23-2-多项式环Polynomial Rings
- 格式:pptx
- 大小:1.45 MB
- 文档页数:9
摘要本文主要以多项式环的运算性质为基础,讨论了多项式环的一些重要的性质.通过推广,得出了幂级数环的一些性质.关键字:环上一元多项式环;环上多元多项式环;幂级数环ABSTRACTThis article mainly discusses some important nature of the polynomial ring that is based on the operational properties of it.By means of generated, we can obtain the nature of infinite polynomial with coefficients in a ring.Key words:Polynomial with coefficients in a ring with one variable;The polynomial with coefficients in a ring with variables;Infinite polynomial with coefficients in a ring目录第一章引言 (1)第二章一元多项式环 (3)2.1一元多项式环的定义 (3)2.2一元多项式环的运算 (6)第三章环上多项式的性质 (9)3.1环上的一元多项式的性质 (9)3.2环上多元多项式的性质 (12)3.3环上幂级数环的性质 (13)第四章总结 (17)参考文献 (19)致谢 (21)第一章引言多项式是代数学中所研究的基本对象之一,它不但与高次方程的讨论有关,而且在进一步学习代数以及其他数学分支时也都会碰到.但我们一般对多项式的讨论,总是在一个预先定的数域作为前提.数学渐渐进步,我们发现可以对若干不是数的事物,用类似数的普通计算方法来加以计算,我们后来碰到的环就是其中一种.由此我们便可以把数域上的多项式推广到任意环上的多项式,从而得到一类特殊的多项式——环上多项式.对环上多项式定义加法和乘法两种运算,由环定义,我们可以得到一类特殊的环——环上多项式.在抽象代数中,多项式环推广了初等数学中的多项式.一个环R上的多项式环是由系数在R中的多项式构成的环,其中的代数运算由多项式的乘法与加法定义.在数域上,多项式在加法适合交换律、结合律,对乘法适合交换律、结合律和消去律,同时乘法对加法适合交换律.在环上,多项式对以上定理基本上成立,但乘法交换律和消去率在环上不成立.如果环是一个有单位的交换环,那么交换律在环上是成立的,可消去律是不成立的.幂级数是多项式的延伸,是把多项式从有限项扩展到了无限项.环上多项式与数域上多项式存在许多相同和不同之处,同样,环上幂级数与数域上幂级数存在许多相同之处. 在本文中,重点讨论了环上多项式的一些特殊的性质.第二章 一元多项式环2.1一元多项式环的定义定义2.1.1 设K 是一个数域,x 是一个不定元.下面的形式表达式2012()n n f x a a x a x a x =+++++(其中012,,,...a a a 属于K ,且仅有有限个不为0)称为数域K 上的一个不定元x 的一元多项式.数域K 上一个不定元x 的多项式的全体记作[]K x .下面定义[]K x 内加法、乘法如下: 加法 设20122012(),(),f x a a x a x g x b b x b x =+++=+++则定义2001122()()()()()f x g x a b a b x a b x +=++++++为()f x 和()g x 的和. 乘法 设20122012(),(),f x a a x a x g x b b x b x =+++=+++令011220(0,1,2,...)k k k k k c a b a b a b a b k --=++++=定义2012()(),f xg x c c x c x =+++为()f x 和()g x 的乘积.容易验证,上面定义的加法、乘法满足如下运算法则: (1) 加法有交换律:()()()()f x g x g x f x +=+;(2) 加法有结合律:(()())()()(()())f x g x h x f x g x h x ++=++;(3)20()000x x x =+++称为零多项式,满足()0()()(()[])f x x f x f x K x +=∀∈ ;(4) 2012()f x a a x a x ∀=+++,都有逆元2012()()()f x a a x a x -=-+-+-+,使得()(())0f x f x +-=;(5) 乘法有交换律:()()()()f x g x g x f x ⋅=⋅;(6) 乘法有结合律:(()())()()(()())f x g x h x f x g x h x ⋅=⋅;(7) 2()100I x x x =+++称为(乘法的)幺元,使得()[]f x K x ∀∈有()()()f x I x f x =;(8) 加法与乘法有分配律:()(()())()()()()f x g x h x f x g x f x h x +=+;(9) 乘法有消去律:如果()()()()f x g x f x h x ⋅=⋅且()0f x ≠,那么()()g x h x =.定义2.1.2 []K x 连同上面定义的加法与乘法,称为数域K 上的一元多项式环.下面我们把数域上的多项式扩广到任意环上的多项式.设0R 是一个含有单位元01R 的可变换环.又设R 是0R 的子环且R R ∈01,现考察0R 中含R 及任取一元素0R ∈α的最小子环:[]()⎭⎬⎫⎩⎨⎧∈==∑是非负整数n R a a a f R i ii ,αα显然每个()0100R a a a a f n n ni i i ∈+++==∑=αααα .定义2.1.3 如上形式的()αf 每个元素都叫做R 上关于α的一个多项式,而每个i a 都叫做该多项式()αf 的系数.下面我们希望能将[]αR 做成一个环.事实上([]αR 是0R 的一个子环)()()∑∑====∀nj j j mi ii b g a f 0,αααα, 定义规则如下:(当m n <)()()()∑=+=+nj j j j b a g f 0ααα, 必定假设 021====++n m m a a a .()(),000∑∑∑+====⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⋅m n k k k n j jj m i i i C b a g f ααααα其中∑=+=kj i ji k ba C又 ()()∑∑==-=-=-mi i i mi ii a a f 0ααα可知()()()()()[]ααααααR g f f g f ∈⋅-+,,∴ []R α确定是一个环. (是含R 和α的最小的子环)定义2.1.4 如果上方得到的环[]R α叫做R 上的α的多项式环.显然[]αR 是0R 的一个子环,但R 中每个多项式()αf 的表达形式未必唯一.譬如,设Z R =,而R R =∈=02α. 那么Z 中的零元()()2222200+-=+=α.∴ 0的表达式不唯一.换句话说:上述定义的多项式环中会出一种现象:()02210=++++=n n a a a a f αααα ,但系数n a a a a ,,,,210 不全为零.这显然与高等代数中多项式的零多项式的定义相矛盾.于是,我们有必要对0R ∈α做如下的讨论.定义2.1.5 设R R ,0和α如前所示,称α为R 的一个未定元(超越元),若在R 中找不到 不全为零的元素n a a a ,,,10 使()*=∈∀=++++=∑N n a a a a a n n ni i i ,022100αααα ( 即 002100=====⇔=∑=n ni i i a a a a a α ) .否则称α为R 上的代数元.习惯上,记R 上的未定元为x .有上述的理论做“底子”,现可以定义多项式()x f 的其他运算问题.2.2一元多项式环的运算设R 是有单位元的交换环,x 是一个不定元,形如2012n n a a x a x a x +++⋅⋅⋅+的元叫做环的一个多项式,其中012,,,,n a a a a R ⋅⋅⋅∈,n 是非负整数.为了表示这种和是有限元的,也可用下式表示:i i a x <∞∑,其中规定01x =,将环R 上的所有一元多项式构成的集合表示为[]R x ,并定义如下加法和乘法:()()()()()()i j ki j kk iji j ki j ki j i j ijki j ka x a x ab x a x a x a b x αβαβ+=+=+=+=+⋅==∑∑∑∑∑∑∑对于这样的定义加法与乘法运算具有如下一些性质:(1)加法适合交换律,即对(),()[]f x g x R x ∀∈,必有()()()()f x g x g x f x +=+. 证明:设2012()n n f x a a x a x a x =+++⋅⋅⋅+,2012()n n g x b b x b x b x =+++⋅⋅⋅+,则2001122()()()()()()n n n f x g x a b a b x a b x a b x +=++++++⋅⋅⋅++, 2001122()()()()()()n n n g x f x b a b a x b a x b a x +=++++++⋅⋅⋅++;由于环对于加法来说是一个加群,所以0000a b b a +=+,1111a b b a +=+,n n n n a b b a +=+,故()()()()f x g x g x f x +=+.(2)加法适合结合律,即对(),(),()[]f x g x h x R x ∀∈,必有(()())()()(()())f x g x h x f x g x h x ++=++.证明:设2012()n n f x a a x a x a x =+++⋅⋅⋅+,2012()n n g x b b x b x b x =+++⋅⋅⋅+,0()h x c =+212n n c x c x c x ++⋅⋅⋅+,则000111(()())()[()][()][()]n n n n f x g x h x a b c a b c x a b c x ++=++++++⋅⋅⋅+++, 000111()(()())[()][()][()]n n n n f x g x h x a b c a b c x a b c x ++=++++++⋅⋅⋅+++,由于环R 对于加法来说是一个加群,所以000000()=()a b c a b c ++++,111()=a b c ++111()a b c ++,⋅⋅⋅,()=()n n n n n n a b c a b c ++++故(()())()()(()())f x g x h x f x g x h x ++=++.(3)乘法适合交换律,即对(),()[]f x g x R x ∀∈,必有()()()()f x g x g x f x =. 证明:设2012()n n f x a a x a x a x =+++⋅⋅⋅+,2012()n n g x b b x b x b x =+++⋅⋅⋅+,等式左边()()f x g x 中s 次幂项系数为:i ji j sa b+=∑,等式右边()()g x f x 中s 次幂项系数为:j ii j sb a +=∑.因为环R 适合交换律,所以i j j i a b b a =,ijj ii j si j sa bb a +=+==∑∑,故()()()()f x g x g x f x =.(4)乘法适合结合律,即对(),(),()[]f x g x h x R x ∀∈,必有(()())()()f x g x h x f x ⋅⋅=⋅(()())g x h x ⋅.证明:设2012()n n f x a a x a x a x =+++⋅⋅⋅+,2012()n n g x b b x b x b x =+++⋅⋅⋅+,01()h x c c x =+22n n c x c x ++⋅⋅⋅+,等式左边()()f x g x ⋅中s 次幂项系数为:i j i j sa b +=∑,因此左边t 次幂项系数为:()i jki j k s k t i j ki j k ta b ca b c +=+=++==∑∑∑;等式右边()()g x h x ⋅中r 次幂项系数为:j kj k rb c+=∑因此右边t 次幂项系数为:()ij ki j k i r tj k ri j k ta b c a b c +=+=++==∑∑∑,与左边的t 次幂项系数一样,所以左边等于右边,这就证明了乘法满足结合律.(5)乘法对加法适合结合律,即对(),(),()[]f x g x h x R x ∀∈,必有()(()())f x g x h x +=()()()()f x g x f x h x +.证明:设2012()n n f x a a x a x a x =+++⋅⋅⋅+,2012()n n g x b b x b x b x =+++⋅⋅⋅+,01()h x c c x =+22n n c x c x ++⋅⋅⋅+,由乘法和加法的定义,等式左边()(()())f x g x h x +中k 次幂项的系数为()ijj i jiji j ki j k i j ka bc a b a c+=+=+=+=+∑∑∑,同样,等式右边()()()()f x g x f x h x +中k 次幂项的系数为ijiji j ki j ka b a c+=+=+∑∑,所以()(()())()()()()f x g x h x f x g x f x h x +=+.但是环R 上的多项式和数域上的多项式也存在许多不同之处,例如:环R 上的多项式对乘法不适合消去率.集合[]R x 中的元素,对于上面定义的加法和乘法运算,显然是一个环,我们称它为环R上的一元多项式环,记作[]R x.第三章 环上多项式的性质一般环上的多项式是不可逆的.本章将探讨一类非整环上的可逆多项式存在问题,也讨论了有限项多项式环上以及无限项的幂级数环上的性质.3.1环上的一元多项式的性质首先,我们称[]R x 中次数为零的可逆元(即R 的可逆元)为平凡可逆元, 次数不为零的可逆元为非平凡可逆元.我们先叙述一个后面将多次用到的事实.定理3.1.1 设R 是一个有单位元1的交换环.a 是R 的一个幂零元,那么1a +是R 中一个可逆元,并且由此推出,环R 的幂零元与可逆元之和是R 的可逆元.证明:若0,a =引理显然成立.假定0,a ≠必有某正整数n ,使0na =.由初等数学知,有如下两种情形:1)若n 为偶数,2,n k =那么有 222111(1)(1)kk aa a a a -=-=+-+-⋅⋅⋅-2)若n 为奇数,21n k =+,那么有 212211(1)(1)k k aa a a a +=+=+-+-⋅⋅⋅+无论哪种情形,1a +右边的因子都不等于零.又由于R 是交换的,故1a +为可逆元. 下面证明第二个断言.由于R 是交换的,故易知R 中可逆元与幂零元之积是幂零元,可逆元与可逆元之积是可逆元.令b 是R 中一个可逆元,于是1b a R -∈是一个幂零元.按前证,11b a -+是可逆元.所以 1()b I b a b a -+=+是可逆元,即证明了可逆元与幂零元之和为可逆元.定理证毕.定理 3.1.2 设01,0,nn n f a a x a x a =++⋅⋅⋅+≠是[]R x 中的一个多项式.那么,f 在[]R x 中可逆的充分必要条件是0a 为R 中的可逆元,12,,,n a a a ⋅⋅⋅为幂零元.证明:如果f 是[]R x 中的可逆多项式.设它的逆为01,mm g b b x b x =++⋅⋅⋅+不妨假定.n m ≤于是有200121.n mn m fg a b P x P x P x++==+++⋅⋅⋅+ 因为x 是不定元,由定义得 001,0,1,2,,.i j kj k ia b P a bi m n +=====⋅⋅⋅+∑我们对r 使用归纳法证明10()r n m r a b r n +-=≤ b.当r 为0时,0,n m a b =因为0.n m n m a b P +==假定对r <的一切自然数t 都有11t n m a b +-.考察乘积fg 中x 的n m r +-次项的系数n m r P +-,我们有10n m rn m r j n m r j n rP a b +-+-+--=-==∑1111.n r m n r m n m r n m r a b a b a b a b --+---+-=++⋅⋅⋅++等式两端乘以rn a ,因为R 是可交换环,由归纳假设,可得0r n n r m n r n m a a b a a b --==.221111110,,r r r n n r m n r n n m n n m r a a b a a a b a a b --+--+---+==⋅⋅⋅(1)11(1)0r n n m r a a b -+---==,从而由上面等式的最后一项得10r n m r a b +-=.所以对于一切自然数r n ≤,都有10r n m r a b +-=成立,特别的,当r n m ==时,就得 100m n a b +=.已有001a b =,知0a 为可逆元.同时0b 也是可逆元.即有10b -存在,于是由上面最后的等式知10m na +=,从而n a 与n n a x 为幂零元.令1nn f f a x =-,这是一个可逆元与幂零元的和式,故知1f 为可逆元.但101f a a x =++⋅⋅⋅11n n a x --+,与上面证明n a 为幂零元的过程完全一样,在1f 为可逆元的条件下可以证得1n a -为幂零元,…,如此逐步证明下去,我们就得到11,,,n n a a a -⋅⋅⋅都是幂零元.反之,假定在01nn f a a x a x =++⋅⋅⋅+中,0a 为可逆元,12,,,n a a a ⋅⋅⋅为幂零元,那么,因为212,,,n n a x a x a x ⋅⋅⋅都是幂零元,由引理,显然易得多项式01n n f a a x a x =++⋅⋅⋅+是可逆的,即充分性得证.这个定理指出了,一类有幂零元零因子的非整环上的多项式环,可能有非平凡的可逆多项式.定理同时给出了一个在这种环上的可逆多项式的判别法则. 下面我们给出一个例子.考虑剩余类环m Z ,这里1212t a a at m p p p =⋅⋅⋅为整数,i p 是互不相等的素数,0i a >为整数.若,(,)1a Z a m ∈=,则m a Z ∈为可逆元.m b Z ∈为幂零元的充要条件是可写 21,t b kp p p k Z =⋅⋅⋅∈易知m Z 中幂零元的个数是1211112t a a a t s p p p ---=⋅⋅⋅.如果121t a a a ===,那么m Z 中仅有1s =个幂零元,没有其他非零的幂零元,m Z 为整环.我们考虑m Z 为非整环的情形.若对某1(1),i m a i t Z >≤≤中有非零的幂零元,由前面我们证明的定理知.[]m Z x 中有非平凡的可逆元(多项式),这些可逆多项式形如01mii i a b x =+∑其中021(,)1,,i i t i m a m b k p p p k Z ==⋅⋅⋅∈,即0a 是m Z 中的可逆元,i b 是m Z 中的幂零元. 特别值得一提的是,当12,1i a i t ≤≤≤≤时,[]m Z x 中次数不高于一个定数u 的一切 可逆元关于此环的乘法作成一个有限群.读者可自行验证之.回到开头提出的问题.若D 是一个整环,那么,D 上不定元x 的多项式环[]D x 中的可逆多项式就是D 中的可逆元素即[]D x 中的“零次”多项式.因此时D 中仅有唯一的幂零元0.于是我们直接得出与通常整环上相一致的结果.定理3.1.3 多项式f 是幂零的当且仅当它的所有系数都是幂零的.证明:(1)先证“充分性”.我们易证,如果,m n 是幂零元,则m n ±也是幂零元.f 是幂零元,显然0a 是幂零元,则有1012()n n f a x a a x a x --=++⋅⋅⋅+是幂零元.令112n n g a a x a x -=+++⋅⋅⋅+,则g 也是幂零元,那么1a 必为幂零元.依此类推可知01,,,n a a a ⋅⋅⋅是R 中的幂零元.(2)再证“必要性”.01,,,n a a a ⋅⋅⋅是R 中的幂零元,那么01,,,nn a a x a x ⋅⋅⋅也是[]R x 中的幂零元,因为,m n 是幂零元,则m n ±也是幂零元.所以可以推出f 是[]R x 的幂零元. 下面我们给出一个可逆多项式的判别法则.首先约定,后面提到的多项式的系数环,乃指有单位元的可交换环,不论其有无零因子.定理3.1.4 f 是[]R x 的零因子当且仅当有R 中的非零元a ,使得0af =. 证明:(1)先证“充分性”,显然成立.我们来证明必要性.(2)“必要性”.考察最低次得多项式01m m g b b x b x =++⋅⋅⋅+,使得0fg =.由于0()0m nki j k i j kfg a b x +=+===∑∑,由定理3.1.2可知0n m a b =,可以推出0n a g =;否则n a g 将是次数小于m 的零化f 的多项式,这就矛盾.由110n m n m a b a b --+=及0n m a b =可得210n m a b -=.于是得到10n a g -=.否则1n m a b g -将是次数小于m 的零化f 的多项式,这也矛盾. 依此类推可得:0n r a g -= 0r n ≤≤由于0g ≠,故01,,,m b b b ⋅⋅⋅中必有一元素不为零,令0i b ≠,由前边的证明可知:0i j a b =0,1,,i n =⋅⋅⋅.所以令j a b =,就有0af =.推论3.1.1 环R 是整环当且仅当[]R x 是整环.3.2环上多元多项式的性质同环上一元多项式一样,环上的多元多项式也具有一些类似的性质.设0R 是可变换的幺环,而R 是0R 的子环且R R ∈01.现任取0R 中n 个元素12,,,n x x x ⋅⋅⋅,我们可以依次做如下工作:首先作R 上的1x 的多项式环1[]R x , 再作2[]R x 上的2x 的多项式环 12[][]R x x ,最后作上12[][][]n R x x x ⋅⋅⋅的n x 的多项式环1[][].n R x x 其中, ()1212,,,[][][]n n f x x x R x x x ∀⋅⋅⋅∈⇒121212n n i i i i i i na x x x =∑ 其中,,21R a n i i i ∈ 系数只有有限个0≠.定义3.2.1 上述描述的每个()12,,,n f x x x ⋅⋅⋅称为R 上的12,,,n x x x ⋅⋅⋅的多元多项式,而每个n i i i a 21叫做()12,,,n f x x x ⋅⋅⋅的系数.习惯上, R 上的12,,,n x x x ⋅⋅⋅的多项式环1[][]n R x x 写成12[,,,]n R x x x ⋅⋅⋅. 对于多元多项式环中加法和乘法的运算为:(11211n nni i i i i n i i a xx ∑)11211n j n j nj j j j n j b x x ⎛⎫+ ⎪ ⎪⎝⎭∑ ()11111nnnni i i i i i ni i ab xx =+∑(11211nn n i i i i i ni i a xx ∑)(1111n n n j j j j n j j bxx ∑)1111nn nk k k k nk k cxx =∑ 其中,111nn nm m mk k i i j j i j k c a b +==∑定理3.2.1 a 是12[,,,]n R x x x ⋅⋅⋅中的幂零元,那么f 的常数项必为幂零元.证明:a 为的f 常数项,那么1()f a f x =+且112()[,,,]n f x R x x x ∈⋅⋅⋅.因为f 为12[,,,]n R x x x ⋅⋅⋅中的幂零元,则存在n Z ∈,使得0n f =,即1(())n n f a f x =+.由1(())na f x +展开可知,n f 的展开式中只有n a 为常数项,于是2()n n f a f x =+,2()f x 为含有不定元得所有项.若0n f =,则必有0n a =,所以a 必为幂零元.3.3环上幂级数环的性质在以上章节中,我们讨论了有限项的多项式,下面我们来讨论项数无限的幂级数环的性质.定义3.3.1 R 设是有单位元的交换环,x 是一个未定元,系数取自环R 的幂级数有如下表达式:2012n n a a x a x a x +++⋅⋅⋅++⋅⋅⋅其中012,,,,,n a a a a ⋅⋅⋅⋅⋅⋅是环R 中的元素,n 是非负整数,上式也可表示为0i i i a x ∞=∑,并规定01x =.在环R 中所有的幂级数构成的集合[]R x ,并定义如下加法和乘法:000()()()()()()ijki j k k i j k i j ki j k k i j k i j ka xb x a b x a x b x a b x ∞∞∞===∞∞∞===+=+=+=∑∑∑∑∑∑∑定义3.3.2 所有系数在环R 上的幂级数全体构成的集合称为R 上的幂级数环[]R x .同环上多项式一样,环上幂级数也具有一些类似的性质,设R 是有单位元的交换环,而[]R x 是系数属于R 的一个未定元x 幂级数环. 令2012[]n n f a a x a x a x R x =+++⋅⋅⋅++⋅⋅⋅∈ ,定理3.3.1 若0a 是R 中的可逆元,则f 是[]R x 的可逆元.证明:把2012[]n n f a a x a x a x R x =+++⋅⋅⋅++⋅⋅⋅∈变成0()f a xg x =+的形式,则()[]g x R x ∈.因为0a 是R 中的可逆元,我们用待定系数法来求一个1101()f a xg x -=+使得11ff =.设2012();g x x x βββ=+++⋅⋅⋅21012()g x x x γγγ=+++⋅⋅⋅ i γ待定,则方程组:1000010100101020110201001100000n n n n a a a a a a a a γβγβγβγβγβγβγβγβγβ------+=++=+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅⋅⋅++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅可逐次求出012,,,γγγ⋅⋅⋅⋅⋅⋅.所以1f 存在.故当2012n n f a a x a x a x =+++⋅⋅⋅++⋅⋅⋅,0a 为R 中的可逆元时,f 是[]R x 的可逆元.定理3.3.2 如果f 是[]R x 的幂零元,那么对于一切0n ≥,n a 都是幂零元.证明:因为f 是[]R x 的幂零元,则存在0n >,使得0()0nn n n n f a x ∞===∑,则00na =,所以0a 是幂零元.于是可以得出0f a -也是幂零元. 又因为20123()()f a x a a x a x xg x -=+++⋅⋅⋅=,因此2123()g x a a x a x =+++⋅⋅⋅也必为幂零元,故可以得出1a 是幂零元.依此类推可得012,,,a a a ⋅⋅⋅都是幂零元.第四章总结本文从一般的数域上的多项式出发,经过推广,得出在环上的多项式,并通过对环上的多项式定义加法和乘法,得出了环上的多项式环.我们也进一步讨论了多项式的运算性质.而在有单位的交换环上,环上多项式环具有许多与其它环不同的性质,本文着重讨论了具有单位元的交换环上的环上多项式的一些特性.本文首先讨论的是有限项的多项式环,并将其推广至无限项的多项式环上——幂级数环. 同有限项的多项式一样,环上幂级数也具有一些类似的性质.我们根据环R的幂零元与可逆元之和是R的可逆元,得到了[]R x的可逆元和幂零元存在的条件.数域上的多项式环和环上的多项式环存在着许多不同的性质,同样,有限项多项式和无限项多项式也存在着很多联系和区别,这些联系和区别都有待于我们进一步思考.参考文献[1] 北京大学数学系几何与代数教研室代数小组.高等代数(第二版)[M].高等教育出版社,1988.[2] 张禾瑞. 近世代数基础[M] . 北京: 高等教育出版社, 1978.[3] 周伯勋. 同调代数[M]. 科学出版社,1997.[4] 李正师. 多项式代数[M]. 山东人民出版社,1981.[5] 范崇金. 近世代数基础[M]. 哈尔滨工程大学出版社,2008.[6] 辛林. 近世代数[ M] . 北京:当代中国出版社, 2000.[7] 高绪珏. 近世代数[M]. 沈阳:辽宁人民出版社, 1985.[8] 吴品三. 近世代数[M] . 北京:高等教育出版社, 1979.[9] 刘绍学. 环与代数[M] . 科学出版社, 1983.[10] 高绪珏. 近世代数[M]. 沈阳:辽宁人民出版社, 1985.致谢首先,非常感谢欧阳伦群老师对我完成论文这一过程的指导,他渊博的知识,扎实的基础和严谨的科研态度,悉心的指导,才使我的论文能够顺利完成.其次,我要感谢数学学院的老师,他们在我四年的学习中,传授了我宝贵的知识,为我论文的顺利完成打下了基础.同时我也要感谢我所有的同学,在与他们的讨论中我获得了很多知识和启迪.最后,感谢我的家人和朋友给我的支持和鼓励,我一定会继续努力,争取以更优异的成绩回报社会.。
泽尼克多项式(Zernike Polynomials),泽尼克系数什么是Zernike Polynomials通常人们会使用幂级数展开式的形式来描述光学系统的像差。
由于泽尼克多项式和光学检测中观测到的像差多项式的形式是一致的,因而它常常被用来描述波前特性(泽尼克,1934)。
但这并不意味着泽尼克多项式就是用来拟合检测数据的最佳多项式形式。
在某些情况下,用泽尼克多项式来描述波前数据具有很大的局限性。
比如说,当需要考虑空气扰动的时候,泽尼克多项式几乎没有什么价值。
同样地,我们也无法找到一组合适的泽尼克多项式来描述单点金刚石车削加工(single point diamond turning process)中的制造误差。
为了准确地描述圆锥面光学元件(conical optical elements)的对准误差,必须对泽尼克多项式进行修正。
盲目地使用泽尼克多项式来表达检测数据只会导致糟糕的结果。
泽尼克多项式是由无穷数量的多项式完全集组成的,它有两个变量,ρ和θ,它在单位圆内部是连续正交的。
需要注意的是,泽尼克多项式仅在单位圆的内部连续区域是正交的,通常在单位圆内部的离散的坐标上是不具备正交性质的。
泽尼克多项式具有三个和其他正交多项式集不一样的性质。
⒈泽尼克多项式Z(ρ, θ)可以被化解为径向坐标ρ和角度坐标θ的函数,其形式如下:Z (ρ, θ) = R ( ρ) G ( θ),这里,关于角度的函数G(θ)是一个以2π弧度为周期的连续函数,并且满足当坐标系旋转α角度之后,其形式不发生改变,也就是旋转不变性:G (θ+ α) = G ( θ) G ( α)其三角函数集形式如下:G(θ) = e±i m θ这里m是任意正整数或0。
⒉泽尼克多项式的第二个性质是径向函数R ( ρ)(Radial Function)必须是ρ的n次多项式,并且不包含幂次低于m次的ρ方项。
⒊第三个性质是当m为偶数时R(ρ)也为偶函数,m为奇数时,R(ρ)也为奇函数。
第十一章群、环、域11.1半群内容提要11.1.1半群及独异点定义11.1 称代数结构<S,*>为半群(semigroups),如果*运算满足结合律.当半群<S,*>含有关于*运算的么元,则称它为独异点(monoid),或含么半群.定理11.1设<S,*>为一半群,那么(1)<S,*>的任一子代数都是半群,称为<S,*>的子半群.(2)若独异点<S,*,e>的子代数含有么元e,那么它必为一独异点,称为<S,* , e>的子独异点.定理11.2设<S,*>,<S’,*’>是半群,h为S到S’的同态,这时称h为半群同态.对半群同态有(1)同态象<h(S),*’>为一半群.(2)当<S,*>为独异点时,则<h(S),*’>为一独异点.定理11.3设<S,*>为一半群,那麽(1)<S S,○ >为一半群,这里S S为S上所有一元函数的集合,○为函数的合成运算.(2)存在S到S S的半群同态.11.1.2自由独异点定义11.2称独异点<S,*,e>为自由独异点(free monoid),如果有A⊆S使得(1)e∉A.(2)对任意u∈S,x∈A,u*x≠ e .自由独异点(free monoid),如果有A⊆S使得(3)对任意u,v∈S,x,y∈A,若u*x = v*y,那么u = v,x = y.(4)S由A生成,即S中元素或者为e,或者为A的成员,或者为A的成员的“积”:a i1*a i2*…*a ik (a i1,a i2,…,a ik∈A)集合A称为S的生成集.顺便指出,当半群<S,* >有生成集A={a}时,称<S,* >为循环半群(cyclic semigroups)。
<N,+,0>是循环半群。
近世代数教案西南大学数学与统计学院张广祥学时数:80(每周4学时)使用教材:抽象代数——理论、问题与方法,科学出版社2005教材使用说明:该教材共10章,本课程学习前6章,覆盖通用的传统教材(例如:张禾瑞《近世代数基础》)的所有内容,但本教材更强调抽象代数理论的应用和方法特点。
本教材的后4章有一定难度和深度,可作为本科近世代数(二)续用。
如果不再开设近世代数(二),则可以供有兴趣的学生自学、自读,进一步了解现代代数学更加前沿的内容,拓宽知识面。
教学方法:由于该教材首次在全年级使用,采用教研室集体备课的方式,每2周一次参加教学的教师集体研讨备课。
每节配有3—5题常规练习作业。
每章提供适量的(3—4题)思考问题供学生独立思考,学生完成的思考题成绩可记入平时成绩。
整学期可安排1—2次相关讲座,介绍现代代数学的研究方法或研究成果。
本学期已经准备讲座内容:群与Goldbach猜想。
教学手段:黑板板书与Powerpoint 课件相结合。
主要参考书:1.张禾瑞,近世代数基础,1952第一版,1978年修订版,高等教育出版社2.刘绍学, 近世代数基础,(面向21世纪课程教材,“九五”国家级重点教材) 高等教育出版社,19993.石生明, 近世代数初步, 高等教育出版社20024.B.L.Van der Waerden,代数学,丁石孙,曾肯成,郝鈵新,曹锡华译,1964卷1,1976卷2,科学出版社5. M.Kline, 古今数学思想,卷1-4,张理京,张锦炎,江泽涵译,上海科技出版社2002第二章数环与数域本章教学目标:1. 熟悉整数剩余类环的运算,了解整数剩余类环在数论研究中的作用。
2. 数环就是数系,熟悉各种不同形态的数环与数域;有限的、无限的;交换的、不交换的。
3. 学习整环的分式域、素域与扩域的理论。
4. 综合应用数环与数域的初等方法证明欧拉二平方和定理、Lagrange四平方和定理。
5. 本章通过若干数论定理的学习,使学生了解和熟悉环论的初等方法,为第3章与第5章学习系统的扩域理论奠定基础。
(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
泽尼克多项式(Zernik e Polyno mials),泽尼克系数o m i a ls什么是 Z e r n ik e P o l y n通常人们会使用幂级数展开式的形式来描述光学系统的像差。
由于泽尼克多项式和光学检测中观测到的像差多项式的形式是一致的,因而它常常被用来描述波前特性(泽尼克,1934)。
但这并不意味着泽尼克多项式就是用来拟合检测数据的最佳多项式形式。
在某些情况下,用泽尼克多项式来描述波前数据具有很大的局限性。
比如说,当需要考虑空气扰动的时候,泽尼克多项式几乎没有什么价值。
同样地,我们也无法找到一组合适的泽尼克多项式来描述单点金刚石车削加工(single pointdiamon d turnin g proces s)中的制造误差。
为了准确地描述圆锥面光学元件(conica l optica l elemen ts)的对准误差,必须对泽尼克多项式进行修正。
盲目地使用泽尼克多项式来表达检测数据只会导致糟糕的结果。
泽尼克多项式是由无穷数量的多项式完全集组成的,它有两个变量,ρ和θ,它在单位圆内部是连续正交的。
需要注意的是,泽尼克多项式仅在单位圆的内部连续区域是正交的,通常在单位圆内部的离散的坐标上是不具备正交性质的。
泽尼克多项式具有三个和其他正交多项式集不一样的性质。
⒈泽尼克多项式Z(ρ, θ)可以被化解为径向坐标ρ和角度坐标θ的函数,其形式如下:Z (ρ, θ) = R ( ρ ) G ( θ ),这里,关于角度的函数G(θ)是一个以2π弧度为周期的连续函数,并且满足当坐标系旋转α角度之后,其形式不发生改变,也就是旋转不变性:G (θ + α ) = G ( θ ) G ( α )其三角函数集形式如下:G(θ) = e± i m θ这里m是任意正整数或0。
分类号:密级:学校代码:学号:10165200710763逢掌虚可筢大学硕士学位论文⑨域上常循环码和环弓上循环码的迹表达式作者姓名:殷世姣学科、专业:应用数学研究方向:代数编码导师姓名:1玛巧F————一2010年5月学位论文独创性声明本人承诺:所呈交的学位论文是本人在导师指导下所取得的研究成果。
论文中除特别加以标注和致谢的地方外,不包含他人和其他机构已经撰写或发表过的研究成果,其他同志的研究成果对本人的启示和所提供的帮助,均已在论文中做了明确的声明并表示谢意。
学位论文作者签名:—二聋生址学位论文版权的使用授权书本学位论文作者完全了解辽宁师范大学有关保留、使用学位论文的规定,及学校有权保留并向国家有关部门或机构送交复印件或磁盘,允许论文被查阅和借阅。
本文授权辽宁师范大学,可以将学位论文的全部或部分内容编入有关数据库并进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文,并且本人电子文档的内容和纸质论文的内容相一致。
保密的学位论文在解密后使用本授权书。
学位论文作者签名:』拿氐址指导教师签名:—j巳鲎jL签名日期:刈D年上月Ⅻ日辽宁师范大学硕士学位论文摘要本硕士论文分三部分:第一部分:介绍常循环码和环Z.:上循环码的研究成果以及本文的主要工作。
第二部分:首先,给出有限域C上A一常循环码的迹表达式,然后,给出不可约Negacylic码的迹表达式及参数和重量分布,最后,给出具体的例子,证明了循环码的迹表达式对确定循环码的重量分布和了解循环码的结构都有重要的意义。
定理2.3.1:若C是以g(x)∈Fq【x】为生成多项式,以JjI(工)=O“一A)詹(x)为校验多项式的长为刀的q元A一常循环码,令川=m,x删一1=(x“一A)IjlI(z)=g(x)h(x)hl(x),I;lh(x)h,@)=P,(x)p2(x)…P,(x),P。
(x),P2(x)…P,(x)是C【x】中彼此不同的首一不可约多项式,degp,O)=4(1sf≤s),在C的扩域中取多项式P,O)的一个零点a,,则任意码字c=(Co,Cl'.··c川)∈c均存在卢,∈‘由(1≤f≤s)使得q=∑乃(届口j『A)(o≤A≤n-1),其I-i中,互是乞以对于‘的迹映射。