大学物理实验-不确定度公式的计算
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
大学物理实验教学中关于实验数据的不确定度的计算和分析作者:孙红章王翚苏向英来源:《教育教学论坛》2015年第35期摘要:本文首先讨论了大学物理实验教学中关于不确定理论中的直接测量量的A类、B类标准不确定度和合成不确定度以及间接测量量的不确定度的通常表示方法,随后推算出了几个基本物理实验中各个测量量不确定度的计算公式,对大学本科学生的物理实验教学具有指导意义。
关键词:大学物理实验教学;不确定度计算;固体密度测量;杨氏弹性模量测量;共轭法测凸透镜焦距中图分类号:G642 ; ; 文献标志码:A ; ; 文章编号:1674-9324(2015)35-0169-02现如今在大学物理实验教学中为了更加准确和精确的表示实验测量结果,常使用不确定度理论来表示实验测量结果。
[1,2]在大学物理实验教学中,不确定度的计算一直是一个难点,也是一个重点,许多本科学生因为不确定度的计算方法非常复杂,而且计算量很大,而放弃对实验数据的科学处理。
这里我们将阐述大学物理实验教学中不确定度的通常表示方法,并结合有关的基本物理实验,在课堂上用多媒体演示,使大学一年级学生很容易掌握不确定度的计算,取得了良好的教学效果。
一、不确定度理论的一般原理和计算方法[3,4]不确定度理论对于直接测量量把数据的不确定度根据数据的性质来分类,把符合正态分布统计规律的称之为A类标准不确定度,而不符合正态分布统计规律的称之为B类标准不确定度。
把两类不确定度的平方和的根称之为测量量的合成标准不确定度,或者简称为不确定度。
大学物理实验中物理量的直接测量量的平均值的标准偏差即为A类标准不确定度,它的计算公式为:t的大小与物理量的测量次数n和置信概率p有关系,置信概率p一般约定取值为68.3%,特殊情况下置信概率p取95.4%。
如果我们测量9次,置信概率取p=68.3%,那么置信因子取t=1.07。
如果我们测量5次,置信概率取p=68.3%,置信因子取t=1.14。
i2 n →∞ n i = 1物理实验的不确定度表示和计算方法摘 要 本文在 分析物理 实验中引入 不确定度必 要性的 基 础上, 介绍了不确定度的有关概念, 提出了不 确定度的表示 和计算方法。
关键词 物理实验; 不确定度; 置信概率0 引 言在物理实验中总是通过各种测量方法和测量仪 器对各个物理量进行测量, 但如何对测量结果的可 靠性进行评价, 一直是测量和数据处理环节的重要 问题。
过去的传统方法是用测量误差来评定测量结 果的可靠性, 而测量误差定义为测量值与真值之差, 由于真值是永远也测不到的, 所以测量误差也是一 个不可知量, 即用测量误差来评定测量结果的可靠 性是不科学的。
1980 年国际计量局提出了关于实验不确定度表示的建议书 《R ecomm endation INC -1C 19980》[ 1], 1992 年发表了 《测量不确定度表示法指南》, 在世界 范围内开展了用不确定度来评价测量结果的推广和 使用。
在此基础上, 国际理论与应用物理联合会与 国际标准化组织 ( ISO ) 等 7 个国际组织联合颁发了 《国际通用计量学基本术语》) 之后, 对物理教学中 有关 误差分析 和数据处 理方法 提出 了新的 要求。
在于某一个量值范围内的评定, 它反映了可能存在 的误差分布范围, 其大小给出了测量结果可信程度 的高低。
不确定度实际上具有非常明确的含义, 它 具有确定的量值, 其量纲与被测量的量纲相同, 但 通常总是联系于一定的概率。
不确定度一般含有多 个分量, 但按其数值的评定方法可归并成两类: A 类分量: 由测量列的统计分析评定的不确定 度分量, 即随机误差分量, 用△A 表示。
B 类分量: 由非统计方法评定的不确定度分量, 即未定系统误差分量, 用△B 表示。
合成不确定度: 为 A 类分量和 B 类分量按方差 合成原理进行合成, 用 u 表示可写为u =∑△2 + ∑△2( 1)AB总不确定度 ( 展伸不确定度) : 将合成不确定度 u 乘以一个与置信概率有关的包含因子 K p , 则得总 不确定度, 用 U 表示, U = K p u 。
用分光计测量三棱镜折射率实验数据处理1.顶角及不确定度)(A u 的计算(1)自准法: )(2118021210右右左左θθθθ-+--=A , θθθ∆==⨯=)()()21(4)(22u u A u (2)反射法: )(412121右右左左θθθθ-+-=A 2.最小偏向角及最小偏向角的不确定度的计算 (1)最小偏向角min δ的计算公式:)(412121min 右右左左θθθθδ-+-= (2)最小偏向角min δ的不确定度计算公式: θθθδ∆==⨯=21)(21)()41(4)(22min u u u 仪器误差Δθ = 2′= ×10-4(rad) u (A ) = 2′= ×10-4(rad) u (δmin ) = 1′= ×10-4(rad)A = ° ′±2′ δmin = ° ′±1′3.折射率n 以及折射率的不确定度)(n u 的计算(1)折射率的计算公式 A A n 21sin )(21sin min +=δ (2)折射率的不确定度计算公式)(2)(222)(min 2min 222min δδδu A ctg A u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-= )(2sin 2cos 21)(2sin 2sin 2cos 212cos 2sin 21min 22min 222min min δ⎪⎪⎪⎪⎭⎫ ⎝⎛δ++⎪⎪⎪⎪⎭⎫ ⎝⎛δ+-δ+=u A A A u A A A A A )()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A式中的角度的不确定度应取弧度为单位n±u (n)= ±思考题及参考答案1.望远镜光轴与分光计的中心轴相垂直,应该在望远镜中看到什么现象利用哪些螺钉调节光学平行平板或三棱镜两个光学面反射的十字像,都能与望远镜分划板叉丝刻线上交点重合。
实验数据处理1. 计算三棱镜顶角及不确定度)(A u 顶角A 的计算公式: (1)自准法 )(211802121右右左左θθθθ-+--=A (2)反射法 )(12121右右左左θθθθ-+-=A其中须考虑实际转过的角度。
(3) 顶角A 的不确定度的计算公式 自准法: θθθ∆==⨯=)()()21(4)(22u u A u反射法:11()()22u A u θθ===∆2. 最小偏向角的计算及最小偏向角的不确定度 (1) 最小偏向角min δ的计算公式:)(12121min 右右左左θθθθδ-+-=(2)最小偏向角min δ的不确定度计算公式:θθθδ∆==⨯=21)(21)()41(4)(22min u u u3. 计算折射率n 以及折射率的不确定度)(n u由折射率的计算公式 A A n 21sin )(21sin min +=δ,对较厚三棱镜,可得: n蓝紫= n 绿 =由折射率的不确定度计算公式:)(2)(222)(min 2min222min δδδu A ctgA u A ctg A ctg n n u ++⎪⎭⎫ ⎝⎛+-=)()21sin(2)(21cos )()21(sin 2)21sin(min 22min 222min δδδu A A A u A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= 22min 222min )21()21sin(2)(21cos )()21(sin 2)21sin(θδθδ∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A A A 仪器误差 Δθ = 2′= 5.82×10-4(rad)可得:u (n 蓝紫) = ,u (n 绿) =测得折射率n 蓝紫= ± ,n 绿 = ±数据处理注意事项与角度的不确定度有关的数值的单位应取为弧度。
大物实验不确定度计算公式
大物实验中,确定物理量的值时,需要考虑不确定度。
不确定度是指测量结果与真实值之间的差异,通常用标准偏差来表示。
计算不确定度的公式如下:
不确定度 = 仪器误差 + 随机误差
其中,仪器误差是由仪器自身的精度引起的误差,通常用仪器测量范围的一半来估算。
随机误差是由于实验过程中各种不可避免的因素引起的误差,通常用标准差来估算。
计算不确定度的具体步骤如下:
1. 确定所测量物理量的最小可分辨值和仪器误差。
2. 进行多次测量,根据实验数据计算出平均值和标准差。
3. 计算总不确定度,即仪器误差和随机误差之和。
4. 根据置信度确定扩展不确定度,通常取置信度为95%。
5. 最终确定物理量的值和不确定度。
通过以上公式和步骤,可以有效地计算出物理量的不确定度,提高实验的准确性和可靠性。
- 1 -。
大学物理实验不确定度引言在进行大学物理实验时,我们经常会遇到一些测量数据需要进行分析和处理的情况。
然而,真实的物理量是由各种各样的测量误差和不确定度组成的。
因此,正确地评估和报告测量的不确定度对于得出准确的结果至关重要。
什么是不确定度不确定度是指测量结果与被测量物理量真值之间的差异度量。
它反映了测量结果的精确程度和可靠性。
测量不确定度由多种因素引起,如测量设备的精确度、实验条件的稳定性、人为误差等。
如何评估不确定度评估不确定度的方法可以分为两种:直接测量法和间接测量法。
直接测量法直接测量法是指直接对被测量物理量进行测量和记录。
在这种情况下,不确定度可以通过测量设备的精确度和重复测量来评估。
重复测量可以帮助我们确定测量结果的可靠性,进而评估不确定度的大小。
间接测量法间接测量法是指通过对几个相关的物理量进行测量,然后使用数学关系式计算所要测量的物理量。
在这种情况下,不确定度的评估需要考虑每个测量值的不确定度以及数学关系式的传递误差。
不确定度的类型不确定度可以分为两种类型:随机不确定度和系统不确定度。
随机不确定度随机不确定度是由于测量条件的变化或测量设备的随机误差引起的。
它可以通过重复测量获得一系列测量结果,并从中计算出平均值和标准偏差来评估。
系统不确定度系统不确定度是由于系统性误差或仪器固有误差引起的。
它通常不会在重复测量时得到纠正。
评估系统不确定度需要考虑实验装置的特性以及操作者的技术能力。
不确定度的表示方法表示不确定度的常见方法有两种:标准不确定度和扩展不确定度。
标准不确定度标准不确定度是测量结果不确定度的一种方法。
它表示为一个具有区间的数字,通常用测量结果的标准差表示。
标准不确定度给出了测量结果的范围,但无法确定具体的上下限。
扩展不确定度扩展不确定度是在标准不确定度的基础上,根据所选的置信度给出测量结果的范围。
它考虑了标准不确定度的不确定性,并通过乘以一系列修正因子来扩展结果。
不确定度的传递规则当使用数学关系式计算一个物理量时,我们需要考虑每个测量值的不确定度如何传递给最终结果。
大学物理实验-不确定度公式的计算
参数假设
Xi 是每次仪器测量的示值或读数
X上面有一横线(x),是每次测量结果的平均值
n为测量次数
计算方差
对同一量,进行多次计量,然后算出平均值。
对于偏离平均值的正负差值,就是其不确定度。
其差值越大,则计量的不确定度就越大。
在数理统计学上,一般用方差(S)来表示:S^2={(x1-X)^2+(x2-X)^2+(x3-X)^2……+(xn-X)^2}/(n-1)。
注:X为平均值,n为测量的次数。
方差越大,其不确定度则越大;方差越小,其不确定度就越小。
启用标准偏
打开计算器> 查看(V) > 选择"科学型" > 单击计算器左边的"Sta"按钮(此时会弹出一个统计框)
数据编辑
(例子:数据[25,34,13])
在统计框内单击"全清(A)"按钮> 返回计算器> 输入数据"25" > 单击计算器左边的"Dat"按钮> 输入数据"34" > 单击计算器左边的"Dat"按钮> 输入数据"13" > 单击计算器左边的"Dat"按钮(此时统计框已记录下数据[25,34,13])
标准偏差计算
平均值-- "Ave" 按钮
总和-- "Sum" 按钮
样本标准差[不是标准差或方差] -- "s" 按钮
方差:先求出样本标准差,然后平方,除以样本数量,再乘以(样本数量减1),才得出方差
标准差:将方差开方
在测量过程中,各项误差合成后得到的总极限误差称为测量的不确定度,他是表示由于测量过程中各项误差影响而使测量结果不能肯定的误差范围。
测量误差=测量值-真值,测量值>真值,为正差;测量值<真值,为负差。
由于我们习惯了测量误差这个概念,现在提出测量不确定度,确实理解起来比较困难。
测量不确定度目前在各种资料上给出的解释不尽相同,但本质都是相同的。
我们可以这样简单的理解:测量误差为一个确定值(尽管被测量真值是一个未知量),而不确定度是被测量真值所处一个范围的评定或由于测量误差致使测量结果不能肯定的程度。
(这是我个人理解所得,上课的时候也是这样教学生的)
由ISO、IEC、BIPM、IFCC、IUPAC、IUPAP、OIML七个国际组织共同组成国际测量不确定度工作组,在1NC-1(1980)建议书的基础上,起草制定了《测量不确定度表示指南》(GUM)。
1993年,GUM以7个国际组织的名义正式由ISO颁布实施,并在1995年作了修订。
为了贯彻GUM在我国的实施,由全国法制计量委员会委托中国计量科学研究院起草制定了国家计量技术规范《测量不确定度评定与表示》(JJF1059-1999)。
该规范原则上等同GUM的基本内容,作为我国统一准则对测量结果及其质量进行评定、表示和比较。
国家计量技术规范《测量不确定度评定与表示》(JJF1059-1999)中,对测量不确定度定义为:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。
此参数可以是标准差或其倍数,或说明了置信水准的区间的半宽度,其值恒为正值。