函数概念
- 格式:pptx
- 大小:1.44 MB
- 文档页数:43
1.2.1 函数的概念1.函数的概念(1)函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.比如,甲、乙两地相距30 km,某人骑车从甲地去乙地,速度是12 km/h,出发t小时后行驶的路程是s km,则s是t的函数,记为s=12t,定义域是{t|0≤t≤2.5},值域为{s|0≤s≤30}.对集合{t|0≤t≤2.5}中的任意一个实数,在集合{s|0≤s≤30}中都有唯一的数s=12t和它对应.对函数概念的理解①“A,B是非空的数集”,一方面强调了A,B只能是数集,即A,B中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.②函数的三要素是:定义域、对应关系、值域.定义域就是非空数集A,而值域不一定是非空数集B,而是非空数集B的子集.例如,设集合A={x|x≠0,x∈R},B=R,按照确定的对应关系f:取倒数,对于集合A中的任意一个数x,在B中都有唯一确定的数f(x)和它对应,于是y=f(x)=1x就称为从集合A到集合B的一个函数.此时A是函数y=1x的定义域,而值域D={y|y≠0,y∈R},显然D≠B,但D⊆B.③函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A中的任意一个(任意性)元素x,在非空数集B中都有(存在性)唯一(唯一性)的元素y与之对应.这“三性”只要有一个不满足,便不能构成函数.【例1-1】下列对应或关系式中是A到B的函数的是( )A.A∈R,B∈R,x2+y2=1B.A={1,2,3,4},B={0,1},对应关系如图:C.A=R,B=R,f:x→y=12x-D.A=Z,B=Z,f:x→y解析:对于A项,x2+y2=1可化为y=x∈A,y值不唯一,故不符合.对于B项,符合函数的定义.对于C项,2∈A,但在集合B中找不到与之相对应的数,故不符合.对于D项,-1∈A,但在集合B中找不到与之相对应的数,故不符合.答案:B点技巧判断一个对应关系是否是函数关系的方法从以下三个方面判断:(1)A,B必须都是非空数集;(2)A中任一实数在B中必须有实数和它对应;(3)A中任一实数在B中和它对应的实数是唯一的.注意:A中元素无剩余,B中元素允许有剩余.【例1-2】下列图形中不能确定y是x的函数的是( )解析:y是x的函数,必须满足对于任意给定的x值,y都有唯一确定的值与之对应.图象A,B,C所表示的对应关系能构成函数,因为任意给一个变量x,都有唯一确定的f(x)和它对应.但图象D不是,它表示的对应关系中,对于自变量x,一般都有两个函数值和它对应,不符合函数的定义.答案:D点技巧由图形判断从A到B的对应是否是函数关系有技巧(1)任取一条垂直于x轴的直线l;(2)在集合A中移动直线l;(3)若直线l与集合B所在图形有且只有一个交点,则是函数;否则不是函数.(2)对符号f(x)的理解①f(x)表示关于x的函数,又可以理解为自变量x对应的函数值,是一个整体符号,分开写符号f(x),如f,x,(x)等是没有意义的.符号f可以看作是对“x”施加的某种法则或运算,例如f(x)=x2-x+5,当x=2时,看作对“2”施加了这样的运算法则:先平方,再减去2,最后加上5;②对于f(x)中x的理解,虽然f(x)=3x与f(x+1)=3x从等号右边的表达式来看是一样的,但由于f施加法则的对象不一样(一个为x,而另一个为x+1),因此函数解析式也是不一样的;③函数符号f(x)并不一定是解析式,它可以是其他任意的一个对应关系,如图象、表格、文字、描述等;④f(x)与f(a),a∈A的关系:f(x)表示自变量为x的函数,表示的是变量,f(a)表示当x=a时的函数值,是一个值域内的值,是常量,如f(x)=x+1,当x=3时,f(3)=3+1=4.【例1-3】已知函数f (x )=3x 2-5x +2.(1)求f (3),(f ,f (a ),f (a +1);(2)若f (x )=0,求x .分析:(1)直接将自变量的值代入函数关系式计算求解;(2)已知函数值为0,建立关于自变量x 的方程,求解即可.解:(1)f (3)=3×32-5×3+2=14,f()=3×()2-5×()+2=8+,f (a )=3a 2-5a +2,f (a +1)=3(a +1)2-5(a +1)+2=3a 2+a .(2)∵f (x )=0,∴3x 2-5x +2=0,解得x =1或23x =.辨误区 求函数值易出现的错误 求函数值时,注意将对应的x 的值或代数式整体代入函数关系式求解,否则容易导致错误,例如本题容易将f (a +1)误解为f (a )+1,从而得出f (a =1)=3a 2-5a +3的错误结论.【例1-4】已知函数1()1f x x =+,g (x )=x 2+2,则f (g (2))=__________,g (f (2))=__________.解析:g (2)=22+2=6,f (g (2))=f (6)=11167=+,f (2)=11123=+,g (f (2))=21133g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+2=199. 答案:17 199 点技巧 函数值的求法 求函数值时,首先要确定函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f (g (x ))型的求值,按“由内到外”的顺序进行,要注意f (g (x ))与g (f (x ))的区别.2.区间区间是数学中表示“连续”的数集的一种形式.设a ,b 是两个实数,而且a <b .我们规定:(1)满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a ,b ];(2)满足不等式a <x <b 的实数x 的集合叫做开区间,表示为(a ,b );(3)满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的端点.其中a 叫做左端点,b 叫做右端点. 实数集R 可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(-∞,b ],(-∞,b ).谈重点(1)区间的左端点必须小于右端点,有时我们将b-a称之为区间长度,对于只有一个元素的集合我们仍然用集合来表示,如{a}.(2)对于一个点的集合,可以在数轴上用一个实心点表示.(3)用数轴来表示区间时,要特别注意实心与空心的区别.(4)对于一个不等式的解集,我们既可以用集合形式来表示,也可以用区间形式来表示,而对于取值范围,则既可以用区间也可以用集合,还可以用不等式直接表示.(5)由于区间是集合的一种形式,因此对于集合的运算和集合中的符号仍然成立.如x [2,+∞),[0,6) [-1,3]=[0,3]等.(6)区间是实数集的另一种表示方法,要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆.(7)无穷大是一个符号,不是一个数.以“-∞”或“+∞”为区间一端时,这一端必须是小括号.【例2-1】将下列集合用区间表示出来.(1){x|x≥-1}; (2){x|x<0};(3){x|-1<x≤5}; (4){x|0<x<1,或2≤x≤4}.解:(1){x|x≥-1}=[-1,+∞). (2){x|x<0}=(-∞,0).(3){x|-1<x≤5}=(-1,5]. (4){x|0<x<1,或2≤x≤4}=(0,1) [2,4].【例2-2】已知区间[-2a,3a+5],求a的取值范围.解:由题意可知3a+5>-2a,解之得a>-1.故a的取值范围是(-1,+∞).3.函数相等如果两个函数的定义域...相同,并且对应关系....完全一致,我们就称这两个函数相等.释疑点 满足什么条件的两个函数相等 (1)由函数的定义可知,函数的三要素为:定义域、对应关系、值域.当两个函数的三要素对应相同时,这两个函数是相等的,但由于函数的值域是由定义域和对应关系决定的,因此当两个函数的定义域和对应关系相同时,它们的值域也一定相同.故只要两个函数的定义域相同,并且对应关系完全一致,那么这两个函数就相等.(2)当两个函数的定义域和值域分别相同时,这两个函数不一定是同一函数,因为函数的定义域和值域不能唯一确定函数的对应关系,例如:函数f (x )=x 和函数f (x )=-x 的定义域相同,均为R ;值域也相同,均为R ,但这两个函数不是同一函数.【例3-1】下列函数与函数g (x )=2x -1(x >2)相等的是( )A .f (m )=2m -1(m >2)B .f (x )=2x -1(x ∈R )C .f (x )=2x +1(x >2)D .f (x )=x -2(x <-1)解析:对于A 项,函数y =f (m )与y =g (x )的定义域与对应关系均相同,故为相等的函数;对于B 项,两函数的定义域不同,因此不是相等的函数;对于C 项,两函数的对应关系不同,因此不是相等的函数;对于D 项,两函数的定义域与对应关系都不相同,故也不是相等的函数. 答案:A【例3-2】判断下列各组中的函数f (x )与g (x )是否表示同一个函数,并说明理由.(1)f (x )=x 2,g (x )=(x +1)2; (2)f (x )=(x -1)0,g (x )=1;(3)f (x )=x ,g (x ) (4)f (x )=|x |,g (x ).分析:求出函数f (x )与g (x )的定义域,若两者定义域不同,则两函数不为同一函数;若定义域相同,分别化简f (x )与g (x )的解析式,若化简后两者解析式相同,则两函数为同一函数,否则两函数不为同一函数.解:(1)定义域相同都是R ,但是它们的解析式不同,也就是对应关系不同,故不是同一个函数.(2)函数f (x )的定义域是{x |x ≠1},函数g (x )的定义域为R ,它们的定义域不同,故不是同一个函数.(3)定义域相同都是R ,但是f (x )=x ,g (x )=|x |,即它们的解析式不同,也就是对应关系不同,故不是同一函数.(4)定义域相同都是R ,解析式化简后都是y =|x |,即对应关系相同,那么值域必相同,这两个函数的三要素完全相同,故是同一个函数.辨误区 判断两个函数是否相等易忽略两点(1)判断两个函数是否相等的唯一依据是它的定义,即由定义域和对应关系是否相同确定,而与它们解析式中用什么符号表示自变量或函数无关,例如函数y =f (x ),x ∈A 与函数u =f (t ),t ∈A 是同一函数;(2)为了便于判断两个函数是否是同一个函数,对复杂的解析式可先化简再比较,但要注意化简前后的等价性,如f (x )=x 2-4x -2,不能写成f (x )=x +2,而应当是f (x )=x +2(x ≠2);g (x )=x 2,不能写成g (x )=x ,而应当是g (x )=|x |,这是容易出错的地方,要特别重视.4.具体函数定义域的求法函数的定义域是自变量x 的取值范围,如果未加特殊说明,函数的定义域就是指使函数关系式有意义的x 的取值范围,但在实际问题中,函数的定义域还要受到实际意义的制约.(1)求具体函数定义域的原则和方法主要有:①若f (x )为整式,则其定义域为实数集R .②若f (x )是分式,则其定义域是使分母不等于0的实数的集合.③若f (x )为偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合.④若f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分都有意义的实数的集合,即交集.⑤实际问题中,定义域要受到实际意义的制约.(2)求给出解析式的函数的定义域的步骤为:①列出使函数有意义的x 所适合的式子(往往是一个不等式组);②解这个不等式组;③把不等式组的解表示成集合(或者区间)作为函数的定义域.【例4】求下列函数的定义域:(1)y = (2)0(1)||x y x x +=-;(3)1y x=. 解:(1)因为要使函数有意义,需1010x -≥⎧⎪⎨≠⎪⎩,⇔10x x ≤⎧⎨≠⎩,⇔x ≤1且x ≠0,所以函数y =(-∞,0) (0,1]. (2)由100x x x +≠⎧⎪⎨-≠⎪⎩,,得1x x x ≠-⎧⎪⎨≠⎪⎩,,因此x <0且x ≠-1. 故原函数的定义域为{x |x <0,且x ≠-1}.(3)因为要使函数有意义,需230,20,0,x x x +≥⎧⎪->⎨⎪≠⎩解得32-≤x <2且x ≠0,所以函数1y x =+的定义域为3,02⎡⎫-⎪⎢⎣⎭(0,2). 辨误区 求函数定义域时两点需注意 (1)求函数定义域的一个基本原则是解析式不能化简.例如,求函数y =x 2x 的定义域时,不能将y =x 2x化简为y =x ,而求得定义域为R 的错误结论;(2)函数的定义域是一个集合,必须用集合或区间表示出来.5.抽象函数的定义域的求法求抽象函数的定义域是学习中的一个难点问题,常见的题型有如下两种:①已知f(x)的定义域,求f(g(x))的定义域;②已知f(g(x))的定义域,求f(x)的定义域.下面介绍一下这两种题型的解法.(1)已知f(x)的定义域,求f(g(x))的定义域.一般地,若f(x)的定义域为[a,b],则f(g(x))的定义域是指满足不等式a≤g(x)≤b的x的取值范围.其实质是由g(x)的取值范围,求x的取值范围.(2)已知f(g(x))的定义域,求f(x)的定义域.函数f(g(x))的定义域为[a,b],指的是自变量x∈[a,b].一般地,若f(g(x))的定义域为[a,b],则f(x)的定义域就是g(x)在区间[a,b]上的取值范围(即g(x)的值域).其实质是由x的取值范围,求g(x)的取值范围.【例5-1】(1)已知函数f(x)的定义域为[1,2],求函数y=f(2x+1)的定义域;(2)已知函数y=f(2x+1)的定义域为[1,2],求函数y=f(x)的定义域;(3)已知函数y=f(2x+1)的定义域为[1,2],求函数y=f(2x-1)的定义域.解:(1)设2x+1=t,由于函数y=f(t)的定义域为[1,2],故1≤t≤2,即1≤2x+1≤2,解得0≤x≤12,所以函数y=f(2x+1)的定义域为10,2⎡⎤⎢⎥⎣⎦.(2)设2x+1=t,因为1≤x≤2,所以3≤2x+1≤5,即3≤t≤5,函数y=f(t)的定义域为[3,5].由此得函数y=f(x)的定义域为[3,5].(3)因为函数y=f(2x+1)的定义域为[1,2],即1≤x≤2,所以3≤2x+1≤5.所以函数y=f(x)的定义域为[3,5].由3≤2x-1≤5,得2≤x≤3,所以函数y=f(2x-1)的定义域为[2,3].点技巧求抽象函数定义域有技巧(1)正确理解函数的定义域就是自变量x的取值范围;(2)运用整体的思想,在同一对应关系f下括号内的范围是一样的,即f(t),f(g(x)),f(h(x))中的t,g(x),h(x)的取值范围相同.【例5-2】若函数f(x)的定义域为[-2,1],求g(x)=f(x)+f(-x)的定义域.分析:f(x)+f(-x)的定义域是指当x在什么范围内取值时,才能使x,-x都在[-2,1]这个区间内,从而f(x)+f(-x)有意义.解:由题意,得2121xx-≤≤⎧⎨-≤-≤⎩,,即-1≤x≤1.故g(x)=f(x)+f(-x)的定义域为[-1,1].6.函数值域的求法(1)常见函数的定义域和值域:①一次函数f(x)=kx+b(k≠0)的定义域是R,值域是R.②反比例函数f (x )=k x(k ≠0)的定义域是(-∞,0) (0,+∞),值域是(-∞,0) (0,+∞).③二次函数f (x )=ax 2+bx +c (a ≠0)的定义域是R .当a >0时,值域是⎣⎢⎡⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a ,+∞;当a <0时,值域是⎝ ⎛⎦⎥⎤-∞,f ⎝ ⎛⎭⎪⎫-b 2a . (2)求函数值域的常用方法.①观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域;如求函数y =4-x 2的值域时,由x 2≥0及4-x 2≥0知4-x 2∈[0,2].故所求的值域为[0,2].②配方法:若函数是二次函数形式即可化为y =ax 2+bx +c (a ≠0)型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间二次函数最值的求法.③换元法:对于一些无理函数,可通过换元把它们转化为有理函数,然后利用有理函数求值域的方法,间接地求解原函数的值域.例如形如y =ax +b ±cx +d 的函数,我们可令cx +d =t ,将函数y 转化为关于自变量t 的二次函数,然后利用配方法求其值域.④分离常数法:将形如y =cx +d ax +b (a ≠0)的函数,分离常数,变形过程为cx +d ax +b=c a (ax +b )+d -bc a ax +b =c a +d -bc a ax +b ,再结合x 的范围确定d -bc a ax +b的取值范围,从而确定函数的值域.(3)求函数的值域没有通用的方法和固定的模式,要靠自己在解题过程中逐渐探索和积累.除了上述常用的方法外,还有最值法、数形结合法等,应注意选择最优的解法.总之,求函数的值域关键是要重视对应关系的作用,还要特别注意定义域对值域的制约.例如,求函数y =2x +1,x ∈(-1,1]的值域.解:画出y =2x +1的图象.由图象可知y =2x +1,x ∈(-1,1]的值域为(-1,3].【例6】求下列函数的值域.(1)y =2x +1,x ∈{1,2,3,4,5}; (2)y 1;(3)y =x 2-4x +6,x ∈[1,5); (4)5142x y x -=+; (5)224321x x y x x -+=--; (6)y =x解:(1)∵x ∈{1,2,3,4,5},∴y ∈{3,5,7,9,11}.∴所求函数的值域为{3,5,7,9,11}.(2)的取值范围求.≥0-1≥-1. ∴函数y-1的值域为[-1,+∞).(3)配方:y =x 2-4x +6=(x -2)2+2,∵x ∈[1,5),由图所示,∴所求函数的值域为[2,11).(4)借助反比例函数的特征求.5142x y x -=+510(42)14442x x +--=+514(42)4442x x +-=+5742(42)x =-+. ∵72(42)x +≠0, ∴y ≠54. ∴函数5142x y x -=+的值域为5,4y y y ⎧⎫∈≠⎨⎬⎩⎭R 且. (5)∵2243(1)(3)321(1)(21)21x x x x x y x x x x x -+---===---++(x ≠1), 又∵17(21)31722212122(21)x x x x x +--==-+++,当x =1时,原式1322113y -==-⨯+. ∴函数224321x x y x x -+=--的值域为12,,23y y y y ⎧⎫∈≠≠-⎨⎬⎩⎭R 且且. (6)设12u x ⎫=≥⎪⎭,则212u x +=(u ≥0), 于是y =212u ++u =2(1)2u +(u ≥0).∵由u ≥0,可知(u +1)2≥1,∴y ≥12. ∴函数y =x1,2⎡⎫+∞⎪⎢⎣⎭. 辨误区 求函数值域易疏忽的问题 (1)求函数值域时一定要注意其定义域的影响,如函数y =x 2-4x +6的值域与函数y =x 2-4x +6,x ∈[1,5)的值域是不同的;(2)在利用换元法求函数的值域时,一定要注意换元后新元取值范围的变化,例如求函数y =xt =y 转化为关于自变量t 的二次函数后,自变量t 的范围是t ≥0.7.函数与集合的综合应用定义域、对应关系和值域是函数的三要素,其中定义域是本节学习的重点和难点.函数的定义域是数集,“连续”的数集常用区间表示,也可以用集合的描述法或列举法表示.因此,函数与集合的综合应用题通常是在函数的定义域与集合的表示法的交会处设置题目.解决此类综合应用问题时,要注意:(1)能够正确求出函数的定义域可以这样理解函数:把函数看成面粉加工厂,那么定义域就是这个工厂的原料——小麦,值域就是这个工厂的产品——面粉.因此,要看这个工厂加工成的面粉质量怎样,那么首先看看其所购原料(小麦)的质量如何.如果小麦质量不过关,再好的加工机加工出来的面粉质量也不过关.同样,讨论函数问题时,要遵守定义域优先的原则,如果求错了函数的定义域,那么无论后面的步骤怎样,本题就必定错了.(2)能正确解决有关集合问题如,能明确集合中的元素,会判断两个集合间的关系,能进行集合的交集、并集和补集运算,会借助于数轴或Venn 图找到解决问题的思路等等.【例7-1】在下列从集合A 到集合B 的对应关系中,不可以确定y 是x 的函数的是( )①A ={x |x ∈Z },B ={y |y ∈Z },对应关系f :x →y =3x ;②A ={x |x >0,x ∈R },B ={y |y ∈R },对应关系f :x →y 2=3x ;③A =R ,B =R ,对应关系f :x →y =x 2;④A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应关系f :(x ,y )→s =x +y .A .①④B .②③④C .②③D .①②④解析:①在对应关系f 下,A 中不能被3整除的数在B 中没有象,所以不能确定y 是x 的函数.②在对应关系f 下A 中的数在B 中有两个数与之对应,所以不能确定y 是x 的函数.③显然y 是x 的函数.④A 不是数集,所以不能确定y 是x 的函数. 答案:D【例7-2】已知函数f (x )=-的定义域是集合A ,函数g (x )=+的定义域是集合B ,若A B =B ,求实数a 的取值范围. 解:要使函数f (x )有意义,自变量x 的取值需满足1010x x ->⎧⎨+>⎩,解得-1<x <1.因此A ={x |-1<x <1}.要使函数g (x )有意义,自变量x 的取值需满足1020a x x a +->⎧⎨->⎩,,解得2a <x <1+a .由于函数的定义域不是空集,所以有2a <1+a ,解得a <1. 因此B ={x |2a <x <1+a }.由于A B =B ,则B ⊆A ,则有11211a a a +≤⎧⎪≥-⎨⎪<⎩,,,解得12-≤a ≤0. 故实数a 的取值范围是12-≤a ≤0,即a ∈1,02⎡⎤-⎢⎥⎣⎦. 8.创新拓展题与本节内容有关的创新拓展题,一般为求值问题,但要求的式子较多,不便或不能一一求解.我们在解决这类问题时,要注意观察所要求的式子,发掘它们之间的规律,进而去化简,从而得出问题的求解方法.例如:已知f (x )=221x x+,求f (1)+f (2)+12f ⎛⎫⎪⎝⎭+f (3)+13f ⎛⎫⎪⎝⎭+f (4)+14f ⎛⎫ ⎪⎝⎭的值.解:根据所求式子特点,猜测f (a )+1f a ⎛⎫ ⎪⎝⎭的值应为定值,下面求f (a )+1f a ⎛⎫⎪⎝⎭的值,f (a )+222222211111111a a a f a a a a a⎛⎫=+=+ ⎪++⎝⎭++=1. 于是f (2)+12f ⎛⎫ ⎪⎝⎭=f (3)+13f ⎛⎫ ⎪⎝⎭=f (4)+14f ⎛⎫ ⎪⎝⎭=1,f (2)+12f ⎛⎫ ⎪⎝⎭+f (3)+13f ⎛⎫⎪⎝⎭+f (4)+14f ⎛⎫⎪⎝⎭=3.又f (1)=12,所以f (1)+f (2)+12f ⎛⎫ ⎪⎝⎭+f (3)+13f ⎛⎫ ⎪⎝⎭+f (4)+14f ⎛⎫⎪⎝⎭=72. 【例8-1】已知a ,b ∈N *,f (a +b )=f (a )·f (b ),f (1)=2,则(2)(3)(1)(2)f f f f ++…+(2012)(2013)(2011)(2012)f f f f +=__________. 解析:分子是f (x ),分母是f (x -1),故先根据f (a +b )=f (a )·f (b ),求出f (x )与f (x -1)的关系,即求出()(1)f x f x -的值,再代入求值. ∵f (a +b )=f (a )·f (b ),f (1)=2, ∴令a =b =1,得f (2)=f (1)·f (1)=4.∴(2)(1)f f =2.∴令a =2,b =1,得f (3)=f (2)·f (1)=8.∴(3)(2)f f =2. 故猜测()(1)f x f x -=2,下面我们具体来求()(1)f x f x -的值. 令a =x -1,b =1,得f (x )=f (x -1+1)=f (x -1)·f (1)=2f (x -1),于是()(1)f x f x -=2(x ≥2,x ∈N *). 故(2)(3)(1)(2)f f f f ++…+(2012)(2013)(2011)(2012)f f f f +=2+2+…+2=2×2 012=4 024. 答案:4 024【例8-2】已知函数f (x )=221x x+. (1)求f (2)与12f ⎛⎫ ⎪⎝⎭,f (3)与13f ⎛⎫⎪⎝⎭;(2)由(1)中求得结果,你能发现f (x )与1f x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现;(3)求f (1)+f (2)+f (3)+…+f (2 013)+12f ⎛⎫ ⎪⎝⎭+13f ⎛⎫ ⎪⎝⎭+…+12013f ⎛⎫ ⎪⎝⎭. 解:(1)∵f (x )=221x x +,∴f (2)=2224125=+,22111225112f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭,f (3)=22391310=+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭. (2)由(1)发现f (x )+1f x ⎛⎫⎪⎝⎭=1.证明如下:f (x )+222211111x x f x x x ⎛⎫ ⎪⎛⎫⎝⎭=+ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭=222111x x x +++=1. (3)f (1)=2211112=+.由(2)知f (2)+12f ⎛⎫ ⎪⎝⎭=1,f (3)+13f ⎛⎫ ⎪⎝⎭=1,…,f (2 013)+12013f ⎛⎫⎪⎝⎭=1, ∴原式=20121140251111 2 012222+++++=+= …个.。
函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。
它在数学和其他领域中有着广泛的应用。
本文将介绍函数的基本概念以及一些常见的函数类型。
1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式表示。
2. 函数的表示方法函数可以通过不同的方式进行表示。
常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。
- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。
图像可以帮助我们更直观地理解函数的性质。
- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。
3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。
函数的值域是指函数的所有可能输出值,即函数的取值范围。
定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。
4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。
线性函数的图像为一条直线,具有常等差的特点。
4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。
幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。
4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。
指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。
4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。
4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
函数的11个概念函数是数学中的一个重要概念,它在数学领域、计算机科学领域和其他许多学科中都有广泛应用。
下面我将详细介绍函数的11个概念。
1. 函数定义函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
对于每个自变量的取值,函数都具有唯一的因变量值。
函数的定义常用函数公式、表格或图像表示。
2. 函数的值域和定义域函数的定义域是所有自变量的取值范围,值域是函数所有可能的因变量值的范围。
在一些情况下,值域和定义域可能有限制。
3. 函数的反函数函数的反函数是指将函数的因变量和自变量进行互换得到的新函数。
反函数可以理解为原函数的逆运算,它可以通过函数的图像关于直线y=x的对称性得到。
4. 函数的奇偶性函数可以根据其图像的对称性来确定奇偶性。
如果函数满足f(-x) = f(x) ,则它是偶函数;如果函数满足f(-x) = -f(x),则它是奇函数。
有些函数既不是偶函数也不是奇函数。
5. 函数的零点函数的零点是指函数取零值的自变量的值。
求函数的零点通常需要解方程f(x) = 0, 通过求解这个方程可以找到函数的零点。
6. 函数的连续性函数的连续性是指函数在其定义域内的所有点都具有连续性。
一个函数在某一点连续,意味着在这个点函数的极限存在且等于函数在该点的值。
函数的连续性在数学分析和物理学中有广泛应用。
7. 函数的导数和导函数函数的导数描述了函数在某一点的变化率。
如果函数在某一点可导,那么该点的导数表示了函数曲线在该点的切线的斜率。
导函数是原函数的导数函数,它可以用来求函数在某点的切线斜率。
8. 函数的积分和不定积分函数的积分描述了函数在一定区间上的“累积变化”。
不定积分是对函数求解反函数运算,它可以得到函数在给定区间上的积分值。
积分在数学和物理学中有广泛应用。
9. 函数的极限函数的极限描述了函数在某一点不断逼近某个特定值的趋势。
极限可以用来描述函数在无穷大或无穷小趋势的特性。
10. 函数的峰值和谷值函数的峰值和谷值是函数在定义域内的最大值和最小值。
函数的概念简单理解函数的概念简单理解1. 引言函数是数学和编程中一种非常重要的概念。
它可以帮助我们解决各种问题,并且在许多领域都有广泛的应用。
在本文中,我们将深入探讨函数的概念,包括定义、特性以及其在数学和编程中的应用。
2. 函数的定义在数学中,函数是一种将一个集合的元素映射到另一个集合的元素的规则。
简而言之,函数可以将一个输入值映射到一个唯一的输出值。
数学上我们可以表示函数为“y = f(x)”,表示输入的值为x,输出的值为y。
其中,x被称为函数的自变量,y被称为函数的因变量。
在编程中,函数是一段可重用的代码块,它接受输入参数并返回一个输出值。
通过将代码封装在函数中,我们可以实现代码的模块化和可复用性。
3. 函数的特性函数具有以下几个重要的特性:(1)唯一性:对于每个输入,函数只能有一个输出。
这意味着函数可以将输入映射到输出的唯一结果。
(2)确定性:对于相同的输入,函数总是给出相同的输出。
这种确定性使得我们可以预测函数的行为并进行有效的计算。
(3)可逆性:对于某些函数,我们可以通过反转输入和输出来得到原始的输入。
这种可逆性在许多数学和编程问题中起着重要的作用。
(4)定义域和值域:函数的定义域是指所有可能的输入值的集合,而值域是指所有可能的输出值的集合。
函数的定义域和值域可以帮助我们确定函数的范围和限制。
4. 数学中的函数应用函数在数学中有广泛的应用,包括但不限于以下几个方面:(1)数学建模:函数可以帮助我们描述和解决各种实际问题。
通过建立数学模型,我们可以预测物体在空中的运动轨迹,或者计算复杂的统计数据。
(2)微积分:函数是微积分的基础。
通过对函数的导数和积分进行研究,我们可以计算函数的斜率、曲线的形状以及曲线下的面积。
(3)方程的解:函数可以帮助我们找到方程的解。
通过将方程转化为函数的形式,我们可以使用数值或符号方法找到方程的根。
5. 编程中的函数应用函数在编程中同样有重要的应用,包括但不限于以下几个方面:(1)代码的组织和复用:通过将代码封装在函数中,我们可以将复杂的问题分解为更小的任务,并实现代码的模块化和可复用性。
函数的有关概念函数是数学中的一个重要概念,广泛应用于数学、物理、计算机科学等领域。
它可以描述输入与输出之间的关系,是实现程序模块化、抽象和重用的基础。
在本文中,将介绍函数的定义、分类、性质以及函数在不同领域中的应用。
1.函数的定义:函数是一个将一个或多个输入映射到一个确定的输出的关系。
数学上,函数可以表示为f:A→B,其中A是函数的定义域,B是函数的值域。
对于给定的输入x∈A,函数f将返回对应的输出y∈B。
2.函数的分类:函数可以按照定义域和值域的类型、性质、表达形式以及关系的方式进行分类。
(1)按照定义域和值域的类型:常见的函数类型有实函数、复函数、向量函数、矩阵函数等。
(2)按照函数的性质:函数可以是线性函数、非线性函数、单调函数、凸函数、反函数等。
线性函数是指满足线性性质的函数,即f(x+y)=f(x)+f(y)和f(kx)=kf(x)。
非线性函数则不满足线性性质。
(3)按照函数的表达形式:函数可以是解析函数、隐函数、参数方程、差分方程、微分方程等。
(4)按照函数的关系方式:函数可以是显式函数、隐式函数、递归函数等。
显式函数可以通过一个公式或表达式来表示,例如y=f(x)。
隐式函数则不能直接解出y,但可以通过等式关系表示出来。
3.函数的性质:函数具有一些重要的性质,包括单值性、有界性、周期性、奇偶性、单调性等。
(1)函数的单值性:函数在定义域内的每个输入只对应一个唯一的输出。
(2)函数的有界性:函数可以是有界的或无界的。
有界函数是指存在上界和下界,即对于定义域内的任意x,存在M和m,使得m≤f(x)≤M。
无界函数则不存在上界或下界。
(3)函数的周期性:函数在某个区间内具有重复的性质,即对于定义域内的每个x,存在一个正数T使得f(x+T)=f(x)。
(4)函数的奇偶性:函数可以是奇函数或偶函数。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
(5)函数的单调性:函数可以是增函数、减函数或不变函数。
函数的概念函数是数学中非常重要的概念,它描述了变量之间的依赖关系,帮助我们更好地理解数学中的各种关系。
本文将从函数的定义、表示、性质、运算以及实际应用等方面进行介绍。
1.函数的定义函数是一个数学表达式,它表示了一个或多个自变量的输入值与对应因变量的输出值之间的关系。
在数学中,用符号“f”表示函数,其中f后面的括号内是自变量的取值范围,而f右侧的表达式则是因变量的取值范围。
例如,一个简单的函数可以定义为y=x+2,其中x 是自变量,y是因变量。
2.函数的表示函数的表示方法有多种,包括解析法、表格法和图象法等。
解析法是用数学符号和公式来表示函数关系的一种方法,如y=x+2。
表格法是用表格形式表示函数关系的一种方法,它适用于离散变量函数,如阶跃函数等。
图象法则是用函数图象表示函数关系的一种方法,适用于连续变量函数。
3.函数的性质函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某一区间内随着自变量的增加,因变量的值也相应增加,反之亦然。
奇偶性是指函数在原点对称或旋转对称时具有的性质。
周期性是指函数按照一定的周期重复出现的现象。
4.函数的运算函数的运算包括函数的加、减、乘、除等基本运算以及复合运算等。
函数的加、减、乘、除等基本运算可以类比于代数中的运算,而复合运算则是将两个或多个基本函数组合成一个新函数的过程。
5.函数的实际应用函数在实际生活中有着广泛的应用,例如在物理学、工程学、经济学等领域中都有函数的身影。
例如,在物理学中,牛顿第二定律F=ma就描述了力与加速度之间的关系;在经济学中,成本函数、收益函数等都是描述经济变量的重要工具;在工程学中,各种系统模型也都是用函数来描述的。
此外,函数还在计算机科学、统计学等领域中有着广泛的应用。
总之,函数是数学中非常重要的概念之一,它描述了变量之间的依赖关系,并为我们提供了分析问题、解决问题的重要工具。
通过深入理解函数的定义、表示、性质、运算以及实际应用等方面,我们可以更好地掌握函数这一重要概念,并为解决实际问题提供有力的支持。
函数的概念知识点总结函数是编程语言中非常重要的概念,它可以将一段代码封装起来并赋予它一个名字,然后在程序中通过这个名字来调用这段代码。
函数的概念是计算机程序设计中的基础,因此我们有必要对函数进行深入的了解。
在本篇文章中,我们将对函数的概念、特点、分类、调用方法以及常见问题进行详细总结。
一、函数的概念函数是指一组相互关联的计算指令的集合,它接受输入参数,经过一系列的计算过程后,产生输出参数。
在程序中,函数可以完成特定的功能,比如求平方根、排序、查找等等。
函数的存在使得程序的组织更加清晰,代码更易于维护和复用。
函数可以看作是程序中的一个子程序,它有自己的输入、处理和输出。
函数的输入参数称为"形式参数",它们是函数接受的数据,经过一系列计算后产生的输出称为"实际参数"。
函数的输出可以是一个值,也可以是一个操作,这取决于函数的设计目标。
二、函数的特点1. 模块化:函数使程序可以分成若干的模块,每个模块完成特定的功能,便于编程和维护。
2. 封装:函数将一段代码封装起来,外部程序只需知道函数的名称和输入参数,而无需关心函数内部的实现细节。
3. 单一职责:良好的函数应当只完成一项特定的功能,这样可以增加函数的复用性。
4. 输入输出:函数具有输入和输出,通过输入参数传递数据,通过返回值返回计算结果。
5. 唯一性:在同一作用域内,函数名是唯一的,不同函数之间不能重名。
6. 可调用性:函数可以被多次调用,使得程序结构更加清晰、易于分析和调试。
三、函数的分类函数可以按照不同的标准进行分类,比如按照返回值类型、参数类型、调用方式等。
1. 根据返回值类型分类:函数可以分为有返回值函数和无返回值函数。
有返回值函数会返回一个计算结果,而无返回值函数仅执行一系列操作而不返回值。
2. 根据参数类型分类:函数可以分为无参函数和有参函数。
无参函数不需要接受参数即可执行,而有参函数需要接受特定的输入参数才能执行。
函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。
在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。
函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。
函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。
1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。
单值性表示对于每个输入参数,函数有且只有一个输出结果。
有限性表示函数的定义域和值域都是有限的。
定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。
1.3 函数的分类函数可以根据其形式、性质和用途进行分类。
常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。
函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。
二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。
若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。
2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。
若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。
2.3 函数的最值函数的最值指在定义域内的最大值和最小值。
函数的最值可以通过求导数或利用一阶导数的性质进行判断。
2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。
通过绘制函数的图像,可以直观地理解函数的性质和变化规律。
例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。
三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。