
在我们日常生活和工作中,太阳光、照明用光一般多为自然光。
而自然光经过一些材料的反射和透射后可能变成部分偏振光。
自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光,一些激光器也可产生很好的线偏振光。
线偏振光经过波片后就可能成为椭圆偏振光。
在本实验中,我们将通过多种实验手段来产生线偏振光和椭圆偏振光(圆偏振光被看成是一个特例)。
偏振光的数学描述:对于线偏振光和椭圆偏振光,在数字上我们常用两个垂直振动的合成来描述。
在以光传播方向相垂直的平面内取一个直角坐标系,将代表振动特性的电矢量E分解成Ex和Ey,它们是同频ω,假设相位相差δ,振幅分别为Ex和Ey,即Ex=AxCosωtEy=AyCos(ωt+δ)消去t,上式可变成E X2/A X2+E Y2/A Y2-2E X E Y/A X A Y COSδ=SIN2δ这是一个椭圆的方程当δ=0或π时,sinδ=0 cosδ=1上式为E X2/A X2+E Y2/A Y2±2E X E Y/A X A Y =0E X=±A X E Y/A Y这是一个线性方程:斜率为±A X/A Y:振幅为(A X2+A Y2)1/2它代表一束线偏振光当δ=±π/2时,sin2δ=1 cosδ= 0椭圆方程变为:E X2/A X2+E Y2/A Y2 = 1这是一个标准的椭圆方程,其主轴在X、Y方向。
当A X=A Y时,就是一个圆的方程,代表一个圆偏振光。
垂直合成分析法与我们在力学的分析中所用到的力的合成与分解有些相似,这种分析方法在偏振光的分析中十分实用和有效,下面我们用该方法来分析波片的作用。
波片是一种采用具有双折射现象的材料(如方解石晶体,石英晶体等)按一定技术要求加工而成的光学元件。
这种材料具有这样一种光学特性:及当一束光进入这种材料时可能会分成两束,这两束光的传播方向、振动方向和速度将有所不同,一束符合我们所知道的折射定律,如垂直入射时光束方向不变,但另一束却不符合这个规律。
我们分别将这两束光称为O光和E光,对应的折射率分别为n o和n e。
在这种晶体中还存在一个特定的方向,当光从这个方向上进入材料时不会分成两束,符合一般的折射定律,这个特殊的方向就是材料的光轴方向。
波片在加工时,将使通光表面平行于光轴,即入射光将垂直于光轴进入波片。
下面我们来看一下,一束线偏振光经过这样一个波片会发生什么情况。
现在假设一束线偏振光以偏振方向同波片光轴成θ角的状态垂直入射于波片。
这时会发生一种比较特殊的双折射现象,即O光和E光传播方向相同,但传播速度不同,设入射光的振幅为A,用垂直合成的方法,将进入波片的光按光轴平行和垂直的两个方向分解成Ex和Ey,则:Ex=AcosθCosωtEy=ASinθCos(ωt+δ)其中δ为由于光速不同而产生的相位差。
当光经过波片,出射后,两束光合成在一起,速度相同,根据上面的分析,我们将得到一束椭圆偏振光,A X=AcosθA Y=ASinθ而此时的相位差δ是由于O光、E光在双折射材料中的速度(或波长)不同造成的。
如果我们使波片的厚度正好产生900相位差(相当于1/4个波长),并使θ=450则有E X2+E Y2=A2/2这是一个圆的方程。
可产生900相位差的波片,我们称之为四分之一波片。
由以上分析可见,当我们使一束线偏振光经过波片时,我们可以得到一束椭圆偏振光。
而经过一个1/4波片,且光轴方向与偏振方向只好成450角时,我们可以得到一个圆偏振光。
三、反射光的偏振特性—布儒斯特角光的反射、折射光路如下图根据麦克斯伟的电磁理论和边值条件,我们可以推导如下关系:E’P = tan(I1-I2) E P/tan(I1+I2)E’S = sin(I1-I2)E S/sin(I1+I2)其中E’P为偏振面平行于入射面的反射光电失量。
E P为偏振面平行于入射面的入射光电失量E’S为偏振面垂直于入射面的反射光电失量。
E S为偏振面垂直于入射面的入射光电失量。
分析上式我们发现,由于tan900 =∞,E’P可能为0,及再I1+I2=900时,反射光中可能不含平行分量,及不管入射光是什么状态,反射光都是线偏振光。
由折射定律:sin I1 = n sin I2和I1+I2=900得tan I1= n 时,反射光是线偏振光。
这就是布儒斯特定律,此时的入射角I1我们称为布儒斯特角,它是由材料的折射率决定的。
实验设备:光学实验导轨、滑块、半导体激光器、光学转台,转接杆、光功率计和等边棱镜。
实验步骤:一、棱镜材料折射率的测量1)按下图摆放实验装置。
半个光斑的变化,调整棱镜的位置,使直射部分光斑大小的变化尽量小。
4)在转动光学转台的过程中,从棱镜中出射的光斑的偏转角会发生变化,找到偏转角最小的位置。
5)将功率计探头上的探测光栏置于0.2或0.3mm狭缝处,找到两个光斑中功率最大的位置,通过转台上的刻度,读出两者之间的夹角。
6)将上步的测量值和A=600。
带入公式n=sin[(A+δmin)/2]/sin(A/2)求出棱镜材料的相对折射率。
二、偏振光1)如下图,摆放实验装置,光学转动平台上先不要放置棱镜。
23)将光功率计探头置于φ6光栏处,尽量使光束全部进入探头。
锁紧各个螺钉,特别是转接杆上的。
4)取下1/4波片。
5)转动起偏器,用白屏观察起偏器后光强的变化,并使光强相对较大(半导体激光近似为线偏振光)。
6)转动检偏器,观察检偏器后的光强变化,用功率计监视功率,仔细调整检偏器,找到功率指示值最小的位置,此时系统处于消光状态,起偏器和检偏器相互垂直,记录下检偏器的相对位置(角度值)。
7)转动检偏器,记录下角度变化与功率的关系(每10—20度测量一次)。
8)画出角度与功率曲线,验证是否符合马吕斯定律I=I。
Cos2α9)重新使系统进入消光状态,在起偏器和检偏器之间插入1/4波片。
此时系统将有光通过。
转动1/4波片,使系统重新进入消光状态。
此时1/4波片的光轴与起偏器的偏振方向平行。
10)以每次15度的间隔转动1/4波片,用检偏器和功率指示计检测透过光的偏振态,体会1/4波片的作用和作用机理。
11)将1/4波片置于45度角的位置,使出射光为圆偏振光。
12)在光学转动平台上放置好棱镜,使玻璃表面穿过转动平台中心。
13)转动平台,使棱镜表面垂直与入射光(观察反射光的位置)。
记下此时转动平台的位置。
14)再次转动平台,用转接杆追踪反射光斑,并观察测量反射光的偏振态,了解入射角与偏振态的关系,找到反射光为完全线偏振光的位置。
此时的入射角为布儒斯特角。
与计算结果相比较。
15)此时可确定起偏器的偏振方向。
附:激光功率计使用说明书OPT-1A型激光功率指示计是一种数字显示的光功率测量仪器,采用硅光电池作为光传感器,针对650nm波长的激光进行了标定,用于测量该波段的激光功率。
如图:前面板1、表头:3位半数字表头,用于显示光强的大小。
2、量程选择钮:分为200uW、2mW、20mW、200mW四个标定量程和可调档;测量时尽量采用合适的量程,如测得的光强为1.732mW,则采用2mW量程。
可调档显示的是光强的相对值。
3、调零:调零时应遮断光源,旋动调零旋钮,使显示为零,调零完毕。
后面板探头12档光栏盘探头说明:1、该光探头在硅光电池前加上一多结构光栏,可用于光斑定位,光强分布、光斑结构测量等。
2、结构分别为圆孔和细缝;圆孔直径为0.5、1.0、2.0、3.0、4.0、6.0mm,缝宽0.2、0.3、0.4、0.8、1.2mm。
3、在使用时,用此探头与OPT-1A型激光功率指示计连接即可,用户根据实际测量需要,采用相应的采光档位(硅光电池置于光栏正上方)。
1、电源开关按钮:电源开关(220VAC)。
2、LD插座:本功率指示计可作为我公司生产的半导体激光器的电源。
3、光探头插座:与光探头相连接。
4、探头:内置硅光电池,与光探头插座相连接。
使用方法:1)连接好激光探头和220v电源(均在后面板上)2)打开后面板上的电源开关,数值表头亮3)将激光探头对准被测的激光束,使光束进入测量孔。
4)根据光功率的大小选择适当的量程。
量程刻度上的值为该量程可测量的最大值,如200μW是指该档最大测量200μW的激光功率,单位为微瓦,当光功率大于该档最大指示值时,表头溢出显示“1”。
5)仪器量程分为200μW、2mW、20mW、200mW和可调档5个量程。
当波段开关打到可调档时,连接的电位器可改变表头指示。
该档主要用于测量相对值,如要测量两束光的功率比值或光强分布等。
6)调零电位器是用于调整仪器的“0”点的。
即在无光照时,应将仪器的指示值调为“0”。
7)本功率指示计后面板还提供了一个半导体激光电源插座,可为我公司的半导体激光器提供电源。